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We use learning in an equilibrium model to explain the puzzling predictive power of the 

volatility risk premium ( V RP) for option returns. In the model, a representative agent fol- 

lows a rational Bayesian learning process in an economy under incomplete information 

with the objective of pricing options. We show that learning induces dynamic differences 

between probability measures P and Q , which produces predictability patterns from the 

VRP for option returns. The forecasting features of the VRP for option returns, obtained 

through our model, exhibit the same behaviour as those observed in an empirical analysis 

with S&P 500 index options. 
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1. Introduction 

Are option returns predictable? A recent empirical study by Goyal and Saretto (2009) sheds some light on the return

predictability of option contracts. In particular, Goyal and Saretto (2009) show that the volatility risk premium (measured

as the difference between implied and realized volatility) can predict option returns. They argue that large deviations of

implied volatility (henceforth, IV ) from realized volatility (henceforth, RV ) are signals of option mispricing, which can be

used to predict the returns on option investment strategies. We offer a theoretical explanation for this empirical relationship

between the volatility risk premium (henceforth, V RP or ( IV - RV )) and option returns. We use learning to explain both why

IV deviates from RV and how this deviation generates predictive dynamics in the returns of option portfolios. 

We extend the learning model proposed by Timmermann (2001) , including option contracts to analyse the effects of

learning on the relationship between the V RP and option returns. The model describes a discrete-time endowment economy
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with a Bayesian representative agent. There are three assets in the economy: a bond, a stock and a group of European

put and call options. In the model, the mean dividend growth rate, g t , exhibits breaks. If a break takes place at time t +
m , the new value of g t+ m 

is drawn from a univariate distribution g t+ m 

∼ G (·) , and g t+ m 

does not change until the next

break. Time periods between breaks are described by a memoryless distribution. Moreover, the representative agent faces

an environment under incomplete information because g t is unknown. Nevertheless, the agent can learn recursively about

the new value of g t after each break, by following a rational Bayesian updating process as new information arrives. 

In the model, the Bayesian agent learns about g t from daily dividends received over time. Hence, dividends are the signals

used to obtain a parameter estimate of the mean dividend growth rate, ˆ g t . The Bayesian agent starts the learning process

after a given break with a prior density p P ( g t ) regarding the probability distribution of g t in the physical world P (which

is equal to the density of G (·) ). Subsequently, prior beliefs are recursively updated to obtain a posterior density, p P ( ̂  g t | �t ) ,

using Bayes’ rule given the information set �t of signals received since the most recent break. 

In early periods after a break, when no ‘long’ history of dividend realizations is available, there are large revisions in

the value of ˆ g t , since the estimation accuracy is low due to insufficient information (i.e. the number of signals is not large

enough for an accurate estimation of the unknown value of g t ). At time t , ˆ g t is random and described by the posterior prob-

ability, p P ( ̂  g t | �t ) , with mean ˆ g ∗t and variance σ 2 
ˆ g ,t 

(i.e. ˆ g ∗t and σ 2 
ˆ g ,t 

are dynamically updated as new information is received).

Thus, the value of ˆ g ∗t reflects the expected value of the parameter estimate, and σ 2 
ˆ g ,t 

represents the level of inaccuracy of

the parameter estimation. 

In terms of option returns, the expected holding-period return of a European put option contract is defined by R Put 
t+ τ =

E P t [ max ( K−S t+ τ , 0 ) ] 

Pu t t ( K,τ ) 
− 1 = 

E P t [ max ( K−S t+ τ , 0 ) ] 

E Q t [ max ( K−S t+ τ , 0 ) ] 
− 1 , where S t is the price of the underlying asset, K is the strike price and τ is the

time-to-maturity (see Broadie et al., 2009 ). A similar expression can be written for the holding-period return on a European

call option contract, but with an option payoff given by max ( S t+ τ − K, 0 ) . Therefore, the magnitude of the expected holding-

period return of an option is affected by differences between the physical, P , and risk-neutral, Q , probability measures.

Under full information, the relationship between the physical probability measure, p P ( S t+1 ) , and the risk-neutral probability

measure, p Q ( S t+1 ) , is given by p Q ( S t+1 ) = m t+1 · p P ( S t+1 ) / E t ( m t+1 ) , where m t+1 is the stochastic discount factor. However,

under incomplete information and learning, the P and Q probability measures incorporate changes in the agent’s perceptions

about how the economy evolves. We show that, under Bayesian learning, the physical probability measure is conditional on

the available information and is given by p P ,BL ( S t+1 | �t ) = ∫ p P ( S t+1 | �t , ̂  g t ) p 
P ( ̂  g t | �t ) d ̂  g t , while the risk-neutral probability

measure is p Q ,BL ( S t+1 | �t ) = ∫ m t+1 p 
P ( S t+1 | �t , ̂  g t ) p 

P ( ̂  g t | �t ) d ̂  g t / E 
BL 
t ( m t+1 ) . Therefore, the posterior density, p( ̂  g t | �t ), affects

the agent’s beliefs about the probabilities of future states of the economy. In the case of a change in the value of ˆ g t (due to

the agent’s learning process) being statistically related to the agent’s beliefs regarding future levels of the stochastic discount

factor, learning can induce additional differences between densities P and Q . In fact, this is what happens, since a change in

the value of ˆ g t modifies perceptions about the evolution of the stochastic discount factor and its expected value. 

Moreover, Bayesian learning induces predictability patterns since future parameter estimates are progressively updated

in a recursive updating procedure. For instance, when the representative agent observes a signal that the mean dividend

growth rate is higher than ˆ g ∗t , the agent updates her expectations upwards. In the scenario in which future signals are

largely higher than the value of ˆ g ∗t (i.e. at time t the agent is wrongly very pessimistic in her beliefs regarding the mean

dividend growth rate), the future values of ˆ g ∗t will gradually be revised upwards over time; thus, predictable dynamics

emerge. Conversely, the same effect can be observed in the case of an optimistic scenario. The agent can be incorrectly

pessimistic or optimistic immediately after breaks, as the number of signals (dividends) about the new unknown parameter

is low, and the agent’s parameter estimates are mainly based on her prior beliefs. Thus, learning can induce predictability

patterns in all assets, including the returns on option contracts. 1 

Given that the agent’s learning process simultaneously generates predictability patterns in option returns and dynamic

gaps between probability measures P and Q , the VRP (which reflects the difference between the volatilities under P and

Q ) is a natural candidate to be a predictor of option returns. 2 However, the analysis of the impact of learning on the re-

turn predictability of options is not straightforward given the non-linearity of option contracts. It is not possible to obtain

a closed-form solution in our model for the relationship between the VRP and option returns under a Bayesian learning

process. Thus, we use a numerical approach based on a simulation analysis which is driven by our model. 

We compute the returns of option portfolios that control for the effect of changes in the underlying stock price, such as

delta-hedged and straddle option portfolios. The use of these option portfolios is important because they are not affected by

the predictability patterns of the underlying asset, which can also be endogenously induced by the agent’s learning process

in the model. Thus, the use of these option portfolios allows us to isolate the impact of learning on option prices and their

returns. In particular, we calculate delta-hedged portfolios and straddle portfolios which are at-the-money (henceforth, ATM )

and have a time-to-maturity of one month, similarly to Goyal and Saretto (2009) . 3 
1 The same argument is used by Timmermann (1993, 1996) and Guidolin (2006b) to explain return predictability patterns in stock markets. 
2 Hence, learning may provide an explanation for the puzzling empirical regularity that implied volatilities are different from realized volatilities. Several 

recent studies have proposed explanations for the existence of the VRP within the context of equilibrium-based pricing models. See, e.g., Bollerslev et al . 

(2009), Carr and Wu (2009), Drechsler and Yaron (2011) . However, these studies have not explored why the VRP can predict option returns, which is the 

main objective of our research. 
3 The put (call) delta-hedged portfolio is formed by buying one put (call) option contract, and buying (short-selling) delta shares in the underlying stock. 

The straddle portfolio is formed by buying one call option contract and one put option contract. 
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The simulation analysis effectively shows that the agent’s learning process induces a dynamic relationship between the

VRP and option returns. We show that the VRP consistently predicts a non-trivial fraction of the returns of option portfolios,

as in Goyal and Saretto (2009) . The results are robust to the inclusion of alternative predictor variables. We also compare

the results generated by our learning model to the returns observed on S&P 500 index option contracts. We find that our

model generates the same features of the VRP ’s ability to forecast option returns as observed in actual S&P 500 option data.

To the best of our knowledge, there has been no theoretical study to date that explains, through a dynamic equilibrium

model, the predictive power of the VRP for option returns. The study is organized as follows. Section 2 presents a literature

review. Section 3 introduces the model. Section 4 describes the model implementation. Section 5 reports the main results

of our model simulations, which are compared to S&P 500 option data. Section 6 concludes. 

2. Literature review 

Our study is connected to the literature on theoretical models, in which a learning process affects option pricing (e.g.,

David and Veronesi, 2002; Guidolin and Timmermann, 2003 ; and Shaliastovich, 2009 ). It should be noted that these studies

use learning mainly to explain the ‘existence’ of the IV surface; as such, they do not explore the predictability patterns and

features of option returns as we do in our study. For example, David and Veronesi (2002) introduce a model based on a

regime-switching process, in which agents learn because they do not observe the drift of the dividend stochastic process.

Guidolin and Timmermann (2003) develop a two-state model in which the dividend growth evolves on a binomial lattice

with an unknown state probability which is learned. 4 Shaliastovich (2009) presents a model in which there is a learning

process based on a recency-biased updating procedure regarding the unknown consumption growth rate. 

Our paper also relates to theoretical studies in which learning is used to explain diverse empirical anomalies in stock

returns (see, e.g., Veronesi, 1999, 20 0 0; Timmermann, 20 01; Brandt et al., 2004; Massa and Simonov, 20 05; Guidolin, 20 06a,

b; Guidolin and Timmermann, 2007; Branch and Evans, 2010 ; and Branch, 2016 ). In particular, our paper is connected to

studies in which structural breaks are modelled under a learning environment to explain the anomalous behaviour of stock

prices (see Timmermann, 2001 ; and Guidolin, 2006a, b ). For instance, Guidolin (2006a, b ) presents an endowment economy

based on Lucas (1978) , in which the dividend process is characterized by a binomial lattice in which the unknown state

probability is subject to structural breaks. He shows that rational learning induces high equity premia, low risk-free interest

rates, volatility clustering and long-run predictability. 

Our paper is particularly related to Timmermann (2001) , who modifies the model presented in Lucas (1978) by assuming

that g t exhibits breaks and is unknown. He reports that learning induces skewness, kurtosis, volatility clustering, and serial

correlation in stock returns. We depart from Timmermann (2001) in several ways. Firstly, we consider a more developed

model in which the representative agent has to price not only a bond and a stock but also option contracts. Secondly, the

focus of our research differs from that of Timmermann (2001) , in that we examine the effects of learning on the predictive

power of the VRP for option returns, rather than the impact of learning on features of stock returns. Moreover, we perform

an empirical analysis to contrast our theoretical analysis with the empirical evidence, by analysing the VRP and option

returns from S&P 500 index option contracts. 5 

As explained in the introduction, our study is associated in particular with the empirical literature on option return pre-

dictability. Goyal and Saretto (2009) show that the VRP can predict option returns, since it is a signal of option mispricing;

this is the empirical study that inspired our theoretical learning model. Cao and Han (2013) also show that the VRP is related

to delta-hedged option returns. In addition, Cao and Han (2013) report that the returns on delta-hedged option portfolios

decrease monotonically as the idiosyncratic volatility of the underlying stock increases. Furthermore, our paper is connected

to studies in which the predictive power of the VRP is used to forecast returns on stocks instead of option returns (e.g.,

Bollerslev et al., 2009 ; and Drechsler and Yaron, 2011 ). 

3. The model 

As mentioned in the introduction, there is empirical evidence that the VRP can be used to predict option returns. In order

to examine this link between the VRP and option returns, in this section we use an equilibrium model in which a repre-

sentative agent follows a learning process. In particular, we extend the learning model of Timmermann (2001) , introducing

option contracts to analyse the effects of learning on the predictive power of the VRP for the returns of option contracts. 

Similarly to Timmermann (2001) , our model is based on Lucas (1978) , and we assume in it that the mean dividend

growth rate, g t , has breaks. As a first step, we assume asset prices to be characterized by full information (i.e. the agent

knows the value of g t over time). Subsequently, we consider an economy under incomplete information, where g t is un-

known. However, the agent follows a learning process regarding g t as new information is received, which allows her to

calculate asset prices, including the prices of European option contracts and their returns. 
4 In contrast to the model in Guidolin and Timmermann (2003) , in our model the effects of learning do not asymptotically vanish over time. This is due 

to the ’existence’ of breaks, which means that the agent is repeatedly learning a new value of g t after each break in the economy. 
5 Our paper is also related to studies that examine and explain why the VRP increases with uncertainty, where this uncertainty is generated through 

the learning processes associated with regimes of economic and policy variables (e.g. David and Veronesi, 2014 ), or through investor disagreement (e.g. 

Buraschi et al., 2014 ). 
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3.1. Asset prices under full information 

There is a discrete-time endowment economy with a representative agent; there is a stock, S t , and a bond, B t , with

one period to maturity and without coupons. The stock has a net supply normalized at one, while the bond is default free

and has a zero net supply. The owner of the stock receives real dividends, D t , per period. Dividends follow a geometric

random walk, ln ( D t / D t−1 ) = μt + σε t , with volatility σ and drift μt . However, the fundamental mean dividend growth rate

g t exhibits breaks. Thus, breaks are also observable in μt , since we know that g t = exp ( μt + σ 2 / 2 ) − 1 . Periods between

breaks are described through a geometric distribution, with parameter π reflecting the probability of a break on a given

date. 6 We assume that, when a break happens at time t + m , the new value of g t+ m 

is drawn from a continuous univariate

distribution g t+ m 

∼ G (·) , defined by the support [ g d , g u ] , and g t+ m 

does not change until there is a new break in the economy.

There is also a group of European put and call option contracts, P u t t ( K, τ ) and Cal l t ( K, τ ) , respectively. The option con-

tracts have the stock as underlying asset, strike price K, and time-to-maturity τ. We assume a complete and perfect capital

market with no friction in terms of trading possibilities. There is a power utility with a level of relative risk aversion α,

which describes the agent’s utility in relation to her real consumption C t : 

u ( C t ) = 

{
C 1 −α

t −1 

1 −α α ≥ 0 

ln C t α = 1 . 
(1)

We assume that dividends are the only income source, are non-storable and are consumed when they arrive (i.e. C t =
D t ). Therefore, the representative agent chooses her asset holdings by maximizing the discounted value of her expected

future utility, max 
{ w 

S 
t+ k ,w 

B 
t+ k } 

E t [ 
∞ ∑ 

k =0 

βk u ( D t+ k ) ] , in which β ≡ 1 / ( 1 + ρ) , where ρ is the impatience rate, while w 

S 
t+ k and w 

B 
t+ k

are respectively the quantities of assets S t and B t in her portfolio. This yields the following Euler equations for the stock

and the bond: S t = E t [ m t+1 ( S t+1 + D t+1 ) ] and B t = E t [ m t+1 ] , where m t+1 = β( D t+1 / D t ) 
−α is the stochastic discount factor.

Proposition 1 presents price expressions for the bond and the stock, which are obtained by solving the Euler equations

under full information. 

Proposition 1. (Stock and bond prices under full information): The rational expected prices of assets S t and B t under full infor-

mation are given by: 

S F I t = 

D t 

1 + ρ − ( 1 − π) ( 1 + g t ) 
1 −α

{ 

( 1 − π) ( 1 + g t ) 
1 −α + π

(
I 1 + ( 1 − π) I 2 

1 − π I 3 

)} 

= D t 
( g t ) , (2)

and 

B 

F I 
t = 

1 

( 1 + ρ) 

{
( 1 − π) ( 1 + g t ) 

−α + π
g u ∫ 
g d 

( 1 + g t+1 ) 
−αdG ( g t+1 ) 

}
, (3)

where 

I 1 = 

g u ∫ 
g d 

( 1 + g t+1 ) 
1 −αd G ( g t+1 ) ; I 2 = 

g u ∫ 
g d 

( 1 + g t+1 ) 
2 −2 α

1 + ρ − ( 1 − π) ( 1 + g t+1 ) 
1 −α

d G ( g t+1 ) ;

I 3 = 

g u ∫ 
g d 

( 1 + g t+1 ) 
1 −α

1 + ρ − ( 1 − π) ( 1 + g t+1 ) 
1 −α

dG ( g t+1 ) 

with 1 + ρ > ( 1 + g u ) 
1 −α . 

Proof: See Timmermann ( 2001 ) . 

In the absence of breaks, option prices under full information can be calculated using the discretized version of the

Black-Scholes formula, as in Rubinstein (1976) . 7 However, the Black-Scholes formula cannot be used in our model, since

breaks cause the processes followed by the underlying asset, the interest rate and the dividend yield to be non-stationary.

Nevertheless, a no-arbitrage option price can be obtained by means of a change in probability measure, which is presented

in Proposition 2 . 8 

Proposition 2. (Option prices under full information): The full-information rational expected prices of a European put option

contract, P ut F I t ( K, τ ) , and a European call option contract, Cal l F I t ( K, τ ) , are given by: 

P ut F I t ( K, τ ) = 

∞ 

∫ 
0 

1 

( 1 + r t+ τ ) 
max 

{
K − S F I t+ τ , 0 

}
p Q 

(
S F I t+ τ

)
dS F I t+ τ (4)
6 Since the geometric distribution is memoryless, the agent cannot predict when the next break will occur. 
7 Since there are no breaks in Guidolin and Timmermann (2003) , they also show that under full information their model converges asymptotically 

towards the Black-Scholes formula. 
8 It is important to note that the representative agent uses the aggregate endowment process to price option contracts. Under full information, the 

representative agent knows the current fundamental mean dividend growth rate in each period, which will affect the stock and bond prices. Therefore, 

the agent can replicate the option payoffs period-by-period, which makes options replicable claims. Hence, all potential pricing measures yield the same, 

unique, no-arbitrage price for option contracts. 
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and 

Cal l F I t ( K, τ ) = 

∞ 

∫ 
0 

1 

( 1 + r t+ τ ) 
max 

{
S F I t+ τ − K, 0 

}
p Q 

(
S F I t+ τ

)
dS F I t+ τ (5) 

with risk-neutral price density, p Q ( S t+ τ ) , given by: 

p Q ( S t+ τ ) = ( 1 + r t+ τ ) βτ
(

D t+ τ
D t 

)−α
φ( ε t+ τ | 0 , σ ) ϕ ( z| τ, π) η( h 1 | π) 

·
[
η( h 2 | π) � 

(
g t+ h 2 

)
. . . η( h z | π) � 

(
g t+ h z 

)] . 

Here, S F I t+ τ = D t+ τ
( g t+ τ ) is defined in Proposition 1 , D t+ τ = D t exp ( 
√ 

τσε t+ τ − τσ 2 / 2 ) 
z ∏ 

i =1 

( 1 + r t+ h i ) 
h i , where z represents

the number of breaks until maturity, which is described by a binomial distribution ϕ(z| τ, π) with parameters τ and π , while

{ h i } z i =1 
is the time between breaks, which is described by a geometric distribution η( h i | π) . Hence, the time-to-maturity of an

option contract is τ = 

z ∑ 

i =1 

h i . In addition, { g t+ h i } z i =2 
is the value of the mean dividend growth rate, which is described by a

univariate distribution g t+ h i ∼ G (·) with pdf �(·) defined on the support [ g d , g u ] , where g t+ h 1 = g t and g t+ h z = g t+ τ ; mean-

while, ε t+ τ is described by a normal distribution, having density φ( ε t+ τ | 0 , σ ) with mean zero and volatility σ. Moreover,

1 + r t+ τ = 

τ∏ 

j=1 

( 1 + r j−1 , j ) , with 1 + r j−1 , j = 1 / B j−1 and B j−1 is the price of the risk-free one-period bond in period j − 1 , which

was defined in Proposition 1 . 

Proof. See Appendix A . 

Proposition 2 presents expressions for option prices that are obtained from the expected payoffs of the options under

the risk-neutral probability p Q ( S t+ τ ) . In addition, the stock price and the bond price from Proposition 1 are used in both

the option payoffs and the risk-neutral price density in Proposition 2 . 

3.2. Asset prices under incomplete information and learning 

Propositions 1 and 2 are obtained assuming full information. However, we modify this full-information environment

to include learning in the model. Suppose that the value of g t is not observable by the representative agent, but the agent

receives signals concerning this unknown parameter, through the dividends paid on the stock. Thus, the n historical dividend

returns since the most recent break, { D i / D i −1 } t i = t−n 
, represent the information received and used to learn about g t . 

We assume that the representative agent can detect the time at which there is a break in the dividend growth rate, as in

Timmermann (2001) . This allows us to study how learning affects option prices and their returns in a clean setup, in which

only one parameter is unknown. The assumption that the agent can identify the dates of breaks is supported by the fact

that there are real-time tests that can be used to contemporaneously detect breaks with a reasonable degree of precision

(see, e.g., Chu et al., 1996 ; and Leisch et al., 20 0 0 ). 

In what follows in this paper, for mathematical simplicity we will describe the learning process as a function of the

dividend drift, μt , which is also unknown (given the relationship 1 + g t = exp ( μt + σ 2 / 2 ) ). 

3.2.1. Learning schemes 

There are various learning schemes that have been used in the economic literature (see Guidolin and Timmer-

mann, 2007 ). In this section, we briefly review three well-known learning schemes: rational learning, adaptive learning and

Bayesian learning. In particular, we describe how these learning setups can be implemented in our model, and we analyse

their main features (i.e. properties and relationships). 

Rational learning 

Suppose that the representative agent follows a rational learning (henceforth RL ) process to learn about μt . As in the

other learning schemes, which will be discussed in this section, the agent updates her parameter estimate, ˆ μt , over time as

new signals are received. However, RL has three characteristics, which together distinguish this form of learning from others.

Firstly, a rational learner does not consider the unknown parameter, μt , as a random variable. Secondly, RL is forward

looking in the sense that the agent takes into account future updates in parameter estimates when she prices any asset.

Thus, asset prices take into account the current and possible future values of parameter estimates (i.e. considering all po-

tential future probability distributions of parameter estimates). Therefore, a future parameter estimate, ˆ μt+ h , where h is a

positive integer, is a random variable under RL . Thirdly, RL implies that the agent consistently updates her beliefs regarding

the unknown parameter, using all available information. This means that Bayes’ rule is recursively applied in current and

future parameter estimates using the correctly specified likelihood function. 9 For instance, in our model under incomplete
9 This represents a slight difference between RL and Bayesian learning ( BL ), which will be explained in the following paragraphs. Under BL ( RL ), μt is (is 

not) considered random. However, a rational learner uses Bayes’ rule to update her beliefs, despite the fact that she does not view μt as a random variable 

(see Guidolin and Timmermann, 2007 ). 
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information and learning, the representative agent’s forecast of the dividend to be observed in a future period τ is given by:

D 

RL 
t+ τ = 

ˆ E t 

[
. . . ̂  E t+ τ−2 

[
ˆ E t+ τ−1 

[
D t+ τ | ̂  μt+ τ−1 , ξt+ τ−1 

]| ̂  μt+ τ−2 , ξt+ τ−2 

]
. . . | ̂  μt , ξt 

]
(6)

where ξt = [ ξt−n +1 , . . . , ξt ] is the vector of historical signals received between the time of the last break and time t , where

ξi = ln ( D i / D i −1 ) , while ˆ E t+ h [ ·| ̂  μt+ h , ξt+ h ] is the expectation operator at time t + h conditional on the future estimate ˆ μt+ h
given the information set ξt+ h , with h ∈ { 0 , 1 , . . . , τ − 1 } . Consequently, under RL the complete set of future parameter

estimates { ̂  μt , ˆ μt+1 , ... , ˆ μt+ τ−1 } is considered by the agent when she is pricing assets (i.e. the agent considers the effect of

learning on the sequence of equilibrium outcomes of state variables and asset prices). 

Adaptive learning 

Suppose that the representative agent follows an adaptive learning (henceforth, AL ) process to learn about the unknown

parameter μt . Also called least-squares learning, AL has similarities and differences in relation to RL . On the one hand,

similarly to RL , the unknown parameter, μt , is not viewed as random by the agent under AL . In addition, an adaptive learner

updates the parameter estimate, ˆ μt , over time as new information arrives; hence, ˆ μt is a random variable. 

On the other hand, unlike a rational learner, an adaptive learner ignores potential future changes in parameter estimates

(i.e. μt = μ∗
t = μ∗

t+ h ). Moreover, the agent does not use Bayes’ rule to update μ∗
t . Instead, the agent is considered a frequen-

tist and uses the maximum likelihood rule to update the parameter estimate recursively. Thus, the expected value of the

parameter estimate is: 

μ∗
t = ξ̄t (7)

with ξ̄t = ( 1 /n ) 
t ∑ 

i = t−n +1 

ξi , where ξi is as defined in Eq. (6) . Therefore, the mean dividend growth rate under AL is g AL 
t =

exp ( ̄ξt + σ 2 / 2 ) − 1 , while the stock and bond prices are: 

S AL 
t = 

D t 

1 + ρ − ( 1 − π) 
(
1 + g AL 

t 

)1 −α

{ 

( 1 − π) 
(
1 + g AL 

t 

)1 −α + π
(

I 1 + ( 1 − π) I 2 
1 − π I 3 

)} 

, (8)

B 

AL 
t = 

1 

( 1 + ρ) 

{
( 1 − π) 

(
1 + g AL 

t 

)−α + π
g u ∫ 
g d 

(
1 + g AL 

t 

)−α
dG 

(
g AL 

t 

)}
, (9)

where I 1 , I 2 and I 3 are the same integrals as defined in Proposition 1 . 10 In the case of option prices, the expressions are: 

P ut AL 
t ( K, τ ) = 

∞ 

∫ 
0 

1 

( 1 + r t+ τ ) 
max 

{
K − S AL 

t+ τ , 0 

}
p Q 

(
S AL 

t+ τ
)
dS AL 

t+ τ (10)

and 

Cal l AL 
t ( K, τ ) = 

∞ 

∫ 
0 

1 

( 1 + r t+ τ ) 
max 

{
S AL 

t+ τ − K, 0 

}
p Q 

(
S AL 

t+ τ
)
dS AL 

t+ τ (11)

where p Q (·) is the risk-neutral price density described in Proposition 2 , in which the mean dividend growth rate is equal to

g AL 
t . 

The main issue with a model based on an AL process is that asset prices are not rational. This is due to the fact that an

adaptive learner does not take into account future updates in parameter estimates. Thus, our model under AL is misspecified

since rational future optimal decisions have to be based on future parameter estimates. 

Bayesian learning 

Suppose that the representative agent follows a Bayesian learning (henceforth, BL ) process to learn about μt . Under BL ,

similarly to RL and AL , the learner updates the parameter estimate, ˆ μt , as new signals arrive. However, unlike rational and

adaptive learners, a Bayesian learner views the unknown parameter, μt , as a random variable. 

Under BL , the agent starts the learning process with a prior density, p P ( μt ) , regarding the probability distribution of μt

in the physical world, i.e. under P . Afterwards, prior beliefs are recursively updated to obtain posterior beliefs using Bayes’

rule, p P ( μt | ξt ) , given the information set ξt of signals received since the last break. Thus, p P ( μt | ξt ) is: 

p P 
(
μt | ξt 

)
= 

p P 
(
ξt | μt 

)
p P ( μt ) 

p P 
(
ξt 

) . (12)

In addition, we know that: 

p P 
(
ξt 

)
= 

μu ∫ 
μd 

p P ( ξt | μt ) p 
P ( μt ) d μt , (13)
10 Under AL , we have to assume that 1 + ρ > ( 1 − π) ( 1 + g AL 
t ) 

1 −α to avoid negative stock prices. 
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where p( ξt | μt ) is the sample likelihood function described by: 

p P 
(
ξt | μt 

)
= 

1 √ 

2 πσ 2 /n 

exp 

[ 

−
(
ξ̄t − μt 

)2 

2 σ 2 /n 

] 

, (14) 

which is a normal distribution function with mean ξ̄t = ( 1 /n ) 
t ∑ 

i = t−n +1 

ξi and variance σ 2 /n , since the agent knows that divi-

dends follow a geometric random walk, ln ( D t / D t−1 ) = μt + σε t . Hence, we can rewrite the posterior density in Eq. (12) as:

p P 
(
μt | ξt 

)
= 

p P 
(
ξt | μt 

)
p P ( μt ) 

∫ μu 
μd 

p P ( ξt | μt ) p P ( μt ) d μt 

. (15) 

Therefore, the representative agent uses the posterior probability in Eq. (15) to calculate the expected value of assets

under incomplete information and learning. Let X BL 
t ( μt ) be the price of any asset under BL , which depends on the unknown

parameter μt (in other words X BL 
t ( μt ) can be the Bayesian price of the bond, the stock or any option contract in our model).

Then, X BL 
t ( μt ) is: 

X 

BL 
t ( μt ) = 

μu ∫ 
μd 

X 

F I 
t ( μt ) p 

P 
(
μt | ξt 

)
d μt 

= 

∫ μu 
μd 

X 

F I 
t ( μt ) p P 

(
ξt | μt 

)
p P ( μt ) d μt 

∫ μu 
μd 

p P 
(
ξt | μt 

)
p P ( μt ) d μt 

, (16) 

in which X F I t ( μt ) is the asset price under full information. 

3.2.2. Relationships between learning schemes 

As explained by Guidolin and Timmermann (2007) , there are relationships between the learning schemes. Firstly, param-

eter estimates and asset prices under RL and AL cannot be identical in the majority of cases. Under RL, the agent considers

future updates in parameter estimates when she values any asset, while an adaptive learner assumes that μ∗
t = μ∗

t+ h , ren-

dering asset prices under AL non-rational. Secondly, parameter estimates and asset prices under AL and BL are equal only in

the case of the Bayesian learner having a degenerate prior density which assigns unit mass to the value of μt that is equal

to ξ̄t . 
11 

Thirdly, parameter estimates and asset prices under RL and BL are equivalent only in the scenario in which the prior

distribution of the Bayesian learner is consistent with the model structure (see Guidolin and Timmermann, 2007 ). In the

context of our model, parameter estimates and asset prices under RL and BL are identical in the case of the Bayesian learner

having as prior density, p P ( μt ) , the univariate density from which the new values of μt are drawn after breaks. When the

Bayesian learner has different prior beliefs, Bayesian asset prices are not rational. Thus, BL is not a sufficient condition for

obtaining full rationality through the learning process. 

Parameter estimates and asset prices under RL , AL and BL are equal only when the number of signals used to learn is

infinite after a break, n → ∞ (i.e. when the parameter estimate asymptotically converges to the unknown value of μt ). How-

ever, it is unlikely that the parameter estimate will asymptotically converge to μt in our model, since there is a possibility

of breaks in μt , and thus the number of signals starts again from zero after each break in the economy. 

3.2.3. Predictability patterns under learning 

In each of the learning schemes explained in Section 3.2.1 ( RL , AL and BL ), the agent updates her parameter estimate

step by step as new signals become available. In each of them, the agent learns progressively using new signals which are

combined with historical information. Thus, learning can induce predictability patterns since current and future parameter

estimates are based on a recursive updating procedure. In this section, we explain the intuition behind these predictability

patterns. 

As a first step, we assume that we have three types of learners: an adaptive learner, a Bayesian learner and a rational

learner, who learn about the unknown parameter μt . Thus, the expected value of the parameter estimate for the adaptive

learner is given by μ∗
t = ξ̄t , as explained in Eq. (7) . 

In the case of the Bayesian learner, suppose that she has as prior density, p P ( μt ) , a normal distribution with mean

μ0 and variance σ 2 
0 

, defined by the support [ −∞ , ∞ ] . 12 In addition, suppose that, in our model, the univariate probability

density from which the new values of μt are drawn after breaks is also a normal distribution with the same mean, variance

and support as the agent’s prior beliefs. Thus, as explained in Section 3.2.2 , parameter estimates and asset prices under
11 Parameter estimates and asset prices under AL and BL are identical when the Bayesian learner has a prior density equal to: p P ( μt ) = { 1 i f μt = ξ̄t 

0 otherwise 
12 We assume that the agent’s prior distribution is a normal distribution defined by the support [ −∞ , ∞ ] only in this section; this is in order to explain, 

in the simplest way possible, the intuition behind predictability patterns under learning. 
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BL and RL are identical, because the prior density is consistent with the model structure. Following Eq. (15) , the posterior

density, after the receipt of n signals, is normally distributed with mean μ∗
t and variance σ 2 

μ,t , described by 

μ∗
t = 

∫ μu 
μd 

μt p 
P 
(
ξt | μt 

)
p P ( μt ) d μt 

∫ μu 
μd 

p P 
(
ξt | μt 

)
p P ( μt ) d μt 

= ξ̄t 

n 
σ 2 

n 
σ 2 + 

1 
σ 2 

0 

+ μ0 

1 
σ 2 

0 

n 
σ 2 + 

1 
σ 2 

0 

(17)

and 

σ 2 
μ,t = 

∫ μu 
μd 

( μt −μ∗
t ) 

2 
p P ( ξt | μt ) p P ( μt ) d μt 

∫ μu 
μd 

p P ( ξt | μt ) p P ( μt ) d μt 

= 

1 
n 

σ2 + 1 

σ2 
0 

. 
(18)

Thus, the mean μ∗
t is the expected value of the parameter estimate under BL or RL (since these learning schemes are

equivalent in this case), which is equal to the weighted average of the information gleaned since the last break, ξ̄t , and the

mean of the prior density, μ0 . 

We can rewrite the expected value of the parameter estimate under AL , BL and RL in a recursive expression as follows: 

�μ∗
t = 

(
ln 

(
D t 

D t−1 

)
− μ∗

t−1 

)
V t (19)

with �μ∗
t = μ∗

t − μ∗
t−1 and V t = 

{ 

1 
n 

under AL 

σ 2 
0 

nσ 2 
0 
+ σ 2 under BL or RL 

, 

where V t is a variable associated with the inaccuracy of the parameter estimate. 

Eq. (19) shows that learning can induce predictability patterns in μ∗
t , due to the recursive-learning updating process. For

instance, if ln ( D t / D t−1 ) > μ∗
t−1 

, the representative agent updates her expectations upwards, since she observes a ’new’ signal

about the dividend drift, ln ( D t / D t−1 ) , that is higher than her previous expected value of the parameter μ∗
t−1 . 

Suppose that the current value of the expected dividend drift μ∗
t−1 

is a long way below the unknown value of μt (i.e. the

agent is incorrect and very pessimistic about μ∗
t−1 

in relation to the unknown dividend drift). In this scenario, future values

of μ∗
t will progressively be revised upwards as a result of the recursive learning process; therefore, predictable dynamics

will emerge in any of the learning schemes (similar arguments are used in Guidolin, 2006b ). An analogous example can be

described in an optimistic scenario. 

The agent can have very wrong expected values of the dividend drift μ∗
t−1 (i.e. she can wrongly be either very pes-

simistic or optimistic), especially after breaks. In early periods after breaks, when no ‘long’ history of dividend realizations

is available, the agent calculates μ∗
t based on just a few signals; thus, its value can be far away from the unknown value of

μt . 

Therefore, AL , BL and RL are able to generate predictability patterns in the returns of all assets, including those of op-

tion contracts. Moreover, the ’inaccuracy’ of parameter estimates also plays an important role in the predictability patterns

generated by learning. In Eq. (19) , the expression ln ( D t / D t−1 ) − μ∗
t−1 

(which gives the signal to revise the expected value

μ∗
t upwards or downwards) is multiplied by V t . Thus, upward or downward revisions are larger when the value of V t is

high, which reflects how inaccurate the agent’s estimation is. A high value of V t is likely after a break, when there are few

available signals with which to obtain an accurate estimation of the unknown parameter. 

3.3. Stock and bond prices under learning 

In our study we assume that the agent follows a BL process, in which the agent’s prior density, p P ( μt ) , is described by

a univariate probability density, which is equal to the density from which the new values of μt are drawn after breaks. We

assume BL for several reasons. Firstly, the model under AL is misspecified, since in this learning scheme asset prices are not

rational by definition. Secondly, models under RL are difficult to handle, because it is necessary to take into account all path-

dependent sequences of potential probability distributions in relation to future parameter estimates. 13 Thirdly, asset prices

under BL are rational when the prior density is consistent with the model structure, which is the case for our model (as

assumed at the beginning of this paragraph). Fourthly, asset prices under BL can be obtained using Eq. (16) , which provides

an expression with which to obtain the price of any asset, including option contracts. Corollary I provides expressions for

bond and stock prices under BL . 
13 Only in special cases is it possible to obtain a closed-form expression for the sequences of future probability distributions of the parameter estimates. 

For instance, Guidolin and Timmermann (2007) introduce a model based on a binomial lattice setup in which they present a closed-form solution for asset 

prices under RL . 
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Corollary I. (Stock and bond prices under Bayesian learning): The prices of the assets, S t and B t , under incomplete information

and Bayesian learning are given by: 

S BL 
t = 

∫ μu 
μd 

S F I t L 
(
μt | ξt 

)
n 

f ( μt ) d μt 

∫ μu 
μd 

L 
(
μt | ξt 

)
n 

f ( μt ) d μt 

, (20) 

and 

B 

BL 
t = 

∫ μu 
μd 

B 

F I 
t L 

(
μt | ξt 

)
n 

f ( μt ) d μt 

∫ μu 
μd 

L 
(
μt | ξt 

)
n 

f ( μt ) d μt 

(21) 

It is worth noting that the agent knows that new signals regarding parameter estimates incorporate some level of noise.

This noise stems from the geometric random walk followed by dividends, specifically from the term σε t . Thus, signals from

new dividends provide partial information regarding the unknown value of μt after a break. Therefore, asset prices under

BL differ somewhat from asset prices under full information. However, these differences narrow as more signals are received

and learned. 

3.4. The effect of bayesian learning on option prices and option returns 

Under full information the risk-neutral probability measure, p Q ( S t+1 ) , can be written as: 

p Q ( S t+1 ) = 

m t+1 p 
P ( S t+1 ) 

E t [ m t+1 ] 
(22) 

where p P ( S t+1 ) is the physical probability measure, and m t+1 is the stochastic discount factor. However, under incom-

plete information both p Q ( S t+1 ) and p P ( S t+1 ) are affected by the BL process. The physical probability measure under BL ,

p P ,BL ( S t+1 | ξt ) , is conditional on the information received after a break, which can be written as: 

p P ,BL ( S t+1 | ξt ) = 

μu ∫ 
μd 

p P ( S t+1 | ξt , μt ) p 
P ( μt | ξt ) d μt (23) 

where p P ( μt | ξt ) is the posterior probability distribution of the dividend drift estimate (explained in Eq. (15) ). Eq. (23) shows

that, under incomplete information, the BL process affects the agent’s beliefs about the probabilities of current and future

states of the economy. Similarly, the risk-neutral probability measure under BL , p Q ,BL ( S t+1 | ξt ) , can be written as 

p Q ,BL 
(
S t+1 | ξt 

)
= 

μu ∫ 
μd 

p Q ( S t+1 | ξt , μt ) p 
P ( μt | ξt ) d μt 

= 

μu ∫ 
μd 

m t+1 p 
P ( S t+1 | ξt , μt ) 

E t [ m t+1 ] 
p P ( μt | ξt ) d μt . (24) 

Therefore, Eqs. (23) and (24) show that BL can generate additional differences between the probability measures P and

Q when changes in the estimated dividend drift are statistically associated with the agent’s beliefs regarding the dynamics

of the stochastic discount factor m t+1 = β( D t+1 / D t ) 
−α . This statistical association is present under a learning environment,

since the agent’s expectation regarding μt modifies her expectations about all variables which depend on μt , including how

both the stochastic discount factor and its expected value evolve over time. 

Corollary II. (Option prices under Bayesian learning): The prices of a European put option contract, P ut F I t ( K, τ ) , and a European

call option contract, Cal l F I t ( K, τ ) , under incomplete information and Bayesian learning are given by: 

P ut BL 
t ( K, τ ) = 

∞ 

∫ 
0 

1 (
1 + r BL 

t+ τ
) max { K − S t+ τ , 0 } p Q ,BL 

(
S t+ τ | ξt 

)
d S t+ τ

= 

∫ μu 

μd 

[
∞ 

∫ 
0 

1 

( 1+ r BL 
t+ τ ) 

max { K − S t+ τ , 0 } p ♦ (S t+ τ | ξt , μt 

)
d S t+ τ

]
p P ( ξt | μt ) p P ( μt ) d μt 

μu ∫ 
μd 

p P ( ξt | μt ) p P ( μt ) d μt 

(25) 

and 

Cal l BL 
t ( K, τ ) = 

∞ 

∫ 
0 

1 (
1 + r BL 

t+ τ
) max { S t+ τ − K, 0 } p Q ,BL 

(
S t+ τ | ξt 

)
d S t+ τ

= 

μu ∫ 
μd 

[
∞ 

∫ 
0 

1 

( 1+ r BL 
t+ τ ) 

max { S t+ τ − K, 0 } p ♦ (S t+ τ | ξt , μt 

)
d S t+ τ

]
p P ( ξt | μt ) p P ( μt ) d μt 

μu ∫ 
μd 

p P ( ξt | μt ) p P ( μt ) d μt 

(26) 
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where 

p ♦ 
(
S t+ τ | ξt , μt 

)
= 

m t+ τ p P 
(
S t+ τ | ξt , μt 

)
E BL 

t [ m t+ τ | ξt ] 

= 

(
1 + r BL 

t+ τ
)
βτ

(
D t+ τ

D t 

)−α

φ( ε t+ τ | 0 , σ ) ϕ ( z| τ, π) η( h 1 | π) 

·
[
η( h 2 | π) p P 

(
μt+ h 2 

)
. . . η( h z | π) p P 

(
μt+ h z 

)]
, 

where S t+ τ = D t+ τ
( g t+ τ ) , which depends on the mean dividend growth rate at time t + τ , where g t+ τ is calculated from the

dividend drift μt+ τ since g t+ τ = exp ( μt+ τ + σ 2 / 2 ) − 1 ) . In addition, D t+ τ = D t exp ( 
√ 

τσε t+ τ − τσ 2 / 2 ) 
z ∏ 

i =1 

( 1 + r t+ h i ) 
h i , where

z represents the number of breaks until maturity, which is described by a binomial distribution ϕ(z| τ, π) with parameters τ
and π ; meanwhile { h i } z i =1 

is the time period between breaks, which is described by a geometric distribution, η( h i | π) . Hence, the

time-to-maturity of an option contract is τ = 

z ∑ 

i =1 

h i . Moreover, { μt+ h i } z i =2 
are the new dividend drift values, which are described

by a univariate density μt+ h i ∼ p P (·) with support [ μd , μu ] , where μt+ h 1 = μt and μt+ h z = μt+ τ , and where p P (·) is obtained

from a transformation of G (·) using the expression 1 + g t = exp ( μt + σ 2 / 2 ) . The dividend drift at time t, μt , is used as the

integration variable in the integral that depends on μt . In addition, 1 + r BL 
t+ τ = 

τ∏ 

j=1 

( 1 + r BL 
j−1 , j 

) with 1 + r BL 
j−1 , j 

= 1 /B BL 
j−1 

, where

B BL 
j−1 

is the price of the risk-free one-period bond in period j − 1 , which was defined in Eq. (21) , while ε t+ τ is described by a

normal distribution with density φ( ε t+ τ | 0 , σ ) , with mean zero and volatility σ. 

Corollary II shows that the Black-Scholes formula cannot be used to calculate option prices in an economy with breaks

under BL . However, it is relevant to analyse our model’s links to the option price formula in Guidolin and Timmer-

mann (2003) . They present an equilibrium model with incomplete information and BL , although without breaks. In the

absence of breaks, the option prices in Eqs. (25) and (26) are equivalent to those in Guidolin and Timmermann (2003) for

two reasons. First, both models are based on Lucas (1978) and use similar assumptions. For instance, our model is con-

structed in discrete time and dividends follow a geometric random walk; Guidolin and Timmermann’s (2003) model is also

constructed in discrete time, and the dividend process is characterized by a binomial lattice, which is equivalent to the

geometric random walk used in our study. Thus, in an economy under full information and without breaks (and as men-

tioned in Section 3.1 ), both models provide option prices equivalent to the discretized version of the Black-Scholes formula,

as in Rubinstein (1976) . Second, under incomplete information and learning, both models are based on a rational BL pro-

cedure. Guidolin and Timmermann (2003) use a prior density that is consistent with their model structure (as described

in Guidolin and Timmermann, 2007 ). This is also the case in our model (as explained at the beginning of Section 3.3 );

therefore, option prices are rational in Eqs. (25) and (26) and in Guidolin and Timmermann (2003) . 

In relation to the effect of learning on option returns, we know that the expected holding-period option returns of a

European put option contract, R Put 
t+ τ , and a European call option contract, R Call 

t+ τ , are given by (see Broadie et al., 2009 ) 

R 

Put 
t+ τ = 

E P t [ max ( K − S t+ τ , 0 ) ] 

P u t t ( K, τ ) 
− 1 = 

E P t [ max ( K − S t+ τ , 0 ) ] 

E Q t [ max ( K − S t+ τ , 0 ) ] 
− 1 (27)

and 

R 

Call 
t+ τ = 

E P t [ max ( S t+ τ − K, 0 ) ] 

Cal l t ( K, τ ) 
− 1 = 

E P t [ max ( S t+ τ − K, 0 ) ] 

E Q t [ max ( S t+ τ − K, 0 ) ] 
− 1 . (28)

Eqs. (27) and (28) show that the expected holding-period returns of options are described by the ratio of the expected

option payoff calculated under the physical probability measure ( P ) to the option price obtained under the risk-neutral

probability measure ( Q ). Thus, Eqs. (27) and (28) show that a change in the gap between probability measures P and Q can

modify the magnitude of the expected returns of a holding-period option strategy. Consequently, the difference between

the volatilities under measures Q and P (i.e. the VRP ) can serve as a useful predictor of option returns. This is due to the

fact that the BL process can simultaneously produce predictability patterns (see Eq. (19) ) and differences between the two

probability measures (see Eqs. (23) and (24) ), which generate dynamic adjustments in option returns. 

However, an analysis of the impact of learning on the predictability patterns of option returns is not straightforward. A

closed-form expression for the predictable relationship between the VRP and option returns under a learning environment

cannot be obtained, given the non-linearity of option contracts. Therefore, a numerical exercise is required, in which we

use simulations based on our model to observe the effect of learning on the VRP and the returns of option strategies. The

simulation analysis and results will be explained, and compared with actual market data on option returns, in the following

sections. 

4. Model implementation 

We calculate the returns of option portfolios that control for changes in the underlying stock price, namely, delta-hedged

and straddle portfolios. The use of these types of portfolios is important for our analysis, since they are not affected by
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predictability patterns in the underlying asset, which can also be endogenously generated by learning effects. Hence, delta-

hedged and straddle portfolios allow us to isolate the impact of learning on option prices and their returns. 

Similarly to Goyal and Saretto (2009) , we obtain delta-hedged portfolios and straddle portfolios from option contracts

which are ATM and have a time-to-maturity of one month. The put-delta-hedged portfolio (call-delta-hedged portfolio) is

formed by buying one put (call) option contract, and buying (short-selling) delta shares in the underlying stock. The straddle

portfolio is calculated formed by buying one call option contract and one put option contract. The delta-hedged portfolios

(for call and put options) and the straddle portfolio are obtained using a holding-period trading strategy on a monthly basis.

We compute the monthly returns of option portfolios following a procedure akin to that in Ni (2009) and Broadie et al.,

(2009) , where returns have non-overlapping intervals. Put and call holding-period returns are calculated, respectively, using

the following equations: 

r Put 
t+ τ = 

max ( K − S t+ τ , 0 ) 

P ut BL 
t ( K, τ ) 

− 1 (29) 

and 

r Call 
t+ τ = 

max ( S t+ τ − K, 0 ) 

Cal l BL 
t ( K, τ ) 

− 1 , (30) 

where P ut BL 
t ( K, τ ) and Cal l BL 

t ( K, τ ) are the prices of put and call options, respectively, written at time t . 

We produce 10,0 0 0 simulations based on our model. In each of the 10,0 0 0 simulations, we generate daily dividends over

12 years (3024 trading days). Thus, we simulate 10,0 0 0 ∗3024 = 30,240,0 0 0 trading days, with their dividends, which is the

information received and learned by the representative agent. 

In each one of the 10,0 0 0 simulations, we simulate daily dividends over the 12 years (3024 trading days) through the

geometric random walk ln ( D t / D t−1 ) = μt + σε t . However, inside each 12-year simulation, we generate breaks in g t , with

times between breaks described by a geometric distribution with parameter π . The new mean dividend growth rate af-

ter a break is obtained from a uniform distribution G (·) with support [ g d , g u ] . Thus, μt also exhibits breaks, given that

g t = exp ( μt + σ 2 / 2 ) − 1 , which affects the generation of daily dividends in each simulation through the dividend geometric

random walk. 14 

On each of the 3024 trading days in the 10,0 0 0 simulations, we use Eqs. (20) and (21) to obtain the prices of assets S t 
and B t , respectively. We use numerical integration (the adaptive Simpson quadrature) to perform the calculations. 

We use Eqs. (25) and (26) to obtain monthly prices for call and put option contracts, respectively, in order to calculate

non-overlapping one-month option returns. The numerators of Eqs. (25) and (26) are calculated through numerical methods,

in two steps which are associated with the two integrals in these expressions. First, we solve the integral which depends

on S t+ τ in Eqs. (25) and (26) by using Monte Carlo simulations with 20,0 0 0 paths. Each of the 20,0 0 0 paths is generated

through the risk-neutral probability measure described below Eqs. (25) and (26) . For each path, we obtain an analytical

expression for the option payoff based on the dividend drift at time t , μt . Second, we integrate this analytical expression

that depends on μt using numerical integration based on the adaptive Simpson quadrature. Thus, we solve the exterior

integral (which depends on μt ) for each of the 20,0 0 0 paths. Then, in order to obtain a price for a given option contract, we

average the values obtained from the 20,0 0 0 paths. Therefore, in order to calculate the option prices, we generate 20,0 0 0

paths in the Monte Carlo simulation in each month of the 10,0 0 0 simulations (where each simulation reflects 12 years of

market data). 15 The denominators of Eqs. (25) and (26) are also obtained by using the adaptive Simpson quadrature to solve

the integrals. 

Following Goyal and Saretto (2009), Bollerslev et al., (2009) and Cao and Han (2013) , we calculate the VRP as the dif-

ference between the IV and the RV . The IV is the average of the implied volatilities of the European put and call option

contracts (annualized), both of which are ATM and have time-to-maturity of one month. We obtain implied volatilities and

option deltas by inverting the Black and Scholes (1973) model. 16 The RV is the standard deviation (annual basis) of the daily

log stock returns in each month (avoiding overlapping periods). 

In the model implementation we use the following model parameters. We use two values for the relative risk aversion

coefficient: α = 0 . 20 and α = 5 . 0 . The new mean dividend growth rate after a break is obtained from a uniform distribution

G (·) with support [ g d , g u ] with g u = 0 . 705% and g d = −0 . 126% (monthly basis). The uniform distribution support [ g d , g u ] is
14 In the model implementation, μt has probability density f ( μt ) = exp ( μt + σ 2 / 2 ) / ( g u − g d ) , where μd = ln ( 1 + g d ) − σ 2 / 2 and μu = ln ( 1 + g u ) − σ 2 / 2 , 

which is obtained using the expression g t = exp ( μt + σ 2 / 2 ) − 1 , and the fact that new values of g t are described by a uniform distribution. 
15 In each month of the 10,0 0 0 simulations, we also compute the expected dividend yield and the expected rate of a zero-coupon bond with maturity 

equal to the expiration of the options; we use them to calculate the options’ IV s. 
16 Despite the fact that the assumptions of Black and Scholes (1973) are not fully respected by our learning model, we obtain implied volatilities and 

option deltas by inverting the Black and Scholes (1973) model. This is consistent with other researchers (e.g. Guidolin and Timmermann, 2003 ; and 

Gonçalves and Guidolin, 2006 ) and practitioners, who also compute implied volatilities and option deltas using the Black and Scholes (1973) model, despite 

the very well-known fact that market data do not reflect the assumptions of this model. Actually, relationships and predictability patterns between assets 

and the VRP have been observed empirically by means of Black and Scholes’ (1973) implied volatilities and option deltas. Consequently, one can look at our 

use of Black and Scholes’ (1973) model as a way of controlling and making our results comparable with the previous empirical evidence and the evidence 

presented here based on S&P 500 option contracts. Consequently, the spirit of our analysis is to replicate with our learning model what academics and 

practitioners do, and thereby analyse whether we can obtain the same predictability patterns and behaviours in option returns. 
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Table 1 

Summary statistics of model simulations. This table contains summary statistics for the returns on option portfolios 

and the VRP from simulations performed using our learning model. R DHput,t is the excess return on a put-delta-hedged 

portfolio that is formed by buying one ATM put option contract with time-to-maturity one month, and delta shares in 

the stock. R STRD,t is the excess return on a straddle portfolio that is calculated as a combination of one call option con- 

tract and one put option contract, where both contracts are ATM and have time-to-maturity one month. The implied 

volatility, I V t , is calculated as the average of the implied volatilities of European put and call option contracts, where 

both contracts are ATM and have time-to-maturity one month, while R V t is the standard deviation (annual basis) of 

the daily log stock returns in each month, avoiding overlapping periods. The values in the table reflect the averages of 

the respective variables over the 10,0 0 0 simulations performed using our model. The proportions of simulations with 

significant statistics (at 5% significance) are shown in round brackets. 

Scenario R DHput,t R STRD,t IV t - RV t R DHput,t R STRD,t IV t - RV t 
α = 0.2 α = 5.0 

Mean −0.017 −0.479 0.092 −0.084 −0.927 0.364 

Std. dev. 0.005 0.382 0.017 0.002 0.292 0.082 

Skewness 0.866 1.134 −0.266 2.282 6.380 −0.589 

Kurtosis 4.172 4.778 5.606 13.567 60.303 5.496 

Breaks - Inc. Inf. (Learning) Correlations 

R DHput,t 1.00 0.94 −0.33 1.00 0.77 −0.80 

(10 0.0 0) (10 0.0 0) (94.70) (10 0.0 0) (10 0.0 0) (96.72) 

R STRD,t 1.00 −0.27 1.00 −0.38 

(10 0.0 0) (82.34) (10 0.0 0) (88.40) 

IV t - RV t 1.00 1.00 

(10 0.0 0) (10 0.0 0) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consistent with the real dividend growth rate in the period of our empirical analysis, based on the S&P 500 option returns

(which will be described in the following section), and is also congruent with the values used in Timmermann (2001) . For

instance, if we take the annual dividend returns of the S&P 500 index in real terms (from Robert Shiller’s database), they

have a mean and standard deviation of 3.39% and 5.27%, respectively, in the period between 1996 and 2007. Hence, the

interval of the mean of the annual returns on dividends at one standard deviation is [ −1.88%, 8.66%] on an annual basis,

or the equivalent of [ −0.16%, 0.69%] on a monthly basis. These values are very close to the support [ g d , g u ] used in our

model. The dividend process volatility, σ , is set at 1.44% on a monthly basis (5.00% annual basis), which is in line with the

empirical data (i.e., as mentioned above, the standard deviation of the real dividend returns of the S&P 500 index in the

period 1996–2007 is 5.27%) and with Timmermann (2001) . 

The rate of impatience, ρ , is constrained by the model structure. In particular, ρ is constrained by the value g u (which

was set in the previous paragraph), since we need to have positive stock prices. To maintain positive stock prices, we need

to impose that 1 + ρ > ( 1 + g u ) 1 −α . Thus, we set ρ to 0.713% on a monthly basis. One may argue that this rate of impatience

is high in relation to the real interest rates observed between 1996 and 2007. However, as mentioned above, we need this

value to obtain positive stock prices. Moreover, it is worth pointing out that our focus is mainly to provide a learning model

to ’ explain’ the predictive power of the VRP for option returns, rather than perfectly calibrating all variables. Thus, we

prefer to closely calibrate the support of the uniform distribution from which we extract the new value of g t after a break

(as explained in the previous paragraph), and then to adjust ρ based on the constraint 1 + ρ > ( 1 + g u ) 1 −α . This decision

was made on the grounds that g t is the ’ unknown’ parameter that the representative agent has to learn in our model. 

In relation to the probability of breaks, π , we use the test introduced by Chu et al., (1996) to detect breaks using market

data. We use real daily dividends from the S&P 500 index between 1996 and 2007 (after applying the Hodrick-Prescott filter

to the data). We identify eight breaks in the market data; hence we assume that π is equal to 0.056 (on a monthly basis). 

Table 1 presents summary statistics of the data simulated using our model under incomplete information and learning.

In Table 1 , as in the remainder of the paper, we limit ourselves to reporting the analysis for the returns on the put-delta-

hedged portfolio and on the straddle portfolio, due to space limitations. The outcomes for the returns on the call-delta-

hedged portfolio (available upon request) are quantitatively and qualitatively similar to the results presented here, and also

congruent with the empirical literature. In Table 1 , the mean excess returns on the put-delta-hedged (straddle) portfolios

are equal to −1 . 7 % and −8 . 4 % ( −47.9% and −92.7%) for relative risk aversion coefficient α = 0 . 20 and α = 5 . 0 , respectively,

which are consistent with the levels reported in previous empirical studies (see, e.g., Gonçalves and Guidolin, 2006 ; and

Bernales and Guidolin, 2014) . 

In a Black-Scholes economy, the VRP should be equal to zero; however, we can see in Table 1 that our learning model

generates a divergence between IV and RV . Table 1 also shows that the VRP is negatively correlated to the option returns,

which is consistent with Goyal and Saretto (2009) and Cao and Han (2013) . 17 In 94.70% and 96.72% (82.34% and 88.40%) of
17 Whereas Goyal and Saretto (2009) and Cao and Han (2013) calculate the VRP as RV – I V t , we use I V t – R V t for our calculation. Nevertheless, our results 

are congruent with both papers. Goyal and Saretto (2009) find that portfolios with a large positive difference between RV and IV produce an economically 

and statistically significant monthly option return. Cao and Han (2013) show that the difference between RV and IV has a significant positive relationship 

with returns on call- and put-delta-hedged portfolios. 
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Table 2 

Volatility risk premium regressions based on model-simulated option returns and S&P op- 

tion returns. This table presents single-variable regressions of the lagged VRP on holding-period 

put-delta-hedged portfolio returns ( R DHput ), and holding-period straddle portfolio returns ( R STRD ) 

over 1-, 3-, 6-, 9- and 12-month forecasting horizons. The variables ( I V t – R V t ), R DHput,t and 

R STRD,t are defined as in Table 1 . The results of the first two panels are based on model- 

simulated option returns, in an economy under Bayesian learning, while the results for the last 

panel are obtained from S&P 500 option returns between 1996 and 2007. The values in the 

table, in the case of simulated option returns, reflect the averages of the respective variables 

over the 10,0 0 0 simulations performed using our model. To adjust for heteroscedasticity and 

serial correlation, robust Newey-West (1987) t -statistics are used in the t -tests. In the case of 

the simulated option returns, the proportions of simulations with significant statistics (at 5% 

significance) based on one-sided t -tests are shown in round brackets. In the case of the S&P 

500 option returns, the t -statistics are reported in square brackets. 

Monthly forecasting horizons 1 3 6 9 12 

Breaks - Inc. Inf. (Learning) and α = 0.2 

Dependent Variable R DHput,t 

Constant −0.01 −0.01 −0.01 −0.01 −0.01 

(53.25) (65.99) (77.16) (85.21) (87.49) 

IV - RV −0.11 −0.09 −0.06 −0.04 −0.02 

(51.18) (35.24) (28.21) (16.72) (14.40) 

Adj. R 2 (%) 3.05 2.03 1.08 0.58 0.36 

Dependent Variable R STRD,t 

Constant −0.35 −0.40 −0.42 −0.44 −0.49 

(70.77) (77.18) (83.44) (87.30) (95.62) 

IV - RV −1.74 −1.49 −1.04 −0.71 −0.40 

(26.57) (23.41) (15.49) (10.62) (11.72) 

Adj. R 2 (%) 0.91 0.66 0.32 0.17 0.07 

Breaks - Inc. Inf. (Learning) and α = 5.0 

Dependent Variable R DHput,t 

Constant −0.02 −0.03 −0.05 −0.06 −0.07 

(45.22) (83.83) (95.30) (92.28) (96.51) 

IV - RV −0.18 −0.14 −0.09 −0.06 −0.03 

(97.61) (98.56) (71.67) (32.40) (17.51) 

Adj. R 2 (%) 45.91 25.88 13.42 7.84 4.28 

Dependent Variable R STRD,t 

Constant −0.66 −0.76 −0.72 −0.75 −0.78 

(91.27) (95.07) (92.39) (97.13) (97.47) 

IV - RV −0.71 −0.58 −0.47 −0.38 −0.29 

(44.98) (40.23) (33.38) (28.10) (26.36) 

Adj. R 2 (%) 4.10 2.94 2.03 1.29 0.95 

S&P 500 option returns 

Dependent Variable R DHput,t 

Constant 0.00 0.00 0.00 −0.01 0.00 

[0.65] [1.06] [1.73] [2.39] [1.49] 

IV - RV −0.15 −0.11 −0.03 0.04 −0.06 

[2.86] [2.10] [0.46] [0.67] [0.98] 

Adj. R 2 (%) 0.05 0.02 −0.01 0.00 0.00 

Dependent Variable R STRD,t 

Constant −0.01 −0.03 −0.07 −0.09 −0.05 

[0.18] [0.44] [1.03] [1.38] [0.67] 

IV - RV −2.70 −2.25 −0.33 0.23 −1.73 

[2.00] [1.68] [0.24] [0.17] [1.22] 

Adj. R 2 (%) 0.02 0.01 −0.01 −0.01 0.00 

 

 

 

 

 

 

 

the simulations, the returns on the put-delta-hedged (straddle) portfolio have significant negative correlations with the VRP

under relative risk aversion coefficients of α = 0 . 20 and α = 5 . 0 , respectively. 

5. Predictability patterns of option returns under a learning scheme 

In order to test our hypothesis that learning can explain why the V RP predicts option returns, we firstly employ a single-

variable OLS regression analysis to account for several forecasting horizons using our simulated data. Subsequently, we use

multivariate OLS regressions to analyse the predictive power of the V RP in relation to other factors that can affect option

returns. 

Table 2 reports the results for single-variable regressions using option returns as the dependent variable, with one- to

twelve-month-lagged values of the V RP as the explanatory variable. In the case of simulated option returns, note that in this

table the percentage of simulations with significant statistics is reported in round brackets and is based on one-sided t -tests
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at the 5% significance level (since we expect the forecasting power to be reflected in negative coefficients as in Goyal and

Saretto, 2009 ; and Cao and Han, 2013 ). 

In Table 2 , we also show the results of an empirical analysis comparing the results of the model simulations to the

actual behaviour observed in the market. We use data from the S&P 500 index options over the period 1996–2007, obtained

from the OptionMetrics Ivy DB database. That database contains the daily closing bid and ask option prices (where option

prices are calculated as closing bid-ask midpoints), the Black-Scholes implied volatilities, the time-to-maturity, the strike

price, the closing underlying index price, and the risk-free interest rate. 18 Thus, Table 2 also presents an empirical analysis

of the forecasting features of the VRP in respect to option returns, with the returns obtained from the S&P 500 index option

contracts. In the case of the regressions using S&P option returns, Table 2 reports the t -statistics of the estimated coefficients

in square brackets, instead of the percentages of simulations with significant coefficients as in the regressions based on

simulated option returns. 

In the case of the regressions using model-simulated data, Table 2 shows that the VRP has predictive power for the

returns on option portfolios. The estimated coefficients of ( IV - RV ) are negative for R DHput and R STRD , implying that a higher

level of the VRP forecasts more negative returns for option holders. For instance, Table 2 shows that 97.61% and 44.98% of

the simulations with α = 5 . 0 produce significant estimated coefficients of the one-month-lagged VRP with respect to the

excess returns on put-delta-hedged portfolios ( R DHput ) and straddle portfolios ( R STRD ), respectively. 

Table 2 shows that the predictive power of the VRP for option returns is reduced as the forecasting horizon increases.

The percentage of simulations with significant estimated coefficients declines as the forecasting period becomes longer.

For example, for simulations with α = 5 . 0 , when the twelve-month-lagged level of IV − RV is used to predict R DHput and

R STRD , only 17.51% and 26.36% of the simulations have a significant estimated coefficient, respectively. In addition, in model

simulations with α = 5 . 0 , the average estimated coefficients of the one-month-lagged VRP start at −0 . 18 , and −0 . 71 for

R DHput and R STRD , respectively. However, the average absolute value of the coefficients gradually decreases as the forecasting

horizon increases. For the same level of risk aversion, the average estimated coefficient of the twelve-month-lagged VRP for

R DHput is −0 . 03 and for R STRD is −0 . 29 . 

In the case of the regressions based on S&P 500 option returns shown in Table 2 , we calculate the returns on portfolios

of option contracts close to ATM and with time-to-maturity one month. Then, we use a linear interpolation of these returns

around the specified moneyness and maturity to obtain a proxy for the returns ATM with time-to-maturity of one month, as

in the simulated data. Similarly, we use linear interpolation of the implied volatilities close to the moneyness and maturity

targets in order to obtain a proxy for the implied volatility ATM and with time-to-maturity of one month. The implied

volatility for a given moneyness and maturity is the average of the implied volatilities of a call contract and a put contract.

The realized volatility is the standard deviation of the daily log-returns of the S&P 500 index in each month. 

Table 2 shows that the VRP also has predictive power for the returns of the S&P 500 index options. The estimated co-

efficients of the one-month-lagged VRP with respect to the returns on the put-delta-hedged and straddle portfolios are

significant, with t -statistics of 2.86 and 2.00, respectively. In addition, the forecasting power of the VRP for option returns

is reduced as the forecasting horizon increases, following a similar pattern to the coefficients reported based on our model

simulations. However, the predictive power of the VRP seems to increase again with a 12-month forecasting horizon (prob-

ably due to seasonality effects that can appear in the same month of each year), although the coefficients reported are not

significant, with t -statistics of 0.98 and 1.22 for R DHput and R STRD , respectively. Thus, the results presented in Table 2 show

that learning is able to explain the predictive relationship between the VRP and the option returns, observed in real option

market data. 

In Tables 3 and 4 , we extend the regression analysis from Table 2 by including additional potential predictor variables

lagged by one and three months, respectively. We include the realized volatility, RV , the slope in the moneyness dimension,

Slop e Mon , and the market excess return, R m 

. The RV was explained in regards to Table 1 . The value of Slop e Mon is obtained as

the difference between the IV from contracts with K/S = 0 . 96 and time-to-maturity one month (i.e. the average of the call

and put contracts) and the IV from contracts with K/S = 1 . 04 and time-to-maturity one month (again the average of the call

and put contracts). The value of R m 

is equal to the excess return per month on the underlying stock, obtained from Eq. (20) ,

since this is the single stock in the economy under our option pricing model. Unlike in Table 2 , where the percentages of

simulations with significant statistics are based on one-sided t -tests, in Tables 3 and 4 they are based on two-sided t -tests

since we do not want to impose any directional relationship on the analysis. 

In the case of the regressions with simulated option returns, Table 3 reports that the VRP has more significant forecasting

power for option returns than other factors, when they are used in ’single-variable’ regressions. This result is observed

for delta-hedged and straddle option portfolios, with both α = 0 . 2 and α = 5 . 0 , which supports the evidence presented in

Table 2 . The highest forecasting power for one-month-lagged factors, without considering IV − RV , comes from Slop e Mon in

the case of the model simulations with α = 0 . 2 , and from RV in the case where α = 5 . 0 , but the numbers of simulations

with significant coefficients are lower in both cases than in the case of the VRP . 

Regarding the multivariate regressions reported in Table 3 , we select predictor variables in such a way that multicollinear-

ity problems are reduced. Table 3 shows that, even after including R m,t in the regressions involving the VRP , the VRP still
18 We eliminate observations for which option prices violate arbitrage bounds, the ask price is lower than the bid price, the bid price is equal to zero, 

and for which there is no option open interest. 
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Table 3 

Monthly return regressions based on model-simulated option returns and S&P option returns. This table reports single-variable and multi-variable regressions used to forecast holding-period put-delta- 

hedged portfolio returns, R DHput, and holding-period straddle portfolio returns, R STRD, using one-month-lagged predictors. The results in the panels on the left side are based on model-simulated option returns 

under Bayesian learning, while the results in the panels on the right side are obtained from S&P 500 option returns between 1996 and 2007. The variables ( I V t – R V t ), R DHput,t and R STRD,t are defined as for Table 1 . 

The slope on the moneyness dimension of the implied volatility surface, Slop e Mon , is calculated as the difference between the implied volatility of contracts with K/S = 0 . 96 and time-to-maturity one month and 

the implied volatility of contracts with K/S = 1 . 04 and time-to-maturity one month. R m,t is the excess return on the stock. The values in the table, in the case of the simulated option returns, reflect the averages 

of the respective variables over the 10,0 0 0 simulations performed using our model. To adjust for heteroscedasticity and serial correlation, robust Newey-West (1987) t -statistics are used in the t -tests. In the case 

of the simulated option returns, the proportions of simulations with significant statistics (at 5% significance) based on two-sided t- tests are shown in round brackets. In the case of the S&P 500 option returns, 

the t -statistics are reported in square brackets. 

Monthly return regression 

Breaks - Inc. Inf. (Learning) and α = 0.2 Breaks - Inc. Inf. (Learning) and α = 5.0 S&P 500 option returns 

Dependent Variable R DHput,t 

Constant −0.01 −0.01 −0.01 −0.02 −0.01 −0.02 −0.02 −0.02 −0.08 −0.09 −0.07 0.00 −0.14 −0.03 0.00 −0.01 −0.01 −0.01 0.00 0.00 −0.01 

(44.69) (65.22) (96.17) 

(10 0.0 0) 

(11.54) (18.77) (16.85) (30.30) (93.65) 

(10 0.0 0) 

(97.51) (6.33) (70.15) (49.33) [0.65] [1.32] [1.43] [2.32] [0.03] [0.25] [0.61] 

IV t-1 - RV t-1 −0.11 −0.11 −0.18 −0.19 −0.15 −0.13 

(44.64) (40.10) (99.69) (97.26) [2.86] [2.51] 

RV t-1 −0.03 −0.02 −0.12 −0.13 0.01 0.00 

(11.45) (10.69) (92.61) (87.42) [0.31] [0.13] 

Slope Mon,t-1 −0.02 −0.02 −0.10 −0.13 −0.07 −0.06 

(25.64) (24.10) (75.02) (72.49) [0.73] [0.66] 

R m,t −1 0.00 −0.01 −0.01 0.00 −0.13 −0.05 −0.12 0.08 −0.10 −0.07 −0.09 −0.09 

(6.73) (7.17) (9.02) (7.04) (35.49) (33.54) (23.07) (43.15) [1.98] [1.42] [1.82] [1.86] 

Adj. R 2 (% ) 3.05 0.30 1.95 0.11 3.56 0.70 2.14 45.91 4.58 25.00 2.17 47.08 17.04 29.19 0.05 −0.01 0.00 0.02 0.05 0.01 0.01 

Dependent Variable R STRD,t 

Constant −0.35 −0.46 −0.48 −0.50 −0.60 −0.70 −0.67 −0.66 −0.95 −0.96 −0.97 −0.73 −1.35 −1.13 −0.01 −0.14 −0.26 −0.08 0.09 0.02 −0.12 

(61.62) (68.67) 

(10 0.0 0) (10 0.0 0) 

(12.81) (16.44) (15.97) (79.99) (98.85) 

(10 0.0 0) 

(96.63) (48.41) (73.51) (62.70) [0.18] [1.05] [1.41] [1.40] [0.42] [0.07] 0.42 

IV t-1 - RV t-1 −1.74 −1.72 −0.71 −0.71 −2.70 −2.24 

(18.92) (16.40) (24.36) (17.50) [2.00] [1.65] 

RV t-1 −0.53 −0.44 −0.07 0.00 0.34 0.18 

(9.18) (8.11) (17.10) (7.49) [0.43] [0.22] 

Slope Mon,t-1 −0.34 −0.30 −0.27 −0.19 −2.56 −2.18 

(14.54) (14.22) (8.44) (3.35) [1.04] [0.90] 

R m,t −1 −0.07 −0.11 −0.18 −0.08 −0.48 −0.37 −0.63 −0.27 −2.29 −1.75 −2.10 −2.15 

(7.06) (6.67) (7.56) (6.96) (7.82) (4.40) (3.86) (5.00) [1.85] [1.36] [1.64] [1.69] 

Adj. R 2 (%) 0.91 0.10 0.45 0.03 1.01 0.24 0.56 4.10 −0.65 1.05 −0.42 3.83 0.42 1.50 0.02 −0.01 0.00 0.02 0.02 0.01 0.01 
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Table 4 

Three-month-return regressions based on model-simulated option returns and S&P option returns. This table reports single-variable and multi-variable regressions used to forecast holding-period put-delta- 

hedged portfolio returns, R DHput, and holding-period straddle portfolio returns, R STRD, using three-month-lagged predictors. The results of the panels on the left side are based on model-simulated option returns 

under Bayesian learning, while the results of the panels on the right side are obtained from S&P 500 option returns between 1996 and 2007. The variables ( I V t – R V t ), R DHput,t and R STRD,t are defined as for Table 1 . 

The slope on the moneyness dimension of the implied volatility surface, Slop e Mon , is calculated as the difference between the implied volatility of contracts with K/S = 0 . 96 and time-to-maturity one month and 

the implied volatility of contracts with K/S = 1 . 04 and time-to-maturity one month. R m,t is the excess return on the stock. The values in the table, in the case of the simulated option returns, reflect the averages 

of the respective variables over the 10,0 0 0 simulations performed using our model. To adjust for heteroscedasticity and serial correlation, robust Newey-West (1987) t -statistics are used in the t -tests. In the case 

of the simulated option returns, the proportions of simulations with significant statistics (at 5% significance) based on two-sided t- tests are shown in round brackets. In the case of the S&P 500 option returns, 

the t -statistics are reported in square brackets. 

Three-month return regression 

Breaks - Inc. Inf. (Learning) and α = 0.2 Breaks - Inc. Inf. (Learning) and α = 5.0 S&P 500 option returns 

Dependent Variable R DHput,t 

Constant −0.01 −0.02 −0.02 −0.02 −0.01 −0.01 −0.01 −0.03 −0.08 −0.08 −0.08 −0.02 −0.12 −0.04 0.00 0.00 0.00 0.00 −0.01 0.00 0.00 

(52.96) (73.98) (97.28) (98.91) (8.21) (15.16) (12.79) (73.95) (10 0.0 0) (10 0.0 0) (10 0.0 0) (11.77) (64.90) (40.05) [1.06] [0.28] [0.34] [2.17] [0.69] [0.21] [0.41] 

IV t-1 - RV t-1 −0.09 −0.09 −0.14 −0.14 −0.11 −0.10 

(31.11) (28.44) (84.74) (80.85) [2.10] [1.76] 

RV t-1 −0.01 −0.01 −0.10 −0.10 −0.04 −0.05 

(11.59) (9.43) (80.31) (77.27) [1.39] [1.50] 

Slope Mon,t-1 −0.01 −0.01 −0.08 −0.11 0.04 0.03 

(18.85) (16.64) (75.23) (71.85) [0.42] [0.34] 

R m,t −1 0.00 0.00 0.00 0.00 −0.09 −0.02 −0.06 0.08 −0.10 −0.09 −0.11 −0.11 

(6.66) (5.86) (6.05) (5.43) (37.55) (36.79) (19.34) (37.41) [2.04] [1.72] [2.08] [2.03] 

Adj. R 2 (%) 2.03 0.19 0.97 0.00 1.98 0.42 1.14 25.88 3.01 16.19 1.22 32.10 12.35 22.33 0.02 0.01 −0.01 0.02 0.03 0.02 0.01 

Dependent Variable R STRD,t 

Constant −0.40 −0.52 −0.46 −0.54 −0.34 −0.51 −0.45 −0.76 −0.92 −0.96 −0.90 −0.69 −1.23 −1.08 −0.03 0.09 −0.05 −0.07 −0.18 0.02 −0.19 

(74.24) (73.81) (93.23) (10 0.0 0) (9.67) (13.04) (12.94) (82.52) (98.89) (10 0.0 0) (98.08) (56.60) (76.28) (58.22) [0.44] 0.69 [0.27] [1.26] 0.83 [0.07] [0.68] 

IV t-1 - RV t-1 −1.49 −1.43 −0.58 −0.58 −2.25 −2.00 

(16.56) (15.95) (18.77) (17.47) [1.68] [1.46] 

RV t-1 −0.16 −0.10 −0.08 0.01 −1.12 −1.13 

(8.78) (7.97) (17.04) (7.77) [1.41] [1.41] 

Slope Mon,t-1 −0.23 −0.24 −0.22 −0.18 0.47 0.18 

(12.97) (10.80) (8.36) (3.17) [0.19] [0.07] 

R m,t −1 −0.09 −0.03 −0.06 0.00 −0.37 −0.29 −0.40 −0.14 −1.86 −1.73 −2.10 −2.06 

(6.67) (5.56) (5.30) (4.58) (5.03) (6.27) (2.79) (5.36) [1.48] [1.32] [1.63] [1.59] 

Adj. R 2 (%) 0.66 0.07 0.33 −0.06 0.66 0.13 0.37 2.94 −0.61 0.72 −0.43 2.80 0.18 0.94 0.01 0.01 −0.01 0.01 0.01 0.01 0.00 
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has important predictive power for option returns. For instance, in the case of delta-hedged portfolios, 40.10% and 97.26% of

the simulations have significant coefficients for the VRP, with α = 0 . 2 and α = 5 . 0 , respectively, when a lagged value of R m,t 

is included. 

The three-month forecasting regressions presented in Table 4 confirm the findings reported in Table 3 . On the one hand,

in the single-variable regressions in Table 4 , there are high percentages of simulations with significant estimated coefficients

for the VRP . On the other hand, the percentage of simulations with significant estimated coefficients is still high after includ-

ing the lagged excess market return. Nevertheless, the predictive power of the three-month-lagged VRP in Table 4 is lower

than the predictive power reported for the one-month-lagged regressions in Table 3 . This reduction in predictive power is

reflected in the percentages of simulations with significant statistics, and the adjusted R 2 . This reinforces our findings in

Table 2 , where we showed that the predictive power of the VRP declines with longer forecasting horizons. 

In the case of the regressions using the S&P 500 option returns, we include in Table 3 ( Table 4 ) the same forecasting

variables as in the regression analysis using simulated data, lagged by one month (three months). In this empirical analysis,

the value of Slop e Mon is calculated using IV s for different option contracts around the required moneyness and time-to-

maturity levels, and we then use linear interpolation to obtain the IV s for one-month-to-maturity contracts with K/S = 0 . 96

and K/S = 1 . 04 . The value of R m 

is equal to the excess return on the S&P 500 index in each month. 

In Tables 3 and 4 , we can see in the empirical analysis of the S&P 500 option returns that the VRP is the factor with the

highest predictive power for option returns, in comparison to RV , Slop e Mon and R m 

. These results are in line with the results

provided by Goyal and Saretto (2009) . Most importantly, the results from the market data echo the results generated by our

learning model. Therefore, the results in Tables 3 and 4 provide additional evidence that our learning model can offer an

explanation for the puzzling forecasting features of the VRP with respect to option returns. 

6. Conclusions 

We use learning in a dynamic equilibrium model to explain the forecasting features of the V RP with regards to returns on

option contracts. We extend the BL model proposed by Timmermann (2001) , including options to analyse the effects of the

learning process on option return predictability. We argue that the learning process can generate gaps between the prob-

ability measures P and Q , which evolve over time and dynamically affect option returns. Moreover, the Bayesian updating

procedure generates predictability patterns, given its recursive characteristics. Thus, the V RP (which reflects the difference

between the volatility under the risk-neutral measure Q and the volatility under the physical measure P ) is a natural candi-

date to be a predictor of option returns in a learning environment. 

To evaluate the effects of learning on the relationship between the V RP and option returns, we use a simulation analysis

driven by our model. We show that, under a BL environment, the VRP consistently predicts a non-trivial fraction of returns

on option strategies. Subsequently, we show that the forecasting features of the VRP for the option returns generated by

our learning model are similar to those observed in an empirical analysis using S&P 500 index options. Thus, we provide

evidence that learning offers an explanation for this option return puzzle, in which the VRP has predictive power regarding

the returns on option contracts. 

Finally, our paper opens the door for future studies into the effects of learning on option return predictability, since other

interesting issues remain to be addressed. For instance, interesting avenues for future research include studying the effects

of learning on the returns on options with different levels of moneyness and times-to-maturity, studying the relationship

between learning and option returns when there is asymmetric information among agents, analysing a model in which there

are noisy and irrational traders, and investigating cognitive mechanisms involving market makers in a microstructure setup

using different types of derivative contracts. 
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Appendix A 

Proof of Proposition 2 : Option prices can be obtained using no-arbitrage conditions, but it is necessary to provide a proof

that we have risk-neutral probabilities that characterize the state-price density. As a first step, we take the Euler equation

of the stock price: 

S t+ k = E t+ k 

[
β

(
D t+k+1 

D t+ k 

)−α

( S t+ k +1 + D t+ k +1 ) 

]
(A1) 
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Then, we divide both sides of Eq. (A1) by the bond price obtained from Eq. (3) : 

( 1 + ρ) S t+ k 
( 1 − π) ( 1 + g t+ k ) 

−α + π ∫ g u g d ( 1 + g t+ k ) 
−αdG ( g t+ k ) 

= E t+ k 
[ 
β

(
D t+k+1 

D t+ k 

)−α

·( S t+ k +1 + D t+ k +1 ) 
( 1 + ρ) 

( 1 − π) ( 1 + g t+ k ) 
−α + π ∫ g u g d ( 1 + g t+ k ) 

−αdG ( g t+ k ) 

] 
. (A2)

In addition, we know that: 

S ∗t+ k = 

( 1 + ρ) S t+ k 
( 1 − π) ( 1 + g t+ k ) 

−α + π ∫ g u g d ( 1 + g t+ k ) 
−αdG ( g t+ k ) 

(A3)

and 

D 

∗
t+ k = 

k ∑ 

s=0 

D t+ s 
( 1 + ρ) 

( 1 − π) ( 1 + g t+ s ) 
−α + π ∫ g u g d ( 1 + g t+ s ) 

−αdG ( g t+ s ) 
, (A4)

where S ∗
t+ k is the forward stock price, while D 

∗
t+ k reflects the forward cumulative dividend process. We also know from the

pricing kernel that: 

E t 

[
β
(

D t+1 

D t 

)−α
( 1 + ρ) 

( 1 − π) ( 1 + g t+ k ) 
−α + π ∫ g u g d ( 1 + g t+ k ) 

−αdG ( g t+ k ) 

]
= 1 . (A5)

If we add D 

∗
t+ k to both sides of Eq. (A2) and we use Eq. (A5) , then we obtain: 

S ∗t+ k + D 

∗
t+ k = E t+ k 

[
β

(
D t+k+1 

D t+ k 

)−α
( 1 + ρ) 

( 1 − π) ( 1 + g t+ k ) 
−α + π ∫ g u g d ( 1 + g t+ k ) 

−αdG ( g t+ k ) 
·
(
S ∗t+ k +1 + D 

∗
t+ k +1 

)]
. (A6)

Through Eq. (A6) we are demonstrating that S ∗
t+ k + D 

∗
t+ k is described by a martingale under the conditional probability

measure. Hence, the risk-neutral density can be written as: 

p Q ( S t+ k ) = β
(

D t+1 

D t 

)−α
( 1 + ρ) 

( 1 − π) ( 1 + g t+ k ) 
−α + π ∫ g u g d ( 1 + g t+ k ) 

−αdG ( g t+ k ) 
p t ( D t+ k ) 

= β
(

D t+1 

D t 

)−α(
1 + r F I t+ k 

)
p t ( D t+ k ) (A7)

where r F I 
t+ k is the interest rate of the bond. Thus, the multi-period risk-neutral measure can be expressed as a sequence

of multiple single-period risk-neutral measures [see Pliska (1997) for proof]. Therefore, p Q ( S t+ τ ) is the risk-neutral density

which reflects all paths that reach the state in which the dividend is D t+ τ . 

Suppose that z represents the number of breaks until maturity, which is described by a binomial distribution ϕ(z| τ, π)

with parameters τ and π , while { h i } z i =1 
are the times between breaks, described by a geometric distribution η( h i | π) . Hence,

the time-to-maturity is τ = 

z ∑ 

i =1 

h i . Therefore, for each path we have: 

D 

F I 
t+ τ = D t exp 

(√ 

τσε t+ τ − τσ 2 / 2 

) z ∏ 

i =1 

(
1 + g t+ h i 

)h i 
. (A8)

Here, the value of { g t+ h i } z i =2 
is the value of the mean dividend growth rate, which is described by a univariate distribution

g t+ h i ∼ G (·) and pdf �( g t+ h i ) defined on the support [ g d , g u ] , while g t+ h 1 = g t and g t+ τ = g t+ h z . Consequently, 

p t ( D t+ τ ) = φ( ε t+ τ | 0 , σ ) ϕ ( z| τ, π) η( h 1 | π) 
[
η( h 2 | π) � 

(
g t+ h 2 

)
. . . η( h z | π) � 

(
g t+ h z 

)]
. (A9)

Hence, from Eq. (A8) we can write: 

p Q ( S t+ τ ) = βτ
(

D t+ τ
D t 

)−α

φ( ε t+ τ | 0 , σ ) ϕ ( z| τ, π) η( h 1 | π) 
[
η( h 2 | π) � 

(
g t+ h 2 

)
. . . η( h z | π) � 

(
g t+ h z 

)]
. (A10)

�
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