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SUMMARY
Cryptorchidism is the most common congenital disorder in boys, but the cause for most cases remains unknown. Patients with

Noonan Syndrome are characterized by a typical face, growth retardation, congenital heart defects, learning disabilities and cryp-

torchidism. Copy number variations of Ras/MAPK pathway genes are unusual in patients with several clinical features of Noonan

Syndrome; however, they have not been studied in patients with only one feature of this condition, such as cryptorchidism. Our aim

was to determine whether patients with isolated cryptorchidism exhibit Ras/MAPK pathway gene copy number variations (CNVs).

Fifty-nine patients with isolated cryptorchidism and negative for mutations in genes associated with Noonan Syndrome were

recruited. Determination of Ras/MAPK pathway gene CNVs was performed by Comparative Genome Hybridization array. A CNV was

identified in two individuals, a ~175 kb microduplication at 3p25.2, partially including RAF1. A similar RAF1 microduplication has

been observed in a patient with testicular aplasia. This suggests that some patients with isolated cryptorchidism may harbor Ras/

MAPK pathway gene CNVs.

INTRODUCTION
Noonan Syndrome (NS, MIM: 163950) is caused by germline

mutations in genes that encode components of the Ras/mito-

gen-activated protein kinase (MAPK) pathway (Ras/MAPK)

(Rauen, 2013). This pathway is an essential mediator that

transmits extracellular stimuli from cell surface receptors to

the cytoplasm and nuclei, controlling cell cycle and differenti-

ation. Signal transmission through the Ras/MAPK pathway is

initiated by binding of growth factors, hormones or cytokines

to their receptor tyrosine kinases, which triggers receptor

dimerization and autophosphorilation at tyrosine residues.

Phosphotyrosines are docking sites for an adaptor protein

designated GRB2, which recruits and activates SOS1. In turn,

this guanine exchange factor catalyzes the dissociation of

GDP from the GDP-bound Ras (KRAS, HRAS or NRAS) inac-

tive form, favoring Ras binding to GTP. Activated GTP-bound

Ras interacts with RAF1 or BRAF, favoring their catalytic acti-

vation. These kinases phosphorylate and activate the kinases

MEK (MEK1 and/or 2). Upon activation, MEK phosphorylates

regulatory residues of the dual specificity kinases ERK (ERK1

and/or 2). ERK exerts its function on nuclear and cytosolic

substrates that participate in cell cycle progression, differenti-

ation and the control of cellular growth (Takai et al., 2001). In

addition to the backbone components of the Ras/MAPK path-

way, various proteins regulate signaling through this cascade.

One of them is the cytoplasmic phosphatase SHP2 that pro-

motes the activation of the pathway (Matozaki et al., 2009).

Missregulation of the Ras/MAPK signaling pathway has

important consequences, both during the prenatal and post-

natal stages of life (Tidyman & Rauen, 2009). Activating muta-

tions in genes that encode (i) the phosphatase SHP2 (PTPN11

- MIM: 176876) (Tartaglia et al., 2001); (ii) the guanine

exchange factor SOS1 (MIM: 182530) (Tartaglia et al., 2007);

(iii) the serine/treonine kinases RAF1 (MIM: 164760) (Razza-

que et al., 2007) and BRAF (MIM: 164757) (Sarkozy et al.,

2009); (iv) the small GTPases KRAS (MIM: 190070) (Schubbert

et al., 2006) and NRAS (MIM: 164790) (Cirstea et al., 2010)

and (v) the dual specificity kinases MAP2K1(MIM: 176872)
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and MAP2K2 (MIM: 176872) (Nava et al., 2007); have been

documented in patients with NS.

Patients with NS present with a characteristic facies, growth

retardation, congenital heart defects, developmental delay,

learning disabilities, and cryptorchidism. Undescended testes

are reported in 60–77% of boys with NS (van der Burgt, 2007;

Jorge et al., 2009). Furthermore, analysis of the Cryptorchidism

Gene Atlas discloses a strong genomic association between cryp-

torchidism and Ras/MAPK pathway genes (Cannistraci et al.,

2013).

The prevalence of NS is estimated to be 1 : 1000–2500 live

births (van der Burgt, 2007), but this may be an underestimate

due to patients with oligosymptomatic forms of the syndrome

(Rauen et al., 2010). Therefore, some of these patients may not

be recognized during their life.

Since most mutations detected in NS result in a hyperactivated

Ras/MAPK pathway (Tartaglia et al., 2006) the possibility of

increased gene dosage as its genetic etiology had been explored

in different cohorts. Nevertheless, very few CNVs have been

reported to date in NS (Shchelochkov et al., 2008; Graham et al.,

2009; Chen et al., 2014a; Nowaczyk et al., 2014; Lissewski et al.,

2015). However, a comprehensive investigation of possible Ras/

MAPK pathway gene dosage imbalance in patients with isolated

cryptorchidism has not been performed to date. Our aim was to

determine whether monosymptomatic patients who present

with undescended testes, may exhibit molecular alterations in

genes of the Ras/MAPK pathway.

MATERIALS ANDMETHODS

Study subjects

This study, as well as the Informed Consent for DNA extrac-

tion, was approved by the Ethics Committees of the University

of Chile and the Central Metropolitan Health Service in Santiago,

Chile.

Sixty-five patients between 1 and 15 years old with unilateral

or bilateral undescended testes who had undergone orchidopexy

were invited to participate. After surgery, each patient was exam-

ined by a clinical geneticist and an endocrinologist. Six patients

who presented known causes of cryptorchidism such as chro-

mosomal or syndromic forms, disorders of sex development

(DSD) or other anatomic anomalies (persistent M€ullerian duct

syndrome, micropenis or hypospadias) were excluded. Finally,

fifty-nine patients were included in this study. No mutations in

nine known genes causing NS (PTPN11, SOS1, RAF1, KRAS,

BRAF, NRAS, MAP2K, MAP2K2 and RIT1) were detected by High

Resolution Melting screening followed by sequencing (Rodriguez

et al., 2015, unpublished data). Height, weight and body mass

index (BMI) Z score were calculated using the 2000 CDC charts

(Table S1). Birth length and weight Z score were calculated

according to Chilean birth weight and length references (Milad

et al., 2010).

Hormone determination

Serum testosterone was determined by competitive specific

binding RIA. Serum LH and FSH were measured by immuno-

radiometric assays. All kits were supplied by Diagnostic System

Laboratories (Webster, TX, USA). Serum AMH was assayed

using the AMH/MIS ELISA kit (Immunotech- Beckman, Mar-

seilles, France) and serum inhibin B was measured using

specific two-site ELISAs (Diagnostic Systems Labs, Webster,

TX, USA).

Comparative genomic hybridization array (aCGH)

Peripheral blood samples were obtained from patients after

informed consent and, whenever possible, from relevant family

members for DNA preparation. A customized oligonucleotide

array including nine genes involved in NS (PTPN11, SOS1, RAF1,

BRAF, KRAS, HRAS, NRAS, MAP2K1 and MAP2K2) was designed.

Features were selected from Agilent’s eArray probe library in a

custom high-resolution format of 8 9 60K (Agilent Technolo-

gies, Santa Clara, CA, USA; https://earray.chem.agilent.com/ea

rray). The median probe spacing within targeted genes was

250 bp. In addition, the flanking regions of these genes (500 kb

upstream and downstream) were also enriched on this array,

with a median probe spacing of 1.03 kb. Arrays were performed

as recommended by the manufacturer (Agilent Technologies,

Santa Clara, CA, USA). Briefly, DNAs from the sample and a sex-

matched reference (Promega, Madison, WI, USA) were double-

digested with RsaI and AluI. After inactivation of the enzymes,

samples and references were labeled using Cy5-dUTP for the

patient’s DNA and Cy3-dUTP for the reference’s DNA. Labeled

products were column-purified. Hybridization was performed at

65 °C with rotation for 24 h. After two washing steps, the array

was scanned with an Agilent DNA microarray scanner and the

extraction of microarray TIFF images was performed using the

FEATURE EXTRACTION software (v9.1 Agilent Technologies).

Analysis and visualization of the data were performed using AG-

ILENT CYTOGENOMICS v3.0.1.1 software. Comprehensive description

of the statistical algorithms is available in the user’s manual pro-

vided by Agilent Technologies. Analysis of CNVs detected was

performed with DECIPHER v9.10 software (Firth et al., 2009), to

determine genes included, CNVs breakpoints and overlapping

CNVs previously reported in the DECIPHER database (https://

decipher.sanger.ac.uk/).

Quantitative PCR

To confirm aCGH results and to determine whether the

CNVs were de novo or inherited from the parents, quantitative

PCR (qPCR) was performed using genomic DNA. Primers for

exons 7 and 14 of RAF1, and b-actin (reference) were designed

using Primerquest� on line software (IDT, USA) (primer

sequences available in Table S2). Primers sequences for

b2-microglobulin, a second reference gene, were as previously

reported (Vaughn et al., 2008). Efficiency of designed primers

was determined through standard curves (15, 7.5, 3.75 and

1.88 ng) using the following formula E = 10�1/slope (Rass-

mussen, 2001). Specificity was determined by melting curve

analysis. An efficiency of ~2 and absence of non-specific prod-

ucts was required for each pair of primer. Each sample was

run in triplicate. Fifteen nanograms of genomic DNA was

amplified in a 10 lL volume containing 1 9 HOT FIREPol�

Eva Green� HRM Mix (Solis BioDyne, Tartu, Estonia) and

0.5 lM of each primer. Amplification was performed on a

EcoTM Real-Time PCR System (Illumina, San Diego, CA, USA)

with a preincubation of 95 °C for 15 min followed by 40 cycles

of denaturation at 95 °C for 20 sec, annealing at 60 °C for

20 sec, and extension at 72 °C for 20 sec. The dosage ratio for

each amplicon was calculated through relative quantification

using the 2�ΔΔCt method (Livak & Schmittgen, 2001).
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RESULTS

Molecular findings

Molecular analysis of the 59 patients with isolated cryp-

torchidism revealed a ~175 kb microduplication at 3p25.2 (hg19,

chr3:12630854-12806345), which includes RAF1 (MIM: 164760)

and TMEM40 (MIM: 612048), in patients P-13 and P-76 (Fig. 1A,

B). Further analysis of aCGH results, through DECIPHER v9.10

(Firth et al., 2009), showed that TMEM40, which encodes a

transmembrane protein of unknown function, is completely

duplicated. Meanwhile, the duplication includes 11 of the 16

coding exons of RAF1 (Fig. 1C). These findings were confirmed

by qPCR of RAF1 exons 7 and 14 (Fig. 1D). These qPCR analyses

were also applied to determine CNVs segregation. The

microduplication detected in patient P-13 was detected in his

mother, but not in his father. Further analysis of P-13 family

revealed the same duplication in a distant relative, in a four year

old boy with isolated bilateral cryptorchidism (individual III.1 in

Fig. 2A). The RAF1 microduplication observed in patient P-76

was not detected in his mother, his sister or his paternal half-

brother (Fig. 2B). The DNA of the father of patient P-76 was not

available for study (deceased).

CNVs positive patients

Patient P-13

This patient (Fig. 3A,B) was born to non-consanguineous

healthy parents after a term pregnancy, with a birth weight
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Figure 1 RAF1 microduplications (3p25.2) detected by customized aCGH. (A, B) aCGH shows a ~175 kb microduplication at 3p25.2 (hg19,

chr3:12630854-12806345) in patients P-13 and P-76, respectively. (C) Microduplication (shadow region) is shown with the DECIPHER v9.10 (Human

GRCh37/hg19 Assembly), below is shown the RAF1 exon-intron structure (minus strand) where rectangles and lines represent exons and introns, respec-

tively; and the dotted line shows that the duplication extends and includes intron 12. The arrows indicate the localization of qPCR primers (exon 14 grey

arrows and exon 7 black arrows). Microduplications reported at DECIPHER copy number variant database are shown (Patients 332401 and 615). (D) Quan-

titative PCR for exons 14 and 7 in patients P-76 and P-13, confirmed the aCGH results. Statistics: Mann-Whitney test (four to six independent experiments)

where *p ≤ 0.05 and ns: non-significant values with regard to Ctrl. [Colour figure can be viewed at wileyonlinelibrary.com].
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of 3.7 kg (+0.68 SD), and a birth length of 52 cm (+1.6 SD).

His developmental milestones were normal, but he grew

quite rapidly and had a height of 123 cm (+3.7 SD) and a

weight of 34 kg (+4.9 SD) at 4.5 years of age. He has rela-

tively tall parents, with a median parental height of 177 cm.

His armspan/height and SS/SI ratios were normal (1 and 1.2,

respectively). Hormonal levels were normal (testosterone, LH,

FSH and AMH), except for inhibin b which was lower

(32.8 pg/mL) than the age-matched reference values

(153 � 91 pg/mL) (Rey et al., 2005). The patient underwent a

first orchidopexy at age 4.5 years (right testicle at lower ingu-

inal canal), and a second orchidopexy in the same testicle at

age 6.5 years. There was no paternal history of cryp-

torchidism, but a maternal distant relative had undescended

testes.

Patient P-76

The index patient (Fig. 3C,D) was the first child of healthy

non-consanguineous parents. The patient was delivered at

38 weeks, small for gestational age (SGA) with a birth weight of

2.4 kg (�2.15 SD), and birth length of 46 cm (�2.33 SD). He had

unilateral cryptorchidism, which was surgically corrected at the

age of 5 years and 11 months. His linear growth was normal,

and his serum testosterone, LH, FSH and AMH levels were

appropriate for age. His serum inhibin b, however, was lower

(47 pg/mL) than the reference values (153 � 91 pg/mL) (Rey

et al., 2005).

DISCUSSION
Cryptorchidism, the most common genitourinary defect of

the new born male, may be associated with infertil-

ity/subfertility and testicular malignancy later in life (Hutson

et al., 2013). The etiology of cryptorchidism remains largely

unknown, nevertheless, available data suggest the participa-

tion of genetic, maternal, and environmental factors (Kollin &

Ritz�en, 2014). Different approaches to identify possible genet-

ics factors have shown that variants in INSL3 (insulin-like 3)

(Lim et al., 2001; Ferlin et al., 2009; Mamoulakis et al., 2014);

RXFP2 (relaxin/insulin-like family peptide receptor 2) (Ferlin

et al., 2009) and AR (androgen receptor) (Aschim et al., 2004)

are associated with a small percentage of isolated cryp-

torchidism cases.

A recent report by Wang et al. (2016) described a genome wide

genotyping analysis performed in 800 non-syndromic patients

with cryptorchidism and 2688 controls, in an attempt to identify

structural variations. To our knowledge, this is the most thor-

ough CNV analysis of non-syndromic patients with cryp-

torchidism, but no structural variations were detected. However,

the SNP arrays employed may have had insufficient coverage for

Ras/MAPK pathway genes to detect smalls CNVs which may

contribute to disease risk. Our study utilized a significantly

higher resolution custom aCGH with an average probe distance

of 250 bp for the Ras/MAPK pathway genes PTPN11, SOS1,

RAF1, KRAS, NRAS, HRAS, BRAF, MAP2K1 and MAP2K2; which

enabled the detection of two CNVs.
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This study represents the first CNV analysis of Ras/MAPK

pathway genes in a cohort of patients with isolated cryp-

torchidism. We observed a CNV in RAF1 in 2 out of 59 Chilean

patients who underwent orchidopexy to correct cryptorchidism.

Analysis of DECIPHER copy number variant database looking

for RAF1 partial duplications, similar to that found in our

patients, shows one microduplication (Fig. 1C) in a female

patient (Patient: 332401) without information regarding her phe-

notype, nor information about cryptorchidism history in her

family. In addition, a similar microduplication, which affects all

RAF1 coding exons, was observed in a patient (Patient: 615) with

testicular aplasia and micropenis (Krepischi-Santos et al., 2006).

On the other hand, genotype analysis of 512 patients with Tetral-

ogy of Fallot (TOF) revealed a similar microduplication to that

observed in the present study, in a 15 year old girl who pre-

sented isolated TOF (Greenway et al., 2009). A larger duplication

(250 kb) which includes RAF1, TSEN2, MKRN2, and TMEM40

genes was also identified in a 15 year-old male with TOF and

some NS-like features (Luo et al., 2012).

The microduplication detected in patient P-13 was shared by

his mother and a maternal distant relative with bilateral cryp-

torchidism. Even though analysis of P-13 pedigree suggests that

the detected duplication is associated with cryptorchidism, they

may have arisen independently. Meanwhile, the microduplica-

tion found in patient P-76 was not detected in his mother, who

reported no family history of cryptorchidism. Unfortunately, the

DNA from the father of P-76 was unavailable (deceased), but no

family history of cryptorchidism was known.

Patient P-76 was small for gestational age, a condition that

may be associated with cryptorchidism. However, in this case,

the testicle remained undescended until orchidopexy was per-

formed at the age of almost 6 years. Most SGA children undergo

descent of their testes by 1 year of age, at which time they have

no higher prevalence of cryptorchidism compared to normal

birth weight children (Berkowitz et al., 1993; Preik�sa et al.,

2005).

Recently, improvements in genetic analysis technologies such

as whole exome sequencing, have allowed the identification of

further genes in NS, such as RIT1, a member of the Ras subfam-

ily of small GTPases (Aoki et al., 2016). A number of studies (Aoki

et al., 2013; Bertola et al., 2014; Chen et al., 2014b) have shown

that the frequency of RIT1 mutations is approximately 5% in

patients with NS, similar to the frequency reported for RAF1

mutations in these patients (Aoki et al., 2016). It is noteworthy

that the frequency of cryptorchidism in those patients was 70%

(Bertola et al., 2014), similar to that found in NS patients with

(A) (B)

(C) (D)

Figure 3 Facial photographs of patients. Patients P-13 (A, B) and P-76 (C, D) showing normal phenotype without NS facial features. [Colour figure can be

viewed at wileyonlinelibrary.com].
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RAF1 mutations (63%) (Kobayashi et al., 2010). It is possible that

some of the 57 patients without any CNV detected in this study

harbor RIT1 CNVs. On the other hand, recent evidence from

breeding studies of a cryptorchid rat strain (Barthold et al.,

2016); and from association studies in both pigs (Elansary et al.,

2015) and man (Barthold et al., 2015) have suggested that cryp-

torchidism is inherited as a polygenic trait, whit different vari-

ants contributing to susceptibility. Therefore, we suggest that

the RAF1 microduplication detected in this study represents one

of these variants.

Cannistraci et al., created an accessible database (http://www.

integratomicstime.com/cryptorchidism/) which integrates infor-

mation from all cryptorchidism associated genomic loci

reported in the literature and classified these loci in the corre-

sponding biological pathway (Cannistraci et al., 2013). Analysis

of this Cryptorchidism Gene Atlas discloses a strong genomic

association between cryptorchidism and the Ras/MAPK pathway

and also a significant association between cryptorchidism and

hypertrophic cardiomyopathy (HCM). Approximately 20% of NS

patients have HCM (Nishikawa et al., 1996), of these 95% have a

RAF1 mutation which results in increased kinase activity (Pandit

et al., 2007; Razzaque et al., 2007). On the other hand, breeding

studies in cryptorchid rat strains have shown an altered expres-

sion of genes that participate in muscle development, and in the

contraction of tissues that participate in testicular descent (Bart-

hold et al., 2016). There is evidence which indicate that the Ras/

MAPK pathway participates in muscle cell differentiation both

with negative (Yang et al., 2006; Yokoyama et al., 2007) and posi-

tive effects (Li & Johnson, 2006; Cho et al., 2007). Consequently,

it is possible to speculate that a deregulation of Ras/MAPK path-

way, through alteration of one of its pathway member (RAF1),

could have effects over tissues involved in testicular descent.

Indeed, reduced RAF1 expression was observed in cryptorchid

testes biopsies (Hadziselimovic et al., 2010).

In summary, our study reveals that 2/59 (3.4%) of patients

with isolated cryptorchidism have a RAF1 microduplication.

Thus, we suggest that some patients with isolated cryp-

torchidism may present CNVs affecting a Ras/MAPK pathway

gene. Further studies, such as analysis of RAF1 gene expression

(mRNA or/and protein) in related tissues, such as testicular

biopsies or gubernaculum, would provide valuable evidence to

support this hypothesis.
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