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Abstract

We use data from five stellar occultations observed between 2013 and 2016 to constrain Chariklo’s size and shape,
and the ring reflectivity. We consider four possible models for Chariklo (sphere, Maclaurin spheroid, triaxial
ellipsoid, and Jacobi ellipsoid), and we use a Bayesian approach to estimate the corresponding parameters. The
spherical model has a radius R=129±3 km. The Maclaurin model has equatorial and polar radii
= = -

+a b 143 km6
3 and = -

+c 96 km4
14 , respectively, with density -

+ -970 kg m180
300 3. The ellipsoidal model has

semiaxes = -
+a 148 km4

6 , = -
+b 132 km5

6 , and = -
+c 102 km8

10 . Finally, the Jacobi model has semiaxes
a=157±4km, b=139±4km, and c=86±1km, and density -

+ -796 kg m4
2 3. Depending on the model,

we obtain topographic features of 6–11km, typical of Saturn icy satellites with similar size and density. We
constrain Chariklo’s geometric albedo between 3.1% (sphere) and 4.9% (ellipsoid), while the ring I/F reflectivity
is less constrained between 0.6% (Jacobi) and 8.9% (sphere). The ellipsoid model explains both the optical light
curve and the long-term photometry variation of the system, giving a plausible value for the geometric albedo of
the ring particles of 10%–15%. The derived mass of Chariklo of 6–8×1018 kg places the rings close to 3:1
resonance between the ring mean motion and Chariklo’s rotation period.

Key words: methods: statistical – minor planets, asteroids: individual (Chariklo) – occultations –
planets and satellites: rings

1. Introduction

The Centaur object (10199) Chariklo is the only small object
of the solar system known thus far to show the unambiguous

presence of a ring system. It was discovered during a ground-
based stellar occultation in 2013 (Braga-Ribas et al. 2014), and
confirmed by several subsequent observations (Bérard
et al. 2017).
Meanwhile, the basic physical characteristics of Chariklo

remain fragmentary. Chariklo’s radius estimations, taken from
thermal measurements, vary from 108 to 151km, with
geometric albedo in the range 4%–8% (Jewitt & Kalas 1998;
Altenhoff et al. 2001; Sekiguchi et al. 2012; Bauer et al. 2013;
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Fornasier et al. 2014). The 2013 stellar occultation had poor
coverage of the main body, which still provides a spheroidal
shape with equatorial radius a=144.9 km and polar radius
c=114km.

Rotational light curves obtained in the visible between 1997
and 2013 exhibit a variable peak-to-peak amplitude from non-
detectable in 1997 and 1999 to amplitudes of 0.11–0.13 in
2006 and 2013, respectively (Davies et al. 1998; Peixinho
et al. 2001; Fornasier et al. 2014; Galiazzo et al. 2016). This
can be produced by an elongated body, longitudinal albedo
variegations, or more probably, a combination of both. The best
measurements provide a rotation period of 7.004±0.036 hr
(Fornasier et al. 2014). Spectroscopic measurements show the
presence of water ice in the system (Guilbert-Lepoutre 2011;
Duffard et al. 2014). Finally, no satellites have been detected
around Chariklo, preventing any mass estimation.

The size, shape, and density of Chariklo are important
parameters to constrain the origins of both the main body and
its rings. Moreover, topographic features and/or an ellipsoidal
shape may have a drastic influence in the ring dynamics through
resonances between ring mean motion and body rotation.

Here, we use several stellar occultations to put constraints on
the size and shape of Chariklo’s main body. This technique has
been used on several trans-Neptunian objects (TNOs) and
Centaur objects, including 2002TX300 (Elliot et al. 2010), Eris
(Sicardy et al. 2011), Makemake (Ortiz et al. 2012), Varuna
(Sicardy et al. 2010), Quaoar (Braga-Ribas et al. 2013), 2002
KX14 (Alvarez-Candal et al. 2014), 2007 UK126 (Benedetti-
Rossi et al. 2016; Schindler et al. 2017), and 2003 AZ84 (Dias-
Oliveira et al. 2017).

Due to the very small angular size of Chariklo (∼80
milliarcseconds, rings included), predictions of stellar occultations
are difficult and coverage of the shadow path is poor, with only a
few chords on the body per event. In order to retrieve the full 3D
structure of the body, we have to use some a priori hypotheses
about the shape of the body (e.g., sphere, spheroid, ellipsoid).
Moreover, to assess the more probable shape parameters given the
sparse data, we adopted a Bayesian approach to derive posterior
probability distributions for the radius of the spherical model, and
the size, shape, and orientation for the Maclaurin, ellipsoidal, and
Jacobi models. The advantage of this method is that it can
incorporate knowledge from complementary observations in a
quantitative way, avoiding qualitative assumptions (Brown 2013).

In Section 2, we describe the prediction of occultations and
the observations, resulting in a total of eight occultation chords
observed during five stellar occultations between 2013 and
2016. In Section 3, we describe the rings, main body models,
and the implementation of the Markov Chain Monte Carlo
(MCMC) to derive parameter values. In Section 4, we describe
the main results, before the discussions (Section 5) and
concluding remarks (Section 6).

2. Observations

2.1. Prediction of Stellar Occultations

Stellar occultation predictions for Chariklo for the period
2012.5–2014 were based on local catalogs with astrometric
positions of the stars around Chariklo’s path on the sky.
Moreover, improved ephemerides for Chariklo were obtained
from those catalogs with typical uncertainties of 20–30 mas
(Camargo et al. 2014). A similar approach was used for
predictions after 2014 using the Wide Field Imager (WFI) at

the MPG 2.2 m telescope (La Silla, Chile) and the IAG 0.6m
telescope at OPD/LNA (Pico dos Dias, Brazil). For the
occultation of 2016 October 1, the star position was obtained
from Gaia Data Release 1 (Gaia Collaboration et al. 2016a,
2016b). A total of 13 positive occultations were observed up to
2016, involving the detection of the rings, the body, or both
(see details in Bérard et al. 2017). Each event provided the
position of Chariklo relative to the star with an accuracy of a
few miliarcseconds. Those positions were used in turn to
improve Chariklo’s ephemeris, providing updated orbital
elements in the so-called Numerical Integration of the Motion
of an Asteroid (NIMA) procedure (Desmars et al. 2015), and
permitting better subsequent predictions.

2.2. Observations and Data Reduction

Among the 13 stellar occultations observed between 2013
and 2016 (Braga-Ribas et al. 2014; Bérard et al. 2017), we use
those five that include the simultaneous detections of the main
body and rings. In those cases, the orientation and center of the
system can be constrained as detailed in Section 3.1. The 2013
June 3, 2014 June 28, and 2016 October 1 events were double
chord while the 2014 April 29 and 2016 August 8 events
were single chord. Additionally, we consider the stations whose
negative detections (that is, no occultation by the body) were
close enough to the main body’s limb to constrain its extension.
As a consequence, from the occultation of 2013 June 3, we use
the negative detections from Ponta Grossa and Cerro Burek
(Braga-Ribas et al. 2014); from 2014 April 29, we use a
negative detection from Springbok; and from 2014 June 28, we
use the negative detection from Hakos. Table 1 gives the
circumstances of the observations between 2014 and 2016 used
in this work. Details of observations from other sites and stellar
occultations not used in this work are given in Braga-Ribas
et al. (2014) and Bérard et al. (2017).
For each observation, the images were reduced in a standard

way by applying dark and flat frames. Then, we performed
aperture photometry for the occulted star and comparison stars
in the same image. Finally, we performed relative photometry
between the occulted star and comparison star(s) to correct for
variations in the sky transparency. The optimal aperture size
was chosen in each case for the target and comparison star(s) to
obtain the best signal-to-noise ratio (S/N) in each light curve.
The background flux was estimated near the target and nearby
reference stars, and then subtracted, so that zero flux
corresponds to the sky level. The total flux from the unocculted
star and Chariklo was normalized to unity after fitting the light
curve by a third- or fourth-degree polynomial before and after
the event. Figures 1 and 2 show the light curves obtained with
this procedure.

2.3. Occultation Timing Analysis

For each light curve involving the body’s detection, we
determine the times of ingress ting and egress tegr of the
occulted star behind Chariklo by fitting a sharp-edge occulta-
tion profile. This profile is convolved by the Fresnel diffraction
produced by the sharp edge of the body, then convolved by the
stellar diameters projected at Chariklo’s distance, the integra-
tion time, and the bandwidth of the optical system (product of
the telescope, detector, and filter responses) as described in
Widemann et al. (2009). The profile takes into account the
relative speed of the star with respect to Chariklo in the sky
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plane, vch, and the orientation angle, α, between the occultation
chord and the normal to the local limb. For instance, for a local
limb perpendicular to the occultation chord, we have α=0.

The angle α and times ting and tegr are obtained by
minimizing a classical χ2 function,

åc
f f

s
=

-( )
( ), 1

N
i o i m

i

2

1

, ,
2

2

where fi o, is the normalized flux observed, fi m, is the synthetic
flux from the diffraction model, and σi is the uncertainty in the
measured photometry.

Except for the occultation of 2013 June 3 observed with the
Danish telescope, the light curves are dominated by the long
integration time instead of diffraction effects, so that the angle
α is unconstrained and only the ingress and egress times are
obtained.
Table 2 gives the adopted stellar diameters projected at

Chariklo’s distance, Chariklo’s geocentric range, the adopted
coordinates of the occulted stars, and the predicted coordinates
of Chariklo at a reference time. For the occultations of 2014
June 28 and 2016, the apparent stellar diameters are estimated
using the V and K apparent magnitudes provided by the
NOMAD catalog (Zacharias et al. 2004) using the V–K
relations from Kervella et al. (2004) and considering galactic

Table 1
Observations Used to Constrain Chariklo’s Main Body

Site Latitude Telescope Aperture (m) Observers
Longitude Camera,Filter
Altitude (m) Exp. Time, Cycle (s)

2013 June 3, South Americaa

2014 April 29, South Africa

Springbok 29°39′40 2S 0.3 F. Colas
South Africa 17°52′58 8W Raptor Merlin 247, Clear C. de Witt

951 0.06, 0.06

Gifberg 31°48′34 6S 0.3 J.-L. Dauvergne
South Africa 18°46′59 4E Merlin, Clear P. Schoenau

345 0.05, 0.05

South African Astronomical 32°22′46 0S 1.9 H. Breytenbach
Observatory, Sutherland (SAAO) 20°48′38 5E SHOC, Clear A. A. Sickafoose
South Africa 1760 0.0334, 0.04

2014 June 28, South Africa and Namibia

Kalahari Trails 26°46′27″S 0.3 L. Maquet
South Africa 20°37′55″E Merlin, Clear

860 0.4, 0.4

Twee Rivieren 26°28′14″S 0.3 J.-L. Dauvergne
South Africa 20°36′42″E Merlin, Clear

885 0.4, 0.4

IAS Observatory 23°14′10″S 0.51 K.-L. Bath
Hakos 16°21′42″E Merlin, Clear
Namibia 1695 0.2, 0.2

2016 August 8, Namibia

Windhoek 22°41′54 9S 0.35 H.-J. Bode
Namibia 17°6′32 4E ZWOASI120MM, Clear

1900 m 1, 1

2016 October 1, Australia

The Heights Observatory 34°48′44 7S 0.3 A. Cool
Adelaide 138°40′56 9E QHY5L-II, Clear B. Lade
Australia 100 m 1, 1

Rockhampton 23°16′9 6S 0.3 S. Kerr
Australia 150°30′0 7E Watec 910BD, Clear

50 m 0.32, 0.32

Note. The stations considered here involve occultation by Chariklo’s main body where Chariklo’s rings were simultaneously detected. In those cases, the general
geometry of the system can be constrained, including the apparent center and orientation of the pole axis. The Springbok and Hakos stations provided negative results
(that is, no occultation by the body), but the occultation chords were sufficiently close to Chariklo’s main body, giving strong constrains on its extension (see
Figure 3). For the same reasons, we consider in this analysis the observations from the Danish and PROMPT telescopes (body detections) as well as Ponta Grossa and
Cerro Burek (no occultation by the body) of the occultation of 2013 June 3.
a The circumstances of these observations are given in Braga-Ribas et al. (2014).
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reddening. For 2013 June 3 and 2014 April 29, we adopt the
apparent stellar diameter derived in Braga-Ribas et al. (2014)
and Bérard et al. (2017).

The occultations by the main inner ring (C1R) and the
external fainter ring (C2R) show variable width and radial
profiles, and are described and analyzed in detail in Bérard
et al. (2017). Here we take the midtimes tmid of the rings’
detections from that work, which we use in turn to constrain the
body’s apparent center as explained in Section 3.1.

The timings corresponding to the occultations by the main
body and the rings provide a set of offsets ( f, g) of the star with
respect to the expected body center as seen from each site.
Those offsets are measured in the sky plane at Chariklo’s
distance, and they are counted positive toward the east and
north. Table 3 summarizes the timings and offsets for the body

detections, while Table 4 lists the ring detections. Figure 3
shows the occultation chords in the sky plane. The particular
conditions during the occultations of 2013 June 3 and 2014
April 29 are discussed below.
South America. 2013 June 3—For this occultation, we keep

most of the timing analysis reported in Braga-Ribas et al.
(2014), but we re-analyzed the light curve obtained at the
Danish telescope. This light curve has the highest S/N and a
high acquisition rate of 10Hz, allowing us to resolve
diffraction effects by fitting simultaneously the time of
ingress/egress and the orientation angle α.
Figure 1 shows the best fits, from where we derive

αingress=60°.2±0°.9 at ingress and αegress=73°.0±0°.8 at
egress, while the ingress and egress timings are given in
Table 3. For illustration, the same figure indicates the modeled
light curve for α departing ±10° with respect to the best fit,
showing a clear departure from the data.
From this, we calculate the relative angle Φlimb between the

local and global limbs, the latter understood as the tangent to
the projected limb. Depending on the main body model, we
obtain Φlimb=2°–10° at ingress and Φlimb=15°–25° at
egress. The angle Φlimb corresponds to what is known as the
angle of internal friction, or the maximum angle of repose. As
an illustration, Figure 4 shows a local view of the occultation
geometry in the sky plane for the generic triaxial ellipsoid
model (Section 3.2.2) indicating the occultation chord, the local
limb, the global limb, and the angles α and Φlimb.
Finally, the occultation timings by the main body obtained at

the PROMPT telescope (as given by Braga-Ribas et al. 2014),
as well as the non-detection at Cerro Burek and Ponta Grossa,
are used as further constraints for the overall shape.
South Africa. 2014 April 29—This occultation revealed that

the occulted star was in fact double. A stellar atmosphere fit
was performed to determine the relative flux and apparent
diameter of the stars as detailed in Bérard et al. (2017) The
separation between the main (A) and secondary (B) stars, and
the diameter of each component projected at the distance of
Chariklo are given in Table 2.
The occultation of the primary star by the rings was detected

at Springbok, while the occultation of the secondary was not
detected due to the low S/N. There were two additional
detections of the rings, one involving the C2R ring occulting
the primary star at Gifberg and the other one involving the C1R
ring occulting the secondary star at SAAO. Panel (b) of
Figure 3 shows the two sets of occultations of the primary and
secondary stars in the plane of the sky. Panel (c) of Figure 3
shows the reconstructed geometry of the event after applying
the offset between the components of the double star to the
occultations of the secondary star.

3. Rings and Body Models

3.1. Ring Model

All of the ring occultations observed thus far are consistent
with two concentric and circular rings with fixed pole position
and fixed radius, within ∼1° and within ∼3.3km of the
discovery values, respectively (see Braga-Ribas et al. 2014;
Bérard et al. 2017). For a particular date, the rings are projected
on the sky plane as an ellipse with semimajor axis corresp-
onding to the ring radius. The ring opening angle B (the
elevation of the observer above the ring plane) and the position
angle of the semiminor axis P are calculated from the pole

Figure 1. Occultation light curve of 2013 June 3 at the Danish telescope at
ingress (top) and egress (bottom). The black dots are the data points with the
horizontal bars indicating the time interval of acquisition (the exposure time).
The blue continuous line is the geometric best solution indicating the limb of
the object, from where we obtain the occultation times given in Table 3. The
red continuous line is the best solution after applying the limb diffraction
model. The high S/N and cadence of the light curve from the Danish telescope
allows the determination of the orientation between the occultation chord and
the normal to the local limb, given by the angles αing=60° and αegr=73° at
ingress and egress, respectively (see Figure 4). For illustration, the green lines
show the limb profiles for ±10° with respect to the best-fit values αing and αegr,
showing a clear departure from the data (see Section 2.3 for details).

4
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Figure 2. Occultation light curves used in this paper. The black dots are the data points with horizontal bars indicating the time interval of acquisition (the exposure
time). The blue continuous lines are the geometric best solution indicating the limb of the object. The red continuous lines are the best solution after applying the limb
diffraction model. The red dashed lines show the central times of occultations by the C1R and C2R rings. Notice that only the C1R position is indicated for events with
unresolved rings. The green dotted–dashed lines indicate the ring position expected after reconstruction of the geometry of the event in cases where the rings are
undetected.
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Table 2
Coordinates of Chariklo and the Occulted Star

2014 Apr 29 2014 Jun 28 2016 Aug 8 2016 Oct 1

α 17h39m2 1336a −10.1 masb 17h24m50 3800 18h18m3 6927 18h16m20 0796
δ −38°52′48 802a −17.8 masb −38°41′5 618 −33°52′28 3920 −33°1′10 756
V K K 15.20 14.06 14.33
K K K 12.47 12.1 13.253
θLD (mas) K K 0.011±0.005 0.015±0.003 0.007±0.002
Dstar (km) 0.2±0.02c 0.09±0.02c 0.11±0.05 0.16±0.03 0.08±0.02
tref UTC 23:10:00 22:24:00 19:57:00 10:10:00
αCh 17h39m2 1566 17h24m50 3991 18h18m3 6908 18h16m20 0982
δCh −38°52′48 739 −38°41′5 628 −33°52′28 241 −33°1′10 8424
dCh (km) 2.109×109 2.075×109 2.193×109 2.319×109

Notes. (α, δ) are the right ascension and declination of the occulted star, while dCh is Chariklo’s geocentric range and (αCh, δCh) the predicted Chariklo’s right
ascension and declination at the reference time tref. V and Kare the star magnitudes from the NOMAD catalog (Zacharias et al. 2004). θLD is the stellar angular
diameter, while Dstar is the stellar diameter projected at the distance of Chariklo, from the V–Krelations in Kervella et al. (2004) after considering galactic reddening.
For the stellar occultation of 2013 June 3, we adopted values from Braga-Ribas et al. (2014, supplementary information).
a Primary component of the double star.
b Offset of the secondary component with respect to the primary.
c Fitting atmospheric models to primary and secondary stars; for details, see Bérard et al. (2017).

Table 3
Occultation Data Used to Constrains Chariklo’s Size and Shape

Site ing/egr UTC time f(km) g(km) σch(km)d

2013 June 3, South America

Pta. Grossaa No body detection
Danish ing 6:25:27.893±0.014 s −2750.6 920.2 0.3
Danish egr 6:25:33.188±0.014 s −2635.3 898.2 0.3
PROMPTa ing 6:25:24.835±0.009 s −2842.0 837.7 0.2
PROMPT egr 6:25:35.402±0.015 s −2613.3 794.2 0.3
Cerro Bureka No body detection

2014 April 29, South Africa

Springbokb No body detection
Springbokc ing 23:14:30.04±0.07 s −2887.6(−2782.6) 321.0(503.0) 0.9
Springbokc egr 23:14:48.05±0.07 s −2651.3(−2546.3) 373.2(555.2) 0.9

2014 June 28, South Africa and Namibia

Hakos No body detection
Kalahari ing 22:24:07.48±0.20 s −878.6 1306.6 4.4
Kalahari egr 22:24:14.86±0.07 s −723.2 1264.2 1.5
Twee Rivieren ing 22:24:06.73±0.10 s −892.6 1343.7 2.2
Twee Rivieren egr 22:24:16.54±0.10 s −686.3 1287.4 2.2

2016 August 8, Namibia

Windhoek ing 19:57:28.460±0.13 s 631.1 −520.5 2.1
Windhoek egr 19:57:41.870±0.14 s 831.1 −599.6 2.2

2016 October 1, Australia

Rockhampton ing 10:12:44.66±0.04 s −497.8 0.4 0.5
Rockhampton egr 10:13:03.20±0.06 s −676.7 −149.2 0.8
Adelaide ing 10:10:41.82±0.10 s −607.9 124.1 1.3
Adelaide egr 10:10:54.16±0.08 s −726.8 25.1 1.0

Notes. Here we list only the positive occultations by Chariklo’s body and the negative occultations close enough to the body used to constrain Chariklo’s size and
shape. The second column indicates the detection of the ingress and egress in Chariklo’s occultation shadow at each site. The values ( f, g) are the offsets of the star
with respect to the expected body center ( f, g)=(0,0) as seen from each site at ingress and egress. Those offsets are measured in the sky plane at Chariklo’s distance
and are counted, respectively, positive toward the east and north.
a From Braga-Ribas et al. (2014, extended data Table5).
b Occultation of primary star (see text).
c Occultation of secondary star (see text).
d The uncertainty σch measured in the direction of the occultation chord as derived from the timing uncertainties.
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position in Table 5 and Chariklo’s position in the sky. The
single-chord ring occultation of 2016 August 8 provides two
possible ring centers, while the other events give a unique
center. The ring centers ( fc, gc) are listed in Table 5, with error
bars that reflect the uncertainties on the ring midtimes given in
Table 4. Occultations indicate that the radial width of the main
ring varies between 5 and 7.5km, adding an additional bias in
the determination of the center of ∼1km. This is of the order
of the formal uncertainties for most of the events, and it is not a
dominant effect in the determination of the center of the
projected ellipse. The best fitted ellipses for each event are
displayed in Figure 3.

3.2. Body Model

Here we adopt the assumption that the ring system lies in the
equatorial plane of the object. Indeed, in this situation, a
collisional dissipative ring reaches its minimum energy
configuration while conserving its angular momentum parallel
to the body spin axis. With this assumption (plus the circularity
described above), the body and the rings share the same pole
position and the same center.

If Chariklo were completely irregular, a simple parametric
model (e.g., sphere, ellipsoid) would give a poor estimation of
the dimensions of the body. A well-sampled stellar occultation
could indicate if Chariklo is irregular but unfortunately, to date
we only have a few occultations with one or two positive
detections each (Table 3 and Figure 3). In that context, we test
simple models that can be easily parametrized in order to give
credible intervals for the corresponding parameters. In practice,
we first assume a spherical body that is used to estimate a
radius and the scale of the topographic features. Next, we
consider a generic triaxial ellipsoid to estimate the length of the
semiaxes a, b, and c, and the scale of the topographic features.
Next, considering hydrostatic equilibrium, a homogeneous
body will assume either a Maclaurin (spheroid) or a Jacobi
(triaxial ellipsoid) shape for which size, axis ratios, density, and
topographic features can be evaluated. The non-spherical
models incorporate independent information as a priori
estimates for the model parameters, such as the amplitude of
the rotational light curve or the long-term photometric behavior
of the system. The models mentioned above (sphere, triaxial
ellipsoid, Maclaurin, and Jacobi) are now discussed in turn.

Table 4
Midtime of the Occultations by Chariklo’s Rings

Site ing/egr tmid f g vch σch
UTC (km) (km) (km s−1) (km)

2014 April 29, South Africa

C1R
Springboka ing 23:14:25.884±0.007 s −2942.16 308.95 13.4 0.1
Springboka egr 23:15:04.362±0.006 s −2437.27 420.48 13.4 0.1
SAAOb ing 23:13:56.191±0.007 s −3017.66 56.58 13.4 0.1
SAAOb egr 23:14:28.964±0.008 s −2587.52 151.12 13.4 0.1

C2R
Springboka ing 23:14:24.990±0.020 s −2953.89 306.36 13.4 0.3
Springboka egr 23:15:05.324±0.019 s −2424.65 423.27 13.4 0.3
Gifberga ing -

+23: 14: 30.109 s0.008
0.015 −2742.39 137.87 13.4 -

+
0.1
0.2

Gifberga egr 23:14:33.750±0.008 s −2694.62 148.40 13.4 0.1

2014 June 28, Namibia

C1R+C2R Unresolved
Hakos ing 22:24:25.796±0.041 s −886.44 1629.24 21.8 0.9
Hakos egr 22:24:44.218±0.035 s −498.24 1523.61 21.8 0.8

2016 August 8, Namibia

C1R+C2R Unresolved
Windhoek ing 19:57:18.209±0.249 s 478.18 −459.92 16.0 4.0
Windhoek egr 19:57:51.892±0.109 s 980.60 −658.82 16.0 1.8

2016 October 1, Australia

C1R+C2R Unresolved
Rockhampton ing 10:12:26.284±0.072 s −320.56 148.77 12.6 0.91
Rockhampton egr 10:13:22.928±0.049 s −876.01 −308.47 12.6 0.62

Adelaide ing 10:10:19.826±0.186 s −396.05 300.41 12.5 2.3
Adelaide egr 10:11:14.558±0.218 s −923.38 −138.48 12.5 2.7

Notes. C1R is the internal and wider ring, while C2R is the external ring. tmid are the midtimes of the occultations by the rings, from Bérard et al. (2017). Ingress/
egress indicates the first and second detection of the respective ring. The values ( f, g) are the offsets of the star with respect to the expected body center ( f, g)=(0, 0)
as seen from each site derived from the midtimes tmid. Those offsets are measured in the sky plane at Chariklo’s distance and are counted, respectively, positive toward
the east and north. vch is the speed of the star relative to Chariklo, projected in the sky plane. σch is the uncertainty of the chord extremity measured along the chord
direction as given by the timing uncertainty.
a Occultation of primary star (see text).
b Occultation of secondary star (see text).
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Figure 3. Geometry for the five occultations by Chariklo’s main body between 2013 and 2016. Positions are given in the sky plane at Chariklo’s distance with respect
to the center of the system ( fc, gc) determined in Table 5. The ellipses represent the C1R and C2R orbits adopting the diameter and pole position of Braga-Ribas et al.
(2014). Dots indicate the ring detections used to fit the center of the system (black crosses). The continuous green lines are the occultation chords by the main body
with the uncertainties in red. For clarity, we only indicate the closest negative detections used as constraints with the red dotted–dashed lines. (a) 2013 June 3, South
America. (b) 2014 April 29, South Africa. Occultation of a double star. The solid dots and the cross indicate the ring occultation of the primary star and the adopted
center of the system. Open dots correspond to occultations of the secondary star. (c) 2014 April 29, South Africa. Geometry after applying an offset of Δf=103km
andΔg=182.5km to the secondary events. (d) 2014 June 28, South Africa–Namibia. (e) 2016 August 8, Namibia. Rings solution 1 in continuous line and solution 2
in dashed lines. (f) 2016 October 1, Australia.
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3.2.1. Sphere Model

This is the simplest case as there is only one free parameter,
the sphere radius R. The projection in the sky plane is a circle
with the same radius R for all occultations. The problem is then
reduced to finding a circle that best fits all of the chord
extremities ( f, g) provided in Table 3 with the center located at
the ( fc, gc) values indicated in Table 5.

3.2.2. Triaxial Ellipsoid

Here we consider a generic triaxial ellipsoid with semiaxes
a>b>c, rotating around the shortest axis. We define the

rotation angle f as the angle from the central meridian to
the prime meridian counted positively along the equator of the
object using the right-hand rule. The prime meridian is the one
passing through one of the two intersections between the equator
and the longer axis of the ellipsoid. Given the current uncertainty
in the rotation period, the rotation phase is lost after a few weeks,
and the rotation angle in each occultation is considered to be
independent.
The eight free parameters of this model are a (which gives us

the size of the object), the ratios 0<b/a<1 and 0<c/b< 1,
and the rotation angles fi at each of the five occultations.

3.2.3. Maclaurin Spheroid

A Maclaurin spheroid has an equatorial radius a and polar
radius c related by (Chandrasekhar 1987)

w
p r

W = =
-

- - -[( ) ]

( )
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e
e e e e

2 1
3 2 arcsin 3 1 ,

2

2 2

3
2 2

where e2=1−(c/a)2, ω=2 π/T (T being the rotation period
of the body), G the gravitational constant, and ρ its (uniform)
density. Note that Ω is the adimensional rotational parameter
that compares the centrifugal acceleration at the equator of the
body to its gravity. For stable Maclaurin shapes, this parameter
is between Ω=0 and Ω;0.374. The lower limit corresponds
to the spherical limit with r  ¥, while the upper limit
corresponds to the maximum oblateness and the minimum
density. Here we adopt a rotation period of T=7.004 hr
(Fornasier et al. 2014), giving a minimum density

r = - ( )791 kg m . 3min
3

In this case, we have two free parameters, the equatorial
radius a and the density ρ (which determine c, i.e., the shape).

3.2.4. Jacobi Ellipsoid

A Jacobi ellipsoid is triaxial with semiaxes a>b>c,
rotating around the shortest axis. The shape and size (given by
a, b, and c), the rotation period T, and the (uniform) density ρ
are related by (Chandrasekhar 1987)
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which can be solved numerically.
For a stable Jacobi ellipsoid, the shapes lie between the

axisymmetric spheroid limit with Ω=0.374 and the most
elongated solution with Ω=0.284. For the adopted rotation
period of 7.004 hr, the density is in the range 791<
ρ<1040 kgm−3.
We define the prime meridian and rotation angle f as we did

for the generic ellipsoid.
The seven free parameters of this model are a (which gives

us the size of the object), the density ρ (which gives us the

Figure 4. Local limb slopes with respect to the generic ellipsoid model as
measured at the Danish telescope for the occultation of 2013 June 3. The
tangent to the local limb (solid green line) is derived from fitting the angle α in
the limb diffraction model to the occultation light curves (Figure 1). The blue
solid lines are the occultation chords with their extremity uncertainties in red.
Depending on Chariklo’s main body model, the slopes with respect to the
tangent to the global limb of up to Φlimb=25° are observed. As an illustration,
this figure shows the local limb orientation for the generic ellipsoidal model.
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shape with Equation (4)), and the rotation angles fi at each of
the five occultations.

3.3. Bayesian Approach and MCMC Implementation

Here, we adopt a Bayesian approach to derive the probability
densities and credible intervals for the physical parameters θ of
the models described above given the occultation data D. We

are interested in the “posterior” probability density function
(pdf) q( ∣ )p D given by

q qµ ´( ∣ ) ( ) ( )p D p , 5

where  is the likelihood function and p(θ) is the so-called
“prior” distribution.

Table 5
Adopted Ring Geometry

Pole positiona αP=151°. 30±0°. 5 and δP=41°. 48±0°. 2

C1R radiusa (km) 390.6±3.3

C2R radiusa (km) 404.8±3.3

Date Opening Angle—B Position Angle—P fc gc
(°) (°) (km) (km)

2013 Jun 3a 33.8±0.4 −61.6±0.1 −2734.7±0.5 793.8±1.4
2014 Apr 29 40.4±0.4 −64.5±0.4 −2669.4±0.2 519.0±0.1
2014 Jun 28 37.8±0.4 −63.1±0.4 −775.3±0.5 1375.8±0.5
2016 Aug 8b 45.2±0.4 −62.9±0.4 767.1(691.7)±4.0 −475.95(−642.8)±7.0
2016 Oct 1 44.5±0.4 −62.0±0.4 −619.3±1.0 −17.8±3.4

Notes. The opening angle B is the elevation of the observer above the ring plane. P is the position angle of the semiminor axis of the ring projected on the sky plane,
counted positively from celestial north toward east. With the assumptions used here, B and P correspond to the planetocentric declination of the Earth and the position
angle of the pole axis, respectively (see Section 3). fc and gc are the coordinates of the center of the ring in the sky plane measured with respect to the expected body
center ( f, g)=(0, 0).
a From Braga-Ribas et al. (2014), ED Table 4.
b For the occultation of 2016 August 8, there are two possible solutions for the center of the system.

Figure 5. Chariklo’s rotational light curve obtained on 2015 July 20 with the SOI camera at SOAR telescope. The light curve covers about 5 hr of Chariklo’s rotation.
The green solid line is a fit with a second-order polynomial after folding the data with a period T=7.004hr from Fornasier et al. (2014). The peak-to-peak amplitude
from this light curve is Δm=0.06±0.02 mag. Using the pole position from Table5, the opening angle of Chariklo’s system at this date is B=42°. Together with
the Δm and HV values from the literature, this is used to derive a prior for the size and shape of the models.
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The likelihood  determines the probability of obtaining the
data D given the physical model and a model of the data
uncertainties. On the other hand, the prior distribution p(θ)
condenses the previous knowledge we have about the
parameters. We define the likelihood function , assuming
that the errors stemming from the fits described in Section 2.3
have normal distributions. Moreover, we formally consider
statistical uncertainties in our model by introducing an extra,
normally distributed random variable with median zero and
standard deviation σm, independent from the measurements.
For instance, the parameter σm may account for unmodeled
topographic features on an otherwise smooth ellipsoidal model
for the body. Thus, σm is estimated from the data and counted
as an extra parameter for each physical model. With these
considerations,  is given by (see for example Equation(4.52)
of Gregory 2005)
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where N is the number of data points yi=( fi, gi) derived in
Section 2.3, corresponding to the extremities of each occulta-
tion chord by the main body; xi represent the independent
variables (the site and time of each occultation); and σri are the
uncertainties on the chord extremities σch projected along the
radial direction and counted from the center ( fc, gc) of the body
(see Table 5). Finally, θ is the vector representing the
parameters of the model that describes the object. In that
context, q( ∣ )m xi is the position of the chord extremity predicted
by each model. The prior p(θ) is derived from physical
considerations (for instance, the stability criteria for the
Maclaurin and Jacobi models) and the observational evidence
as explained below.

3.3.1. Analysis of Photometry

Here we consider the rotational light curve amplitude Δm
and V absolute magnitude HV, which are in turn used to derive
a priori estimates for Chariklo’s size, shape, and/or density,
depending on the model adopted. These a priori estimates are
incorporated in the Bayesian modeling through the prior
probability distribution p(θ).

Notice that in this discussion we neglect the effect of eclipses
between the main body and the rings. For instance, for a
spherical body with radius R=129km, eclipses between the
body and the main ring C1R occur for opening angles 20°.
The projected area of the ring eclipsed by Chariklo’s main
body is 10% of the total ring projected area, while the
projected area of the main body eclipsed by the rings is 1% of
the total body projected area. Both effects are negligible
compared to the uncertainty in the ring’s width of ∼20%
(Bérard et al. 2017). Moreover, none of the stellar occultations
analyzed in this work involve eclipses.
Rotational light curve amplitude—Chariklo exhibits a

rotational light curve amplitude that varies in time. There was

Table 6
Rotational Light Curve Amplitudes

Date Δm B Reference
(mag) (°)

1997 May <0.02 −56 Davies et al. (1998)
1999 Mar <0.05 −53 Peixinho et al. (2001)
2006 Jun 0.13±0.03 −13 Galiazzo et al. (2016)
2013 Jun 0.11±0.02 34 Fornasier et al. (2014)
2015 Jul 0.06±0.02 42 This work

Note.Peak-to-peak amplitude Δm of the rotational light curve measured for
Chariklo at different opening angles B. Upper limits for the amplitude in 1997
and 1999, and uncertainties in 2006 and 2013 are estimated from the
uncertainties in the photometry given by the authors. The amplitude in 2015 is
the one obtained from data taken with the SOI camera at the SOAR telescope.

Figure 6. Posterior probability function (pdf) for the sphere radius R. The blue
continuous line is the best value, and the green dashed lines indicate the 68%
credible interval from where we determine the value for R=129±3 km.

Figure 7. Best fit for the sphere model with radius R=129±3 km compared
to all of the occultation chords projected on the sky plane. The sphere model is
plotted with the average orientation of B=40° and P=−63°. Measurement
uncertainties are indicated in red. The red dashed lines outside the body are the
multiple negative detections used to constrain the model. The black dot
indicates the sphere’s equator.
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no detection of the light curve amplitudes obtained in 1997 and
1999 (Davies et al. 1998; Peixinho et al. 2001), when Chariklo
was close to its maximum opening angle. Peak-to-peak
amplitudes of 0.13 mag and 0.11 mag were then measured in
2006 and 2013, respectively (Fornasier et al. 2014; Galiazzo
et al. 2016). As not given by the authors, we adopt conservative
upper limits for the amplitudes in 1997 and 1999, and
uncertainties for those of 2006 and 2013, derived from the
uncertainties in the respective photometries.

Here we add to this data set a partial light curve obtained in
July 2015 with the SOAR Optical Imager (SOI). About 200
images were taken with the R Bessell filter using an exposure
time of 80 s. A bias correction and flat-fielding was performed
with the SOAR/SOI IRAF routines. The images were
processed using the difference image photometry implemented
in the IDL code DanDIA (Bramich 2008). A light curve was
obtained using aperture photometry with IRAF routines
(Tody 1986). Figure 5 shows the obtained light curve covering
∼5hr from which we determined a peak-to-peak amplitude
Δm=0.06±0.02.

Values from the literature and from this work are
summarized in Table 6. Using the pole position from Table 5,
we calculate the opening angle B for each date that indicates a
correlation between Δm and ∣ ∣B . Additionally, the light curve
from Fornasier et al. (2014) is double peaked, with the minima
separated by about half of the rotation phase. Both facts suggest
that the brightness variations are dominated by the variable
projected area of an elongated body instead of albedo
variegations.

With these considerations, we model the peak-to-peak
rotational light curve amplitude with the contribution of the

main body and rings given by (Fernandez-Valenzuela et al. 2017)

D = -
+
+
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where Amin and Amax are the minimum and maximum projected
areas of Chariklo’s body, respectively, pb is the geometric
albedo of Chariklo’s body, Ar is the projected area of the rings,
and26(I/F) is the ring reflectivity.
Absolute magnitude—Chariklo also exhibits an absolute V

magnitude HV that varies in time (Belskaya et al. 2010; Duffard
et al. 2014; Fornasier et al. 2014). Considering contributions
from the changing aspect of Chariklo’s main body and its rings,
we model HV with the relation
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where He=−26.74 is the absolute magnitude of the Sun in V,
Ab is the projected area of Chariklo’s main body, and aukm is an
astronomical unit in km.
Priors for the generic ellipsoid—For the generic triaxial

ellipsoid, we use Δm and HV to derive estimates for the
semimajor axis a and the ratios b/a and c/a.
To derive the ring contribution to the brightness variations,

we consider a ring of radius ∼400km and width w1∼5.5km
(neglecting the contribution from the faint and narrow C2R
ring), and a ring reflectivity (I/F) varying between 0%

Figure 8. Radial residual as a function of position angle (counted positively from celestial north toward east) for the spherical model of Figure 7. Error bars are the
uncertainties in the position of the occultation chord extremities projected in the radial direction. Dashed lines indicate the equatorial region while the solid lines
indicate the polar region. Positive and negative hemispheres are defined according to the choice of the pole position given in Table 5. We observe a clear correlation of
the radial residuals with the position angle along the limb, with positive residuals in the equatorial region and negative residuals in the polar regions.

26 Here, I is the intensity emitted by the ring surface and πF is the incident
solar flux density. The quantity I/F must not be confused with the geometric
albedo of the ring particles pp.
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(neglecting the ring contribution) up to 9%, considering
previous estimations of this quantity (Braga-Ribas et al.
2014; Duffard et al. 2014). For the body’s contributions, we
adopt a body geometric albedo pb=4.2%±0.5% from
Fornasier et al. (2014),

We fit the Equations (7) and (8) to theDm values in Table 6
and HV from the literature in a least-squares scheme, obtaining

=  =  = 

( )

a
b

a

c

b
138 16 km, 0.86 0.04, 0.89 0.30,

9

which are used in Section 4.2 to define normally distributed
priors for those parameters.

Priors for the Maclaurin spheroid—For the Maclaurin
model, we use HV values to derive estimates for the equatorial
radius a=b and the density ρ. Adopting the same ring
dimensions, body geometric albedo, and range of ring
reflectivity as before, we fit Equation (8) to the HV from the
literature in a least-squares scheme to obtain

= =  ( )a b 135 25 km, 10

while we find that the density ρ is unbounded and can take
values in all valid intervals between ρ=791 kgm−3

and r  ¥.

In practice, we consider a conservative upper limit for the
density

r = - ( )5000 kg m , 11max
3

after considering the known density distribution of asteroids
and TNOs (Britt et al. 2002; Carry 2012).
These values are used in Section 4.3 to define normally and

uniformly distributed priors for those parameters.
Priors for the Jacobi ellipsoid—For the Jacobi ellipsoid, we

must impose the binding conditions from Equation (4) on a, b,
and c. As done with the generic ellipsoid, we fit the
Equations (7) and (8) to the Δm and HV values to obtain

r=  =  - ( )a 151 13 km, 804 6 kg m . 123

which is used to define the normally distributed priors in
Section 4.4.
Rotation angle during occultations—It is worth mentioning

here some words about the rotation angle during the stellar
occultations. The rotation light curve from Fornasier et al.
(2014) was obtained in 2013 between June 11 and June 12.
Assuming that most of the variability is due to the shape
instead of albedo variegations, we define the rotation angle
f=0° at one of the brightness minima of that light curve, for
instance, JD=2456455.23. This is used to determine the
rotation angle f(JD, Tsid) at any given date JD for a given
sidereal rotation period Tsid. For instance, for the stellar
occultation of June 3, which is only eight days before this

Figure 9. Results for the generic triaxial ellipsoid. The plots in the diagonals show the marginal posterior pdf q( ∣ )p D (Equation (5)) for the semiaxes a, b, and c. The
rest of the plots are the joint posterior pdf for a vs. b (left-center), a vs. c (bottom-left), and b vs. c (bottom-center). The blue continuous lines indicate the best-fit
values adopted, and the green dashed lines indicate the 68% credible intervals given in Table 7.
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measurement, we find

f =    ( )356 54 , 132013Jun03

adopting Tsid=7.004±0.036 hr. Unfortunately, given the
current accuracy of the rotation period, the rotation angle is
essentially lost after a few weeks, preventing us from deriving a
rotation angle for the occultations in 2014 and 2016 solely from
the light curve in Fornasier et al. (2014). The rotation angle in
the ellipsoidal and Jacobi models is then considered indepen-
dent between occultations and explored between 0° and 180°
due to the rotational symmetry.

3.3.2. MCMC Scheme

To estimate the posterior probability distribution q( ∣ )p D , we
adopt an MCMC scheme to draw samples from it. The MCMC
sampling is done using the library emcee (Foreman-Mackey
et al. 2013), which implements the affine-invariant ensemble
sampler by Goodman & Weare (2010).
To generate the posterior samples, we follow a standard

procedure. For each model, we run an MCMC with nwalk
random “walkers,” each of them exploring the parameter space.
To determine the number of random steps nburn necessary to
ensure chain convergence, we adopt nburn>10×τf, where τf

Figure 10. Posterior pdf of the rotation angle f for each occultation for the generic ellipsoid model. The best-fit values used in Figure 11 are indicated by the blue dots
and lines. Green dashed lines indicate the 68% credible intervals, except for the occultation of 2016 August 8, where the rotation angle pdf is multimodal. For August
8, the two peaks in the pdf are due to the single chord. Each peak in the pdf occurs when the body limb is roughly equidistant from the chord extremities.

Table 7
Physical Parameters of Chariklo from Stellar Occultations

Parameter Sphere Maclaurin Ellipsoid Jacobi

ρ(kg m−3) K -
+970 180

300 K -
+796 4

2

a(km) 129±3 -
+143 6

3
-
+148 4

6 157±4

b(km) 129±3 -
+143 6

3
-
+132 5

6 139±4

c(km) 129±3 -
+96 4

14
-
+102 8

10 86±1

Requiv (km) 129±3 126±2 126±2 -
+123 1

3

σm (km) 11 7 6 6

drms (km) 10 7 5 5
dmax (km) +15 +11 +12 +9

Mass (kg) K 8±1×1018 K 6.1±0.1×1018

pb (%) 3.1±0.1 3.8±0.1 3.7±0.1 4.2±0.1
I/F (%) 8.9±0.3 3.4±0.3 4.9±0.3 0.6±0.4

Note. Best parameter values and formal uncertainties from the 68% credible
intervals obtained with the prior as defined in Section 3.3.1. See Section 4 for
the sensitivity of the results to the priors chosen. drms is the rms dispersion in
the radial direction with respect to the nominal body limb. dmax is the
maximum distance in the radial direction with respect to the nominal body
limb. pb is the geometric albedo of the body, while I/F is the ring reflectivity
considering only the main ring with width W=5.5 km (not to be confused
with the geometric albedo of the ring particles pp) as determined in Section 5.2.
Requiv=(a × b × c)1/3 is the volumetric equivalent radius.
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Figure 11. Results of the triaxial model using the best-fit values in Table 7. At each panel, the body has the same pole position (αP, δP) and apparent center ( fc, gc) as
the rings (not shown) as given in Table 5. Blue lines are the detections of the main body with uncertainties in red. Red dashed lines are the negative chords closest to
the object used as constraints for the body model. The black dot indicates the intersection between the equator and the prime meridian, which is used as the reference
to define the rotation angle f.
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is the integrated autocorrelation “time” of the chain measured
in chain steps (Foreman-Mackey et al. 2013; for this we use the
implementation given in emcee). Once this is done, we
continue the MCMC for nsamp steps, from which we obtain
the samples that are representative of the posterior probability
of interest q( ∣ )p D . Then, the marginal probability distribution
for the parameters θ is estimated using the histograms of the
samples. From the histograms, we derive the best-fit parameter
values and credible intervals. For the credible intervals, we use
the highest posterior probability density interval containing
68% of the samples. This is the smallest interval such that any
point inside the interval has a higher probability density than
any other point outside of the interval.

Additionally, and as a heuristic test for convergence, for each
model, we run several chains starting with nwalk walkers at
different random positions well spread in the parameter space.
We repeat this procedure several times to verify that we obtain
the same results.

4. Occultation Results

4.1. Sphere

For the spherical model, we use as a prior a uniform
distribution between R=100 and R=150km, and for σm we
adopt a uniform distribution between 0km and 50km. Using
nwalk=500, nburn=104 steps, and nsamp=102 steps, we
obtain the posterior pdf shown in Figure 6, and eventually a
sphere radius of R=129±3 km (68% credible interval).

For the best-fit radius, we obtain a “topographic” parameter
σm=11km. That is, the radial departures from the best-fit
limb can be modeled as normally distributed with a standard
deviation of 11km, which is ∼9% of the radius R.
In Figure 7, we compare all of the occultation chords with

the best fitted limb using the spherical model. In Figure 8, we
plot the radial difference of each chord extremity with respect
to the best limb as a function of the position angle (counted
positively from the north toward the east). There is a clear
tendency for the chord extremities to be inside the sphere limb
around the polar regions and outside the limb in the equatorial
regions. As the departures are significantly larger than the
uncertainties on the data points, this naturally motivates us to
test the flattened models below.

4.2. Triaxial Ellipsoid

For the triaxial ellipsoid model, we use normally distributed
priors for a, b/a, and c/b with values from Equation (9).
The normal distributions are truncated such that a>0 and the
ratios b/a and c/b stay in the open interval ]0,1[, keeping the
condition a> b> c. For σm, we adopt a uniform distribution
between 0 km and 50 km as with the previous model. Finally,
for the rotation angles fi, we adopt uniform distributions
between 0° and 180°. We do not explore the range 180°–360°
due to the rotational symmetry of the ellipsoid.
Using nwalk=500, nburn= 104, and nsamp= 102, we obtain

the posterior pdf for a, b, and c shown in Figure 9, and the
posterior for the rotation angles shown in Figure 10, from

Figure 12. Results for the Maclaurin spheroid model. Bottom left: the joint posterior probability q( ∣ )p D (Equation (5)) for the density ρ and equatorial radius a. Top
left: the marginal posterior probability for the density ρ. Bottom right: the marginal posterior probability for the equatorial radius a. The blue continuous lines indicate
the best parameter values, and the dashed vertical lines indicate the 68% credible intervals given in Table 7.
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which we determine the parameter values given in Table 7.
Figure 11 shows the best-fit ellipsoid models compared to the
occultation chords.

From Figure 10, we obtain a rotation angle f=120°±45°
for the occultation of 2013 June 3. Considering the ellipsoid
rotational symmetry, this angle is equivalent to f=300°±45°,

Figure 13. Same as Figure 11 for the Maclaurin model using the best-fit values in Table 7.
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consistent with the one obtained from the rotational light curve
in Section 3.3.1. This validates the assumption that the short-
term variability is dominated by the projected shape of a rotating
elongated body rather than albedo features.

Sensitivity to priors—To test the sensitivity to priors, we
repeat an MCMC run with uniform distribution between
100 km and 200 km for the semimajor axis a, and uniform
distribution between 0.1 and 1 for the ratios b/a and c/b. In
this case, we determine = -

+a 147 km3
7 , b= 139± 6 km,

and = -
+c 98 km8

9 .
This indicates that the priors have some influence in the

results, particularly in the ratio b/a= 0.95, which is larger than
above. Nonetheless, the parameters obtained are mainly
dominated by the occultation data.

4.3. Maclaurin Spheroid

For the prior in the density ρ, we use a uniform distribution
with values from Equations (3) and (11). For the equatorial
radius a= b, we use a normally distributed prior with values
from Equation (10). Using nwalk=500, nburn= 104, and
nsamp= 102, we obtain the posterior pdf for ρ and a shown in
Figure 12. We take the maximum of the joint distribution of ρ
and a as the most probable values, while the formal
uncertainties are taken from the 68% credible intervals from
which we obtain the values given in Table 7.

From the joint posterior in the lower-left panel of Figure 12,
we note that ρ and a are correlated. For lower densities, the
hydrostatic equilibrium figure is more flattened, and conse-
quently, a larger object is needed to match the occultation data.
The upper “wing” for larger densities in the posterior pdf is

due to the relation between density and oblateness
(Equation (2)). As the density increases, the oblateness changes
more slowly, and the body asymptotically approaches a sphere
for r  ¥.
Figure 13 shows the nominal Maclaurin solution compared

to the occultation chords. As with the ellipsoidal case, the
parameter σm= 7 km is smaller than that for the spherical
model.
Sensitivity to priors—As done with the ellipsoidal model, we

repeat an MCMC run using a uniformly distributed prior for
the equatorial radius a between 100 and 150 km. From
the posterior distribution of ρ and a, we obtain r =

-
+ -950 kg m150

300 3 and a=144± 4 km, showing that the results
are not strongly sensitive to the priors chosen and are
dominated by the occultation data.

4.4. Jacobi Ellipsoid

For the Jacobi ellipsoid model, we use normally distributed
priors for the semimajor axis a and density ρ with values from
Equation (12). Additionally, the density must satisfy the

Figure 14. Same as Figure 12 for the Jacobi ellipsoid model, from which we obtain the parameter values given in Table 7.
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condition of equilibrium as described in Section 3.2, which is
791< ρ< 1040 kg m−3.

Using nwalk=500, nburn= 104, and nsamp= 102, we obtain
the posterior pdf for ρ and a shown in Figure 14, and the
posterior for rotation angles shown in Figure 15. From this and
Equation (4), we derive the parameter values given in Table 7.

Figure 16 shows the best-fit Jacobi models compared to the
occultation chords. The scattering of the data points with respect
to the best-fit limb is given by σm=6 km, similar to the case of
the Maclaurin model. From Figure 15, we obtain the rotation
angle f=152°±20° for the occultation of 2013 June 3.
Considering the ellipsoid rotational symmetry, this angle is
consistent with the one obtained from the rotational light curve
in Section 3.3.1.

Sensitivity to priors—As done with the ellipsoidal and
Maclaurin models, we repeat an MCMC run using a uniformly
distributed prior between 100 and 150 km for the semimajor
axis a, and between 791 and 1040 kg m−3 for the density
ρ (the equilibrium condition from Section 3.2). We obtain a
density r = -

+ -792 kg m1
4 3 and semiaxes a= 152± 5 km,

= -
+b 144 km4

3 , and = -
+c 86 km1

2 . This is similar to the results

above, with a slightly smaller object but with the same
elongation (a−b), showing that, as with the other models, the
results are dominated by the occultation data.

5. Discussion

5.1. Topographic Features and Hydrostatic Equilibrium

The “topographic” parameter σm (ranging from 6 to 11 km,
depending on the model) indicates the degree of irregularity of
the surface. Compared to the equivalent radius for each model,
this irregularities are in the range 5%–9%. Moreover, the limb
slopes measured in 2013 at one station (Section 2.3 and
Figure 4) may reach 25°, measured with respect to the tangent
of the global object limb.
Note that Iapetus, with a typical density of 1100 kg m−3, can

sustain slopes greater than 30° (Castillo-Rogez et al. 2007)
while being more massive than Chariklo. Similarly, Hyperion’s
limb profiles show local slopes of up to 20°, with respect to the
fitted elliptical limb (Thomas 1989). More generally, Hyperion
is irregular with topographic features of rms∼12% with
respect to the mean radius, while Phoebe is close to a spheroid

Figure 15. Posterior probability of the relative rotation angle f for each occultation. The best-fit values used in Figure 16 are indicated by the blue dots and lines.
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in equilibrium with features of rms∼5% (Castillo-Rogez et al.
2012), both comparable to drms values given in Table 7.

In summary, the topographic features and slopes found for
Chariklo are typical of small icy satellites with size and density
in the same range as Chariklo.

5.2. Body Albedo and Rings Reflectivity

We proceed to evaluate the geometric albedo pb of Chariklo
and the ring reflectivity I/F (see Section 3.3.1), considering the
long-term brightness variations of Chariklo. We use the
absolute V magnitude HV from the literature and the same

Figure 16. Same as Figure 11 for the Jacobi model with the best-fit values from Table 7.
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considerations used in Section 3.3.1. Table 7 summarizes the pb
and I/F using the least-squares fits to Equation (8). Figure 17
show the fits to the HV data for the four models, which are
virtually indistinguishable from each other but give substan-
tially different relative contributions to the brightness variation
in the rings and the main body. The body geometric albedo pb
does not depend strongly on the body model with values in the
range 3.1%–4.2%. In contrast, the ring reflectivity I/F depends
on the model adopted for the body. For instance, the spherical
model attributes all of the photometric variability to the ring,
resulting in I/F=8.9%, close to the previously found value
for a spherical body (Braga-Ribas et al. 2014). However, the
Jacobi model attributes most of the variability to the changing
aspect of Chariklo, resulting in a significantly darker ring,
I/F= 0.6%. The Maclaurin and the generic ellipsoidal models
give intermediate results with I/F= 3.4% and I/F= 4.9%,
respectively, but lower than previously estimated values for a
non-spherical body (Braga-Ribas et al. 2014; Duffard
et al. 2014).

The reflectivity I/F can be related to the albedo of the ring
particles pp in two extreme regimes: a monolayer ring where
the ring thickness is comparable to the particle size and a
polylayer ring where the ring thickness is large compared to the
particles. Currently, there is not enough information to
discriminate between these two regimes, but it is illustrative
to consider them in turn here.

For a monolayer ring, the equivalent width is defined as
= -( )E W f1p n , where W is the radial width and fn is the

fractional transmission normal to the ring (Elliot et al. 1984).
This gives the effective area covered by the ring particles,
neglecting mutual shadowing. Taking the typical value of
Ep=2.2 km for the main ring C1R (Bérard et al. 2017) and the
average width W∼5.5 km considered here, the geometric
albedo of the ring particles is pp= (5.5/2.2)× I/F. Depending

on the model used here (from sphere to Jacobi), pp ranges from
22% to 1.5%, respectively.
In the polylayer regime, the ring reflectivity I/F can be

approximated by a single scattering model (Chandrasekhar
1960),

t
m

= -
-⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥ ( )I F

p

2
1 exp

2
, 14

p N

where m = ( )Bsin and τN is the ring normal optical depth.
Using an approximate τN=0.4 measured for the main ring
C1R (Braga-Ribas et al. 2014), we see that pp is two to three
times I/F, similar to the monolayer case.
The ring particles can thus be darker than those of Uranus

(Karkoschka 2001), pp∼5%, but cannot be as bright as
Saturn’s ring particles (Cuzzi et al. 2009), pp∼50%. For the
Jacobi model, the geometric albedo of the ring particles
pp<2% is lower than those of TNOs (Lacerda et al. 2014),
with geometric albedo p4%. This makes the Jacobi solution
less plausible, giving preference to the generic ellipsoid model,
which gives a geometric albedo of ring particles of
pp=10%–15%.

5.3. Comparison with Radiometric Results

Chariklo’s equivalent radius27 requiv was estimated from
thermal measurements, with values ranging from 108km to
151km (Jewitt & Kalas 1998; Altenhoff et al. 2001; Sekiguchi
et al. 2012; Bauer et al. 2013; Fornasier et al. 2014).
For the Maclaurin model, requiv only depends on the opening

angle, while for the Jacobi models, it also depends on the
rotation angle. Although observed values are compatible at the
2σ level with our models (with requiv ranging between 110 km
and 140 km), they should be taken with caution because the
published radius values were estimated from simplified models
(using NEATM, in some cases even assuming a particular
value of the beaming factor) or from more elaborate
thermophysical models but without knowledge of pole
orientation, and in particular, because all models assumed
spherical shapes.
For the comparison to be realistic, a reanalysis of the thermal

data is thus necessary to take into account the different shape
models and changes in orientation with time, and to estimate
the possible ring contribution to the thermal emission. These
aspects are explored in Lellouch et al. (2017).

6. Conclusions

The combination of results from stellar occultations with a
quantitative statistical approach is a powerful tool to derive the
sizes and shapes of small and distant objects. In the case of the
Centaur object Chariklo, this is of great importance for
constraining the dynamics of its ring system.
In this work, we explored four models for Chariklo’s main

body shape: a sphere, a triaxial ellipsoid, a Maclaurin spheroid,
and a Jacobi ellipsoid. Using a Bayesian approach, we combine
five stellar occultations observed between 2013 and 2016 with
rotation light curves to derive credible intervals for the size,
shape, and density of Chariklo.

Figure 17. Best-fit to the V absolute magnitude HV of Chariklo’s system. The
main body geometric albedo pb and ring reflectivity I/F are fitted with a least-
squares fit to the HV values from the literature (Belskaya et al. 2010; Fornasier
et al. 2014; Duffard et al. 2014). In the extreme case of the spherical model, all
of the brightness variations are due to the change in the rings’ aspect angle,
with I/F=8.9%. On the other hand, the change in the projected area of the
Jacobi model explains most of the long-term brightness variations, resulting in
very dark rings with I/F=0.6%. The Maclaurin and generic triaxial ellipsoid
models give intermediate results (Table 7). With both contributions from the
main body and rings considered, all of the models fit equally well the HV

values.

27 Defined as p=r Aequiv , where A is the apparent surface area of the body,
not to be confused with the volumetric equivalent radius Requiv of each model,
which does not depend on orientation.

21

The Astronomical Journal, 154:159 (23pp), 2017 October Leiva et al.



Using the spherical model, we find that topographic features
with heights of about 9% of Chariklo’s radius can explain our
observations. This is comparable to the values of small icy
bodies of similar size and density as Hyperion and Phoebe.
However, we observe a clear correlation of the radial residuals
with the position angle along the limb, being positive near the
equator and negative near the pole. This strongly suggests that
Chariklo is flattened or elongated.

The ellipsoidal and Jacobi models are consistent with the
stellar occultation data, the rotational light curve amplitude, and
in the case of the occultation of 2013, with the expected
rotation phase. This suggests that Chariklo is an elon-
gated body.

Clearly, an improved value of Chariklo’s rotational period
will constrain the rotational angle at each occultation date, and
thus reduce the number of free parameters of the models.

Accounting for the fact that Chariklo may have an oblate or
ellipsoidal shape, we find that the ring reflectivity is much less
constrained than previously considered. Although a spherical
shape for the body implies ring particles four times brighter
than Uranus ring particles, the Jacobi model may result in ring
particles that are twice darker. This large range of uncertainty is
a strong incentive for improving our knowledge of Chariklo’s
size and shape, using better predicted events in the Gaia era,
thus allowing well-sampled stellar occultations.

The density obtained in the cases of the Jacobi and
Maclaurin models is in the range 800–1250kgm−3, indicative
of an icy body. This must be taken with caution, though, as this
assumes a homogeneous body in hydrostatic equilibrium. The
corresponding mass range is 6–8×1018 kg. With that value, it
is interesting to note that the 3:1 resonance between the mean
motion of the particles and the rotation of the body28 is located
at the radius 408±20km, close to the radii of C1R and C2R,
respectively 391km and 405km. The potential implications of
this resonance will be considered in another work.
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