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Quantum localized states in photonic flat-band lattices
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The localization of light in flat-band lattices has been recently proposed and experimentally demonstrated in
several configurations, assuming a classical description of light. Here we study the problem of light localization
in the quantum regime. We focus on quasi-one-dimensional and two-dimensional lattices which exhibit a perfect
flat band inside their linear spectrum. Localized quantum states are constructed as eigenstates of the interaction
Hamiltonian with a vanishing eigenvalue and a well defined total photon number. These are superpositions of Fock
states with probability amplitudes given by positive as well as negative square roots of multinomial coefficients.
The classical picture can be recovered by considering Poissonian superpositions of localized quantum states
with different total photon number. We also study the separability properties of flat-band quantum states and
apply them to the transmission of information via multicore fibers, where these states allow for the total passive
suppression of photon crosstalk and exhibit robustness against photon losses. At the end, we propose an on-chip
setup for the experimental preparation of localized quantum states of light for any number of photons.
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I. INTRODUCTION

Localization of light in extended periodical and homoge-
neous lattices may occur due to different causes. For example,
the interplay between discreteness and nonlinearity—or equiv-
alently, between diffraction and self-focusing—in a perfectly
periodic lattice leads to the generation of discrete solitons (or
discrete breathers) [1,2], that is, spatially localized stationary
nonlinear modes [3]. On the other hand, Anderson localization
[4] is a linear phenomena appearing in disordered lattices,
where consecutive destructive interference from randomly
distributed scatters (lattice sites) suppresses the transversal
transport across the lattice, generating localized discrete states
[5,6].

However, a different mechanism for the emergence of
localization in discrete periodic and linear lattices has been
theoretically suggested recently [7]. This effect arises in
specific lattice configurations, which allow the cancellation of
amplitudes at different sites of the lattice, generating localized
stationary states in the absence of disorder or nonlinearity.
Certain lattices exhibit a linear energy spectrum composed
of at least one dispersive band and a perfectly flat band
(FB), which has a large set of degenerated localized states.
Some recently investigated quasi-one-dimensional (1D) and
two-dimensional (2D) geometries include: rhomboidal [8],
stub [9], sawtooth [10–12], kagome-ribbon [13], Lieb [14–18],
and kagome [19–21] lattices. FB modes are spatially trapped
due to the destructive interference induced by the specific
lattice geometry [22], and remain localized due to the absence
of dispersion. Thereby, localization is exact and independent
of external parameters or extra interactions. The study of
flat-band lattices initially arises in the context of condensed
matter, where many complex phenomena are difficult to
observe directly in an experiment. For this reason, simpler
physical models with the same geometry and band structure
have been proposed as simulators [23], being photonics lattices
or waveguide arrays one of the most suitable systems for the
observation of discrete phenomena in any physical context

[1,2]. It is worth mentioning that flat bands have been also
found in the study of binary lattices, in the context of either
noninteracting or tight-binding electrons, where the band
structure can be manipulated by an external magnetic field
[24,25].

To our knowledge, previous works on flat-band photonic
lattices have only considered a classical description of light
fields. On the other hand, many studies have addressed the
quantum properties of light propagating along unidimensional
waveguide arrays (which exhibit dispersive bands only). It
has been shown that the propagation of single photons in
these lattices provides an implementation of quantum walks
[26], while the propagation of photon pairs leads to nontrivial
quantum correlations which depend critically on the input state
[27,28]. Furthermore, the persistence of such correlations in
strongly disordered systems has been observed [29]. Here we
aim to expand these results by studying the existence and
properties of localized (nondiffractive) quantum states of light
on flat-band lattices, for an arbitrary number of photons. This
is mainly motivated by the possibility of employing localized
photonic states for the secure transmission of information and
entanglement via multicore fibers (MCF) [30,31].

We initially focus on the rhomboidal (diamond) and stub
lattices, and consider quantum states with a well defined total
number of photons. The general definition of the minimal
localized eigenstates is derived, which turns out to be a finite
superposition of multipartite Fock states weighted by real (pos-
itive and negative) probability amplitudes given by the square
root of multinomial coefficients. The corresponding definitions
for other common flat-band lattices is presented too. We show
that the quantum description of the localized classical states
of light corresponds to Poissonian superpositions of localized
quantum states with different total number of photons. We also
study the separability properties of the localized states. In the
rhomboidal lattice, all the localized eigenstates are composed
of Fock states corresponding to two lattice sites only, and are
entangled for any total number of photons. In the stub lattice,
flat-band eigenstates extend over three sites. We show that
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any bipartite reduced state (obtained after tracing out a site) is
entangled, implying pairwise entanglement equally distributed
over the sites. In this case, the single-photon localized state is
a W state. For higher dimensions, however, we find that the
localized eigenstates do not satisfy the monogamy relation
characteristic of generalized W states [32]. At the end, we
apply our results to the propagation of light in a four-core
MCF. In this context, photon losses and intercore crosstalk are
important sources of errors. These can be effectively corrected
with the help of the nondiffractive states introduced here.
Crosstalk is passively suppressed for any coupling constant
between nearest neighbors. Photon losses reduce the total
number of photons without either destroying the localization
properties nor transforming the states into separable ones.
Thereby, the propagation of entanglement via MCF seems
possible. Finally, we present a method to prepare localized
quantum states in flat-band photonic chips.

II. MODEL

We consider the propagation of light in an array of
evanescently coupled identical waveguides. In the classical
case, where the light injected into the array is a coherent state,
with a large average photon number, the dynamics of the wave
packet propagating along the waveguides is well described by
the discrete linear Schrödinger (DLS) equation [1,2]. In this
context, every waveguide corresponds to a node or site in a
given lattice, and the coupling of light between neighboring
sites is weak due to its evanescent nature. On the other hand,
in the quantum case the propagation of light can be described
accurately by means of the following Hamiltonian operator:

H =
∑

n

εna
†
nan −

∑
n,m

(κn,ma†
nam + κm,na

†
nam). (1)

Here a
†
n and an correspond to the creation and the annihilation

operators for the mode at the nth waveguide, respectively,
while εn describes the longitudinal propagation constant
at waveguide n. The coupling interaction between nearest-
neighbors waveguides is included in this model through the
second term at the right-hand side of Eq. (1), which resembles
the tight-binding model from solid-state physics [33]. Here
κn,m denotes the coupling constant for photon hopping between
waveguides n and m. In what follows, states of light will be
spanned as linear combinations of tensor products of Fock
states |p〉m, which describes p photons at waveguide m. In
the limit corresponding to a large number of photons per site
the evolution under the Hamiltonian H , Eq. (1), it is well
approximated by the DLS models [34,35].

Depending on the transverse dispositions of the waveg-
uides, it is possible to obtain a periodic array whose spectrum
of eigenfrequencies exhibits a nondispersive flat band, that is,
a subset of degenerated states, which are perfectly localized
in space (with a zero tail, similar to compactons [36]). There
are many different geometries which present at least one FB.
Along this work, we will consider two quasi-one-dimensional
arrays with perfect flat bands: (i) the rhomboidal lattice, to this
date the simplest lattice presenting a flat band; and (ii) the stub
lattice, which is useful to clarify the way to extend our results
to more complex geometries. These two lattices are illustrated

in Fig. 1. In both cases we assume homogeneous lattices with
identical waveguides for which εn = ε. We also consider a
symmetric coupling interaction between waveguides, that is,
κn,m = κm,n = κ . Thereby, the Hamiltonian operator reads

H = H0 + Hint, (2)

where the free evolution Hamiltonian H0 operator is given by

H0 = ε
∑

n

a†
nan, (3)

and the interaction Hamiltonian operator Hint is

Hint = −κ
∑
n,m

(a†
nam + a†

man). (4)

III. LOCALIZED QUANTUM STATES OF LIGHT

A photonic lattice with a quasi-1D rhomboidal lattice has
a unitary cell which contains only three lattice sites: A, B,
and S, as shown in Fig. 1(a). Therefore, in the classical
regime, the rhomboidal lattice possesses only three energy
bands, where one of them is perfectly flat (nondispersive).
Within this band it is possible to generate a superposition of
degenerated eigenmodes, located in different regions of the
lattice, which exhibit a diffractionless propagation due to the
zero dispersion of this FB. These localized states are generated
by injecting coherent light into two waveguides, A and B as
shown in Fig. 1(a), with equal amplitude but opposite phase (π )
[8]. This phase difference plays an important role: it leads to
destructive interference between evanescent waves originated
at waveguides A and B, canceling the coupling of energy to
the central row and, thus, keeping the light perfectly localized
in space.

States produced in this way are degenerated eigenmodes of
the DLS equation with zero frequency. This suggests, in the
quantum case, to look for states which are annihilated by the
action of the interaction Hamiltonian operator. Let us consider
for instance the single photon state α|0〉A|1〉B + β|1〉A|0〉B ,
where the resting waveguides are in the vacuum state.
The action of the interaction Hamiltonian operator Eq. (4)
onto this state generates the new state (α + β)(|1〉S ′ |0〉S +
|0〉S ′ |1〉S)|0〉A|0〉B , which vanishes when α and β differ by
a phase of π . This phase difference cancels the hopping of
the photon from waveguides A and B towards waveguides S

and S ′, in an analogous manner to the classical case, since the
not normalized state |0〉A|1〉B − |1〉A|0〉B is annihilated by the
operators a

†
SaA + a

†
SaB and a

†
SaA + a

†
S ′aB .

The previous considerations can be readily extended to
the case of states with a well defined total number N � 1
of photons. We start with the state

|ψ〉A,B =
N∑

p,q

Cp,q |p〉A|q〉B, (5)

where all other waveguides are initially in the vacuum
state and the summation is carried out under the condition
p + q = N . This state is an eigenstate of the total photon
number a

†
AaA + a

†
BaB with eigenvalue N for any set {Cp,q}

of probability amplitudes. Since most of the waveguides are
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FIG. 1. (a) Rhomboidal and (b) stub lattices. Gray lines depict the evanescent coupling between sites. We highlight certain sites which
compose a localized state of the flat band, and the connectors S with the rest of the lattice. Dashed rectangles indicate the unitary cell of the
lattice. (c) and (d) Frequency spectrum of the rhomboidal and stub lattices, respectively.

initially in the vacuum state, the action of the interaction
Hamiltonian operator involves waveguides A, B, S, and
S ′ only. In this sector, the interaction Hamiltonian can be
split into two contributions HS = a

†
SaA + a

†
SaB + H.c. and

HS ′ = a
†
S ′aA + a

†
S ′aB + H.c., which describe the hopping of

a single photon between waveguides A or B and waveguides
S and S ′, respectively. Since the initial state |ψ〉 must stay
localized in waveguides A and B along the evolution, photon
hopping toward sites S and S ′ cannot occur. To assure this,
we impose the condition HS |ψ〉A,B = HS ′ |ψ〉A,B = 0, that is,
the state is annihilated by both operators HS and HS ′ . Due to
the symmetry of the lattice, both operators can be considered
independently, so it is enough to evaluate the action of HS onto
|ψ〉A,B , obtaining the state

N−1∑
p,q

(Cp+1,q

√
p + 1 + Cp,q+1

√
q + 1)|1〉S |p〉A|q〉B, (6)

which together with the condition HS |ψ〉A,B = 0 allows us to
find the following recursive relation:

Cp+1,q = −
√

q + 1√
p + 1

Cp,q+1. (7)

This and the normalization condition
∑N |Cp,q |2 = 1 lead to

the solution

Cp,q = (−1)q
(

N

p q

)1/2 1

2N/2
, (8)

where
(

N

p,q

) = N !/p! q! is the binomial coefficient. Thereby,
the localized quantum state of light with N photons in the

rhomboidal lattice is given by

|ψN 〉rA,B = 2− N
2

N∑
p,q

(
N

p q

)1/2

(−1)q |p〉A|q〉B. (9)

Hereafter, superindex r (s) indicates that we are referring to
a state from the rhomboidal (stub) lattice. When it is omitted,
the corresponding statement is valid for either lattice. Light
described by the state in Eq. (9) propagates along waveguides
A and B without diffracting to the neighboring waveguides S ′
and S, that is, it stays perfectly localized for any number N

of photons and independently of the value of the coupling
constant κ . Additionally, each unit cell in the rhomboidal
lattice admits the existence of this class of states. Let us note
that |ψN 〉rA,B is also annihilated by the operator HS ′ and thus it
is annihilated by the interaction Hamiltonian. States |ψN 〉rA,B

are mutually orthogonal, that is, A,B
r〈ψN |ψN ′ 〉rA,B = δN,N ′ ,

and can be, perfectly and deterministically, distinguished
through a measurement of the total photon number.

Our construction of localized states for the rhomboidal
lattice can be readily extended to the stub geometry [see
Fig. 1(b)]. In this case, the classical localized state corresponds
to coherent light distributed with equal intensity over three
waveguides, say A, B, and C, as depicted in Fig. 1(b), with
a phase difference of π between waveguides A and B and
waveguides B and C [9]. Thereby, in close analogy to the
rhomboidal lattice, we construct a quantum state with N

photons, which is annihilated by the operators a
†
S ′aA + a

†
S ′aB

and a
†
SaB + a

†
SaC . We find that the localized quantum state of

light for the stub lattice is

|ψN 〉sA,B,C = 3− N
2

N∑
p,q

(
N

p q t

)1/2

(−1)q |p〉A|q〉B |t〉C. (10)
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TABLE I. Localized quantum states for some standard flat-band lattices.

Flat-band
Lattice ND-state sites Flat-frequency Eigenstate

Lieb A C

B

D
0

1

4N/2

∑
p,q,t,	�0

p+q+t+	=N

(
N

p q t 	

)1/2

(−1)q+	|p〉A|q〉B |t〉C |	〉D

Symmetric rhomboidal
A

B

κN
1

2N/2

∑
p,q�0

p+q=N

(
N

p q

)1/2

(−1)q |p〉A|q〉B

Kagome
1 3

5

2

46
2κN

1

6N/2

∑
p1 ,p2 ...p6�0

p1+p2+···+p6=N

(
N

p1,p2, . . . ,p6

)1/2

(−1)p2+p4+p6

6⊗
i=1

|pi〉i

Analogously, localized quantum states of light for Lieb,
symmetric rhomboidal, and kagome lattices are presented in
Table I.

The localized states we have constructed are annihilated by
the interaction Hamiltonian. Thereby, only the free Hamilto-
nian H0, Eq. (3), will determine their evolution along z (the
dynamical variable in our system). Namely, the action of the
evolution operator onto these states is simply given by

U (z)|ψN 〉 = e−iεNz|ψN 〉, (11)

where |ψN 〉 is a localized state with N photons corresponding
to a fixed unitary cell, for any of the FB lattices previously
studied (notice that it holds true for lattices whose FB is not
located at zero frequency, which only modifies the effective
value of the propagation constant ε). Any linear superposition
of localized quantum states, such as |ψ〉 = ∑∞

N=0 DN |ψN 〉,
will evolve as

U (z)|ψ〉 =
∞∑

N=0

DNe−iεNz|ψN 〉. (12)

This superposition remains localized at the same sites of states
|ψN 〉, for any set {DN } of coefficients. The state, however,
changes along the evolution due to the phase factors eiεNz.

A particularly interesting superposition of localized states
is given by

|β〉rA,B = e−|β|2/2
∞∑

N=0

βN

√
N !

|ψN 〉rA,B, (13)

which corresponds to a Poissonian superposition of localized
states |ψN 〉rA,B . Considering the case β = √

2α, the previous
state becomes

|
√

2α〉rA,B = e−|α|2
∞∑

N=0

√
2N

N !
αN |ψN 〉r

= e−|α|2
∞∑

p,q=0

αp(−α)q√
p!q!

|p〉A|q〉B

= e−|α|2 exp(α[a†
A − a

†
B])|0〉

= |α〉A|−α〉B, (14)

that is, a tensor product of a coherent state for each waveguide
A and B with a phase difference of π between them [from
Eq. (14) it is possible to verify that |√2α〉rA,B is an eigenstate of
aA and aB with eigenvalue α and −α, respectively]. This state
is the quantum analog of the classical localized state, which is
generated by injecting coherent light of equal intensity on each
waveguide with a phase difference of π . Thus, the quantum
description of the classical localized state corresponds to a
Poissonian distribution onto localized quantum states |ψN 〉rA,B .

So far we have considered that in the rhomboidal lattice
photon hopping between waveguides A and B does not occur.
Nevertheless, even in presence of coupling between these
waveguides, which is the case for the symmetric rhomboidal
lattice (see Table I), states |ψN 〉rA,B remain localized and
do not evolve. This is due to the fact that these states are
also eigenstates of the interaction operator a

†
AaB + aAa

†
B with

an eigenvalue proportional to −N . The existence of this
coupling preserves the flat-band structure up to a shift of the
value of ε. Unlike the case of the rhomboidal lattice, stub,
Lieb, and kagome lattices do not exhibit flat bands whenever
next-nearest-neighbor interactions are considered.

IV. ENTANGLEMENT OF LOCALIZED QUANTUM
STATES OF LIGHT

The quantum description of classical localized light corre-
sponds to a tensor product of coherent states. Consequently,
this state is clearly unentangled. As we shall see, this is not the
case for the N -photon localized quantum states.

A. Rhomboidal lattice

Let us start by considering the simplest case of the single-
photon localized state of the rhomboidal lattice,

|ψ1〉rA,B = 1√
2

(|1〉A|0〉B − |0〉A|1〉B), (15)

which corresponds to a path-entangled state [37,38]. In the
general case, since the N -photon states |ψN 〉r are pure, whether
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( )

( )

FIG. 2. (a) Negativity and (b) concurrence of the nondiffractive
photon states of the rhomboidal lattice, as a function of the photon
number N .

they are entangled or not can be determined directly from their
Schmidt decomposition. From Eq. (9) we obtain that the ith
Schmidt coefficient of state |ψN 〉r is given by

ki,N = 1

2N/2

(
N

i

)1/2

, (16)

with i = 0, . . . ,N . Thus, each state |ψN 〉r has N + 1 nonvan-
ishing Schmidt coefficients.

The Schmidt decomposition is closely linked to two
measures of entanglement, namely, negativity and concurrence
[39,40]. The former is given by N (|ψN 〉rA,B) = (‖ρTA

N ‖ −
1)/(d − 1), where ρ

TA

N is the partial transpose (PT) of the
density matrix ρN = |ψN 〉r〈ψN | with respect to waveguide
A, and d is the dimension of each subsystem, which in our
case is d = N + 1. The value of negativity for a separable
state is zero, while for a maximally entangled state it is equal
to one [41]. Negativity of a localized eigenstate |ψN 〉rA,B can
be expressed in terms of its Schmidt coefficients Eq. (16) as

N (|ψN 〉rA,B) = 2

N

∑
i<j

ki,Nkj,N

= 1

2NN

[
N∑

i=0

(
N

i

)1/2
]2

− 1

N
. (17)

As illustrated in Fig. 2(a), negativity is positive for any state
|ψN 〉rA,B with a finite number N of photons, but decreases
monotonically as N grows. In the asymptotic limit N −→ ∞,

negativity decays to zero as
√

2/πN−3/2 − 1/N . As far as it
is not null, the corresponding state |ψN 〉rA,B is entangled.

Concurrence is defined as
√

2(1 − Trρ2
A)/Cmax

n , where ρA

is the reduced density matrix obtained after tracing the site
B from the full bipartite state. In our definition, we include
the factor 1/Cmax

N , in order to express the concurrence relative
to its maximum value on each dimension, namely Cmax

N =√
2[1 − 1/(N + 1)]. Both negativity and concurrence of the

state |ψ1〉r are equal to 1, since it is a maximally entangled
state. Concurrence, like negativity, can be expressed in terms
of the Schmidt coefficients. This way, concurrence of the |ψN 〉r
state reads

C(|ψ〉) = 2

Cmax
N

⎛
⎝∑

i<j

k2
i,Nk2

j,N

⎞
⎠

1/2

= 21/2−N

Cmax
N

√
22N −

(
2N

N

)
. (18)

Figure 2(b) shows the concurrence of states |ψN 〉r . A pure state
with nonzero concurrence is entangled. We observe that as the
number of photons increases, the corresponding concurrence
exhibits a slight decrease, after which it slowly tends to its
maximum value. For N = 103 it differs from the unity by less
than 10−3. This can be checked directly from Eq. (18), by
evaluating the limit N −→ ∞ and noting that concurrence
then takes the asymptotic value

√
2/Cmax

N −→ 1.

B. Stub lattice

In the case of the stub lattice, the localized eigenstates
involve three sites, so their entanglement properties are
difficult to quantify. Although both negativity and concurrence
can be defined for this case, measurement of these quantities is
not conclusive, since entangled states with no concurrence or
tripartite negativity have been found [42]. Also, resorting to the
Schmidt decomposition is not a simple choice, because there
are many different ways to extend its definition to multipartite
systems [43–46]. For instance, if we try to express a state
|ψN 〉sA,B,C in the general decomposed form introduced by
Carteret et al. [45], we find that it is not possible by means of
local transformations only. On the other hand, the intuitive (but
more restrictive) generalization proposed by Sokoli and Alber
[46] cannot be applied to our states |ψN 〉sA,B,C , since these do
not fulfill the conditions to be Schmidt decomposable. Indeed,
the single-photon localized state |ψ1〉sA,B,C = (|1〉A − |1〉B +
|1〉C)/

√
3 is entangled, and it corresponds to a W state [47].

These three-qubit states, whose general form can be expressed
as |W 〉 = c1|100〉 + c2|010〉 + c3|001〉 with ci ∈ C, constitute
a class of genuine tripartite entangled states with a particular
feature: if one of the three qubits composing the state is lost,
the state of the remaining two-qubit system is still entangled.
For W states, not even a general normal form [48] can be
constructed.

Even without the Schmidt decomposition, we can show that
bipartite partitions of photons propagating along waveguides
at sites A, B, and C in the states |ψN 〉sA,B,C are entangled
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FIG. 3. Minimum eigenvalue of the partial transposed reduced
matrix obtained by re-motion of any party in states |ψN 〉s , for different
numbers of photons. The existence of a negative eigenvalue indicates
the entanglement of the reduced states.

superpositions. For this purpose, we define the base states

|i ′N 〉B,C =
∑
μν

A
(N)
iμν |μ〉B |ν〉C, (19)

where A
(N)
pqt is the respective coefficient accompanying the state

|p〉A|q〉B |t〉C in definition (10) for the state |ψN 〉sA,B,C . Note
that states |i ′N 〉B,C satisfy the recurrence relation |i ′N 〉B,C =
|(i − 1)′N−1〉B,C

.
Then, the state |ψN 〉sA,B,C can be expressed in the form

|ψN 〉sA,B,C =
∑

i

Ki,N |i〉A|i ′N 〉BC, (20)

with coefficients

Ki,N = 1

3N/2

(
N

i,N − i

)1/2

⎡
⎢⎣ ∑

p,q,t�0
p+q+t=N−i

(
N

p,q,t

)⎤
⎥⎦

1/2

, (21)

for i = 0,1, . . . ,N . We remark that, in general, a tripartite
Schmidt decomposition in the form of Eq. (20) is not possible
[49] and from the definition of states |i ′N 〉BC we see that in
order to construct our decomposition it is necessary to operate
jointly on sites B and C, i.e., a nonlocal operation is required,
contrary to the Schmidt decomposition method. Anyway, since
the coefficients in Eq. (21) are not null for i = 0,1, . . . ,N ,
we see that decomposition of Eq. (20) has N + 1 different
nonfactorable terms, suggesting that the states |ψN 〉sA,B,C are
bipartite entangled.

In order to confirm the previous observation, we study
the bipartite states obtained by removing (tracing) one of the
parties composing the full state |ψN 〉s (this can be the effect
of a measurement in one of the waveguides). Let MN be the
partial transpose of the density matrix corresponding to the
reduced state. Then, according to the Peres-Horodecki (PH)
criterion [50,51], if MN has at least one negative eigenvalue,
the reduced state will be entangled. In Fig. 3 we show the
minimum eigenvalue of MN computed up to N = 12 photons.
The results are the same, whichever the deleted party be. We
observe that there is a negative eigenvalue for all the numbers
of photons considered. Since this holds for any choice of the

sites in the reduced state, we conclude that states |ψN 〉s are
pairwise entangled, and its entanglement is equally distributed
over all the possible pairs of paths. The fact that entanglement
remains after removing a party, suggests that not only |ψ1〉s ,
but all the |ψN 〉s states, could constitute a generalized W -class
state, similar to the one proposed by Kim and Sanders [32].
In which follows we elucidate this question by evaluating the
monogamy relation for the |ψN 〉s states.

C. Monogamy relation of the |ψN〉s states

For multipartite qubit systems, the monogamy relation of
entanglement provides a way to characterize the different
types of entanglement distribution. In other words, it re-
lates the amount of entanglement between any two parties
to the entanglement between those parties and the others.
In three-qubit systems, the monogamy relation corresponds
to the Coffman-Kundu-Wootters (CKW) inequality [52],
given by

C2
A(BC) � C2

AB + C2
AC. (22)

Here CA(BC) is the concurrence of a tripartite state between
subsystem A and the pair of subsystems BC. Terms at the
right side of the inequality are concurrences of the reduced
(generally mixed) states ρAB and ρAC . Inequality (22) is
saturated by W states, implying that the genuine tripartite
entanglement of these states is completely determined by
their partial entanglements between pairs A-B and A-C. A
generalization of the previous definitions and results into
n-qubit systems has been obtained [32,53].

For qudit systems, inequality (22) is no longer valid;
counterexamples can be found by extending the dimension
of any of the subsystems. However, it has been shown that
generalized W states satisfy the same equality that is in
the qubit case, C2

A(BC) = C2
AB + C2

AC [32]. We now evaluate
both terms in the monogamy inequality for the nondiffrac-
tive eigenstates of the stub lattice. First, consider the term
C2

A(BC) = 2[1 − tr(ρ(N)
A )2], where ρ

(N)
A = trBC{|ψN〉s〈ψN|} (all

the results below are independent of the particular choice for
the pairs of sites). From the general definition of states |ψN 〉s ,
Eq. (10), we obtain that the reduced density matrix is diagonal,
ρ

(N)
A = (

∑N
M=0

(
N

M

)
2N−M |M〉〈M|)/3N , which simplifies the

expression for the concurrence between A and BC:

C2
A(BC) = 2 − 2

3

N∑
M=0

(
N

M

)2

22(N−M). (23)

Now, concurrence CAB (or CAC) is not as easy to compute,
since the corresponding state ρ

(N)
AB (or ρ

(N)
AC ) is a mixed state.

Then, its value is given by the minimum average concurrence
taken over all the possible pure state decompositions of the
density matrices. Again, the general definition of localized
eigenstates |ψN 〉s (and |ψN 〉r ) provides a convenient form
for the reduced matrix ρAB = trC |ψN 〉s〈ψN |, which can be
expressed as a block matrix in terms of the nondiffrac-
tive states of the rhomboidal lattice. For the ρ

(N)
AB state,
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we obtain

(24)

Since all the |ψM〉r states are linearly independent, the
Hughston-Jozsa-Wootters theorem allow us to obtain any other
pure-state decomposition of ρ

(N)
AB , say

∑r
k |φ̃k〉AB〈φ̃k| (with

r > N), by operating on the set of states [2M
(
M

N

)
/3N ]1/2|ψM〉r

with an r × r unitary matrix. Consequently, we find that the
squared average concurrence C2

AB remains the same for any
decomposition of ρ

(N)
AB , and it is given by

C2
AB =

[
1

3N

N∑
M=0

2M

(
M

N

)
C(|ψM〉r )

]2

. (25)

Notice that this result is the same as C2
AC , since the only

difference is given by the powers of −1 associated with
site B, which do not change the Schmidt coefficients nor
the concurrence of states contributing to the average. From
comparison of C2

A(BC) in Eq. (23) and C2
AB = C2

AC in Eq. (25),
it can be seen that localized eigenstates of the stub lattice do not
satisfy the monogamy relation characteristic of generalized W

states. Thus, although entanglement remains after re-motion
(tracing) of one site, it does not determine the amount of
entanglement of the full tripartite state.

V. APPLICATION TO MULTICORE OPTICAL FIBERS

The need to increase the data-carrying capacity of single
optical fibers has led to commercial systems which currently
employ multiplexing in frequency, time, polarization, and
phase. Only recently, space-division multiplexing (SDM) has
become feasible [54,55]. This method enables data transmis-
sion through several physically distinguishable propagation
paths, as for instance, in the case of multicore fibers (MCF)
[56]. Here the paths are defined by an array of single-mode
cores within a single fiber. Susceptibility to fractures currently
limits MCF to a diameter smaller than 230 μm [57]. Crosstalk,
that is, photon hopping between nearest-neighbor cores, and
photon losses are the primary sources of error.

Crosstalk can be greatly decreased by decoupling the cores,
that is, by placing the single-mode cores well separated in
such a way that the coupling constant becomes very small.
This strategy, however, constraints the maximal number of
cores within a single fiber. Currently, a 200 μm outer diameter
MCF with 19 cores has been reported [58]. This reached an

effective transmission distance of approximately 10 km. In
order to increase the core density several approaches have been
proposed. Heterogeneous multicore fibers [59], composed by
single-mode cores with different propagation constants, allow
us to limit crosstalk while reducing the distance between cores.
Small random variations in core properties also lead to a strong
crosstalk suppression [60]. Fiber bend and trench-assisted
cores have led to ultralow crosstalk MCF [61].

Localized quantum states of light offer a new approach
to suppress crosstalk. To illustrate this, let us consider a
recently reported experiment [30] where a single MCF has
been exploited for the experimental realization of quantum
key distribution via high-dimensional quantum systems. Here
a single photon encoding a four-dimensional quantum state
is transmitted through a single-mode fiber with four cores
arranged in a diamondlike cross section, like the four sites
illustrated in Fig. 4(a). In this setup we can resort to localized
quantum states of light to completely suppress crosstalk
independently of the coupling constant between waveguides.
We can define the separable states

|
√

2α〉rA,B = |α〉A| − α〉B |0〉S ′ |0〉S (26)

8
µ
m

(a)

40
µ
m

28
µm

(b)

FIG. 4. Designs of multicore optical fibers sustaining nondiffrac-
tive modes. (a) Four-core fiber, where two modes can be transmitted.
(b) A more complex design, composed of four cells with four cores
each. Distances shown correspond to realistic separation between
cores allowing suppression of crosstalk.
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and

|
√

2α′〉r−1,+1 = |0〉A|0〉B |α′〉S ′ | − α′〉S, (27)

which remain localized in cores A and B and S ′ and S

[as in Fig. 1(a)], respectively, along the propagation in the
MCF. Each one of these two states allows the encoding
and transmission of information employing two cores of the
MCF. Thus, two crosstalk-free communication channels can
be generated in a four-core MCF. In order to increase the
number of effective communication channels we can form four
groups each consisting of four cores, as illustrated in Fig. 4(b).
Here cores 1 to 4 have the same geometry and distances as in
Fig. 4(a), while cores in each group can be very close without
exhibiting crosstalk. This is due to the fact that even if all
four cores are coupled, the previous states are still localized
states of light. Thereby, the crosstalk level, given by cores 1
to 4, is equivalent to a four-core MCF while establishing eight
communication channels with 16 cores. An hexagonal ring
of four-core groups would allow encoding and transmission
through 12 effective channels with 24 cores.

This strategy to generate crosstalk-free channels is compat-
ible with other proposals having the same goal. For instance,
we can consider a MCF formed by heterogeneous four-core
groups. All cores in a group are homogeneous, that is, they have
the same propagation constant ε, but a different value in each
group. Heterogeneous MCFs leads to an important reduction
of the crosstalk as well as to a denser packing of cores, when
compared to homogeneous MCFs. A further reduction can be
obtained by resorting to trench-assisted cores, which decrease
the coupling constant between neighboring cores by carefully
engineering the index refraction profile of each core.

Our strategy it is not restricted to separable states. We can
consider single-photon path-entangled states such as

|ψ1〉rA,B = 1√
2

(|1〉A|0〉B − |0〉A|1〉B)|0〉S ′ |0〉S (28)

and

|ψ1〉r−1,+1 = 1√
2
|0〉A|0〉B(|1〉−1|0〉+1 − |0〉S ′ |1〉S). (29)

These two orthogonal states remain localized in their respec-
tive sites along the propagation in the MCF. Thereby, any
arbitrary superposition of states |ψ1〉rA,B and |ψ1〉rS ′,S will be
coherently preserved. This encoding make thus possible the
transmission of a single qubit. Similarly, states of the form
α|ψN 〉rA,B + β|ψM〉rS ′,S with arbitrary total photon numbers N

and M are also not affected by crosstalk. This shows that MCFs
are promising candidates to reliably distribute path-entangled
states among several parties.

A second important source of errors is the fast absorption of
photons by the cladding of optical fibers, that is, photon losses.
In the case of a single-core optical fiber this process can be
modeled by the interaction Hamiltonian Hloss = κ̄(ab† + a†b)
in the Schrödinger picture, where a and b are the annihilation
operators of photons at core and cladding, respectively, and κ̄

is the coupling constant. This Hamiltonian leads to the master
equation for the state of photons propagating in the core

dρ

dt
= κ ′

2
(a†aρ + ρa†a − 2aρa†), (30)

which describes the progressive loss of energy from the core to
a zero-temperature cladding (environment), that is, 〈b†b〉 = 0.
This model is known as amplitude damping [62,63]. Here
κ ′ = 2κ̄2ητc, where η is a constant arising at the integration of
Heisenberg equation for both core and cladding and τc is the
correlation time of the cladding. The state of the core generated
by the master equation (30) after a time interval δt can be cast
in the form [64]

ρ(δt) =
∑

k

Ekρ(0)E†
k, (31)

with

Ek =
√

(1 − e−κ ′δt )k

k!
e−κ ′δta†aak. (32)

Considering the case of a two-core MCF, the state of the field
at the core after a time interval δt can be cast as

ρ(δt)A,B =
∑
k,m

EB
mEA

k ρ(0)A,B

(
EA

k

)†(
EB

m

)†
, (33)

where we have assumed a common environment (the cladding)
for both cores. The action of the annihilation operators aA and
aB onto state |ψN 〉rA,B is

aA|ψN 〉rA,B = 1√
2
|ψN−1〉rA,B (34)

and

aB |ψN 〉rA,B = − 1√
2
|ψN−1〉rA,B. (35)

This indicates that even after the loss of a single photon, light
remains in a localized quantum state. Thereby, if the initial state
ρ(0)A,B of both cores A and B is given by |ψN 〉rA,B , then the
state ρ(δt)A,B becomes an incoherent convex combination of
all mutually orthogonal localized quantum states of light with
total photon number less or equal than N . It is thus possible
to encode a qubit as α|ψN 〉rA,B + β|ψN+M〉rA,B with M � 1.
After the loss of N − 1 photons the coherence of the state is
still preserved as α|ψ1〉rA,B + β|ψ1+M〉rA,B .

VI. ON-CHIP PREPARATION OF LOCALIZED
QUANTUM STATES OF LIGHT

All the localized eigenstates |ψN 〉r and |ψN 〉s can be
obtained by means of unitary linear operations over the
corresponding Fock state |N〉. However, in practice it is very
difficult to perform these operations with bulk optics, since it
requires to control the phases of different multiphoton states
distributed over different paths. Fortunately, it is possible to
exploit the evanescent coupling between nearby waveguides
to prepare the states for any number of photons.

In Figs. 5(a) and 5(b) we present two feasible designs,
which respectively produce the localized eigenstates of the
rhomboidal and the stub lattice at specific sites. In both cases,
a Fock state |N〉 is coupled to a single input waveguide
at the point 1. From 2, photons tunnel to the neighboring
waveguides via evanescent coupling of the field modes. The
propagation of the photonic state in this section is described
by a Hamiltonian of the same form as (1). If the waveguides
are equally separated, after a certain distance (stage 3) photons
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2

A

B

3

4

1

(a)

input

2
CA

B

3

4

1
(b)

0 π
2
√

2
π√
2

0.5

1.0

P
(

ψ
N

r )

κz

(c)

0 π
2
√

3
π√
3

3π
2
√

3

0.5

1.0

P
(

ψ
N

s )

κz

(d)

FIG. 5. Scheme for the preparation of localized quantum states of light in the (a) rhomboidal lattice and in the (b) stub lattice. In both
cases, a Fock state |N〉 coupled to an input waveguide at stage 1, is converted in a localized eigenstate |ψN 〉r or |ψN 〉s , respectively, and finally
injected at certain position of the array at stage 4. (c) Probability of finding the state |ψ ′

N 〉r on waveguides A and B [equal to the state |ψN 〉r

but without the (−1)q factors] as a function of distance between stages 2 and 3 of setup (a). (d) The same as (c) for states |ψ ′
N 〉s found in

waveguides A, B, and C between stages 2 and 3 of setup (b). Lines in (c) and (d), from the thickest to the thinnest, correspond to N = 1,
N = 2, N = 5, and N = 12.

are found only on waveguides A and B for the diamond lattice,
and in A, B, and C for the stub one, forming a state |ψ ′

N 〉 which
just differs from the desired state |ψN 〉 in the absence of the
(−1)q factors (phase structure). As depicted in Figs. 5(c) and
5(d), we find that the minimal propagation distance required
to produce a state |ψ ′

N 〉r and |ψ ′
N 〉s is given by lc = π/2

√
2

and π/2
√

3, respectively, and it is the same for any number
of photons [65] . In experiments with waveguides arrays, the
value of the coupling constant is on the order of 0.5 mm−1

when waveguides are separated by 8 μm, implying that the
length between stages 2 and 3 should be ∼5 mm, and can be
varied in a wide range by changing the separation between
the waveguides (due to the exponential decay of the coupling
constant with the separation [66,67]). From this point, the input
waveguide is suppressed, and, in order to introduce a phase
factor (−1)q in the coefficients, a difference in the refractive
index of one waveguide must be induced between stages 3 and
4 (red waveguide in Fig. 5), either by changing the writing
speed in the fabrication process or by the application of an
external electric field. This adds an increase equal to �β to the
propagation constant on the chosen waveguide (this technique
has been used in schemes which require a controlled phase
shift, like the one in Ref. [68]). The Hamiltonian which rules
the evolution in this section is given by −�βâ

†
i âi . This way, all

the components of a state |ψ〉 expressed in the Fock base will
acquire a phase depending solely on the number of photons in
the waveguide with the �β increase. Then, we only need to
find the length 	 between stages 3 and 4 which gives a phase
π to a state with one photon in the chosen waveguide. This
ensures that all the terms with an odd number of photons will

acquire the same phase, but the terms with an even number of
photons will not be affected. In other words, this section of the
setup provides the (−1)q factor present in the definitions of
the localized eigenstates (9) and (10). The desired phase shift
could be achieved with a distance of ∼1 cm [68]. Finally, at
point 4, the state is already prepared and can be put as initial
condition to propagate along the array. Notice that although
the position in the lattice at which the state is injected must
be fixed in the fabrication process, it is possible to construct
input ports for several different positions in the same array,
allowing the construction of more complex profiles and the
implementation of protocols for image transmission. Since the
method that we propose here is completely on-chip, it can
improve the reliability of all the applications which require
precise combinations of the localized modes.

VII. CONCLUSION

Here we have studied the problem of localization of
quantum light in flat-band lattices. In particular, we have
considered rhomboidal, symmetric rhomboidal, stub, kagome,
and Lieb lattices. We have constructed quantum states of light
with a well defined photon number that stay localized along
the propagation in the lattice, that is, photons described by
these states do not exhibit diffraction. The localization is
perfect, that is, photons always propagate along the same
few initial sites, and is independent of external parameters.
The localized quantum states of light are eigenstates of
the interaction Hamiltonian with vanishing eigenvalue. This
requirement together with the symmetry of the lattices leads
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to a vanishing probability for the hopping of photons from
the initial sites to neighboring sites, which arises due to
a destructive interference effect between hopping processes
from different initial sites to a given neighboring site. In
the basis of Fock states these are given by real (positive
and negative) probability amplitudes corresponding to the
square root of multinomial coefficients. Single-mode states
with binomial probability distribution have been discussed
previously in the literature [69–71]. A prominent feature of this
class of states is that Fock and coherent states can be recovered
as limit cases. A generalization of the single-mode binomial
state to the multimode case, the so called multinomial states,
has also been proposed [72,73]. The localized quantum states
of light, Eq. (9), belong to this latter class of states. Thereby,
states |ψN 〉rA,B are su(2) coherent states for any value of the
total photon number N .

We have also studied the entanglement properties of
localized quantum states of light. In the bipartite case of the
rhomboidal lattice, whose localized states |ψN 〉rA,B involve two
sites only, states are entangled for any value of the total photon
number N . In the tripartite case of the stub lattice, whose
localized states |ψN 〉sA,B,C involve three sites, any bipartite
partition of the three sites is entangled for any value of the
total photon number N . Tracing out photons propagating at a
particular site generates a new bipartite reduced mixed state
which is also entangled. Furthermore, it was possible to show
that the localized states |ψN 〉rA,B,C do not satisfy the monogamy
relation of Coffman-Kundu-Wootters and consequently do not
correspond to generalized W states.

An interesting application of localized quantum states
of light arises in the context of a multicore fiber, where
the propagation paths for the light are defined by an array
of single-mode cores within a single fiber. Two important
source of errors, which limit the effective transmission length,
are photon crosstalk and photon losses. The former can
be passively suppressed by resorting to localized quantum
states of light of a given lattice. The latter reduces the
total photon number of the localized state without destroying
the localization property of the state. Let us note that this

result shows the possibility of reliably transmitting multipho-
ton path-entangled states through multicore fibers.

We have proposed a setup for the experimental generation
of localized quantum states of light. This setup requires the
ability to generate arbitrary Fock states and all operations are
carried inside a photonic crystal. Experimental demonstrations
of localized quantum states of light are within reach of current
experimental capabilities for one and two photons.

Our results can be extended in several ways. Elliptical
femtosecond-laser-written waveguide arrays exhibit an asym-
metry of the spatial tr ansverse profiles of linearly polarized
modes in these waveguides. This leads to a polarization-
dependent coupling coefficient κ between adjacent waveg-
uides that strongly affects the propagation of light on a lattice
[67]. Since the localized quantum states of light do not depend
on the value of the coupling constant, we obtain a set of this
class of states for each orthogonal polarization. The application
to MCF has been discussed considering several cells, each
one composed of four cores. This choice is motivated by
recent experiments on the propagation of single photons that
employed four-core MCF. It is possible, however, to envisage
more complex lattices. For instance, Lieb or kagome lattices
filling the complete area of the fiber, as in the case of hollow
fibers [74], might lead to an increase in the ratio between
communication channels and cores. Recently, a procedure
has been reported that allows the construction of a large
family of lattices with nontrivial geometries supporting one or
more FBs [22] even in the presence of next-nearest-neighbor
coupling. This opens new possibilities for the experimental
implementation of FB quantum localized states using different
geometrical configurations, depending on the particular setup,
and to the possibility of employing larger numbers of localized
quantum states of light in single and multimode MCF.
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