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Plume-subduction interaction forms large
auriferous provinces
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Gold enrichment at the crustal or mantle source has been proposed as a key ingredient in the

production of giant gold deposits and districts. However, the lithospheric-scale processes

controlling gold endowment in a given metallogenic province remain unclear. Here we

provide the first direct evidence of native gold in the mantle beneath the Deseado Massif in

Patagonia that links an enriched mantle source to the occurrence of a large auriferous

province in the overlying crust. A precursor stage of mantle refertilisation by plume-derived

melts generated a gold-rich mantle source during the Early Jurassic. The interplay of this

enriched mantle domain and subduction-related fluids released during the Middle-Late

Jurassic resulted in optimal conditions to produce the ore-forming magmas that generated

the gold deposits. Our study highlights that refertilisation of the subcontinental lithospheric

mantle is a key factor in forming large metallogenic provinces in the Earth’s crust, thus

providing an alternative view to current crust-related enrichment models.
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The traditional notion of Au endowment in a given
metallogenic province is that Au accumulates by highly
efficient magmatic-hydrothermal enrichment processes

operating in a chemically ‘average’ crust. However, more recent
views point to anomalously enriched source regions and/or melts
that are critical for the formation of Au provinces at a lithospheric
scale1–4. Within this perspective, Au-rich melts/fluids might
originate from a mid or lower crust reservoir and later migrate
through favourable structural zones to shallower crustal levels
where the Au deposits form5. Alternatively, the subcontinental
lithospheric mantle (SCLM) may also play a role as a source
of metal-rich magmas2, 3, 6, 7. This model involves deep-seated
Au-rich magmas that may infiltrate the edges of buoyant and
rigid domains in the SCLM producing transient Au storage zones.
Upon melting, the ascending magma scavenges the Au as it
migrates towards the uppermost overlying crust6, 8.
Discontinuities between buoyant and rigid domains in the SCLM
provide the channelways for the uprising of Au-rich fluids or
melts from the convecting underlying mantle, and when
connected to the overlying crust by trans-lithospheric faults, a
large Au deposit or well-endowed auriferous province can be
formed7. Thus, the generation of Au deposits in the crust may
result from the conjunction in time and space of three essential
factors: an upper mantle or lower crustal source region
particularly enriched in Au, a transient remobilisation event and
favourable lithospheric-scale plumbing structures. The
giant Ladolam Au deposit in Papua New Guinea gives a good
single-deposit case example of this mechanism since deep
trans-lithospheric faults connect the crustal Au deposit directly
with the mantle source, and similar Os isotopic compositions are
exhibited by Au ores and metal-enriched peridotite of the
underlying mantle1. Despite these evidences, the genetic relation
between a pre-enriched mantle source and the occurrence of gold

provinces in the upper crust remains controversial since limited
evidence is available at a broader regional scale.

In this paper, we provide the first empirical evidence
connecting the genesis of a large Au province (Deseado Massif,
Argentina ~15Moz Au, ~400Moz Ag2, 9, 10, see additional
references in Supplementary Information) to the occurrence
of ‘visible’ Au in the underlying SCLM. Our observations of
ultramafic xenoliths sampled from monogenetic volcanoes from
the Deseado Massif, southern Patagonia, provide unprecedented
evidence that an enriched SCLM might be the primary source for
the generation of this auriferous province.

Results
Geological setting and xenolith petrology. The Deseado Massif
is an underexplored auriferous province of ~60,000 km2 located
in the southernmost part of Argentina in South America9. It hosts
several Au–Ag epithermal deposits including low sulfidation,
intermediate sulfidation and polymetallic epithermal deposits
associated with calc-alkaline rhyolites, basaltic andesites and
basalts from the late magmatic stages of the Chon Aike silicic
large igneous province (CA-SLIP)11, 12 (Fig. 1). The CA-SLIP is
represented by the extensive volcanism that was active from 187
to 144Ma contemporaneously with the initial break-up of
Gondwana13, and includes two main stages of petrogenesis. The
Early Jurassic magmatic pulses of the CA-SLIP are ascribed to
crustal melting caused by spreading of the Karoo plume head
(~180Ma), whereas the geochemical signature of Middle to Late
Jurassic events show the influence of an active subduction margin
in a back-arc position (~155Ma). The latter is coincident to the
migration of magmatism away from the Karoo mantle plume
towards the proto-Pacific margin of Gondwana during rifting and
break-up14, 15. An extensive Neogene back-arc plateau
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Fig. 1 Simplified geological map of southern Patagonia Argentina. The dashed line delimits the Deseado Massif auriferous province. CA, Chon Aike volcanic
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magmatism composed of alkaline basalts (~3.5 Ma) has brought
to the surface deep-seated mantle xenoliths from beneath the
crust that host the Au mineralisation16–22. Dominantly spinel
lherzolites of the Cr-diopside suite23, these xenoliths record Meso to
Paleoproterozoic partial melting20–22 and subsequent multistage
modification of the mantle, including carbonatitic, silica-
undersaturated alkaline and subduction-related metasomatism17–19.

The Au-bearing ultramafic xenolith studied here was collected
from the Cerro Redondo cinder cone, located at the
south-western edge of the Deseado Massif (49°7′15.41″ S; 70°8′
28.56″ W), and was chosen as a case study since it samples the
mantle directly beneath the Au–Ag deposits of ‘Manantial
Espejo’, and ‘La Rosita’ and ‘La Sarita’ Au–Ag prospects (Fig. 1).
The targeted xenolith is a protogranular anhydrous mantle
lherzolite that equilibrated in the spinel facies (up to 1.76 GPa, ca.
~53 km depth) at temperatures of 1020–1150 °C (Supplementary
Table 1). The lherzolite xenolith records at least three stages of
chemical depletion and enrichment: Stage I comprises the
formation of a chemically depleted residue after the removal of
~5–10% partial melt, which is recorded in primary olivine with
very low Al2O3 and CaO and Mg#= 90.1–91.1 (Supplementary
Data 1) and slightly depleted light rare earth elements/ heavy rare
earth elements (LREE/HREE) ratios in clinopyroxene. Stage II
involved melt infiltration and precipitation of metasomatic
pyroxene with high Al2O3 and TiO2 contents and LREE
enrichment from silicate alkaline to sub-alkaline melts (Supple-
mentary Data 2 and Supplementary Fig. 1). A third event (Stage

III) is evidenced by the infiltration of metasomatic melts just
before the xenolith was entrained into the Neogene basalt, which
resulted in the formation of interstitial silicate glass containing
native Au particles. This interstitial glass is unrelated to the host
basalt and is partially altered to secondary clays that overprint the
entire sample. The unaltered mineral assemblage in this glass
consists of incompletely reacted olivine and pyroxenes together
with armalcolite [(Mg,Fe2+)Ti2O5], ilmenite, feldspar and apatite
(Supplementary Data 1). Composite aggregates (10–120 μm) of
chalcopyrite, pentlandite and millerite are common within the
glass, and to a lesser extent within the primary silicates (Fig. 2a, b)
(Supplementary Table 2).

Au entrained by infiltrating melts. Gold particles (<2 µm)
were found enclosed within primary olivine and pyroxene
(Fig. 2d, e) and embedded in the glass matrix (Fig. 2f) or
sulfides (Fig. 2b, c, g, h) in the interstitial glass. Energy dispersive
X-ray spectra (EDS) obtained using a high-resolution, field-
emission scanning electron microscope (FE-SEM) and filtered for
host matrix composition (Supplementary Figs. 3–8) indicate that
all these grains are almost pure Au. Gold grains found in primary
silicates and in the groundmass of the interstitial glass are small
(<750 nm across), irregular and commonly aligned forming
planar arrays within the silicate host (Fig. 2d). In contrast, Au
particles located inside larger sulfide grains, mainly chalcopyrite,
embedded in the interstitial glass are relatively larger (~1.5 µm)
and display well-developed polygonal faces of the cubic
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Fig. 2 Photomicrograph and backscattered electron (BSE) images of Au particles in the Cerro Redondo mantle xenolith. a Plane polarised light image of the
lherzolite sample showing the late metasomatic glass vein and the location of Au particles (golden diamonds and letters refer to BSE images).
b–h Backscattered electron FE-SEM images of Au particles and their microstructural setting. b Detail of the glass vein showing its metasomatic assemblage
and a composite sulfide grain containing a Au particle. cMagnification of the euhedral Au particle within chalcopyrite from the composite sulfide grain in b.
d Planar array of Au particles within olivine. e Au particle enclosed within clinopyroxene. f Au particle within the glass of the metasomatic vein in contact
with olivine. g Au particle within chalcopyrite and arrangement of Au nanoparticles enlarged in h. Afs, alkali feldspar; Ap, apatite; Arm, armalcolite; Ccp,
chalcopyrite; Cpx, clinopyroxene; Mlr, millerite; Ol, olivine; Opx, orthopyroxene
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crystallographic system. Detailed inspection of the chalcopyrite
hosts reveals abundant native Au nanoparticles (Fig. 2g, h), which
is consistent with the high Au (up to 6 p.p.m.) obtained by
laser ablation-inductively coupled plasma-mass spectrometry
(LA-ICP-MS) analysis of these sulfides. It is relevant to note that
these sulfides contain significant amounts of Ag (up to 163 p.p.m.,
Supplementary Table 3). The Au/Ag ratios of the mantle sulfides
are similar to the Au/Ag ratios of the bulk ores, and may exert
and important control on the economic metal ratios of epither-
mal Au–Ag deposits of the Deseado Massif (Au/Ag ~0.01–1,
Supplementary Fig. 2).

The occurrence of native Au particles forming planar arrays
within olivine or pyroxene suggests a physical entrapment
mechanism, most likely facilitated by structural discontinuities
(e.g., cleavage planes or zones for local accumulation of
dislocations) during magmatic silicate growth. These native Au
particles are free of any secondary hydrothermal markers such as
Pb, Ag, Te, Bi, Cu and Sb24, 25 ruling out the possibility that these
Au particles were included within olivine during secondary
subsolidus growth as observed in peridotites of the Lherz massif
(France)26. Furthermore, the estimated temperatures for the
equilibration of primary silicates in the studied xenolith exceeded
>1000 °C, which precludes an origin related to secondary silicate
growth.

The fact that Au is included in pyroxene and olivine that
crystallised at different stages of the depletion–refertilisation
history of the SCLM and at a different time scale also excludes
the possibility that Au found in these silicates crystallised
contemporaneously from the same parental melt. Instead, the
fact that Au particles in primary silicates are only found in those
grains that are in close proximity (<500 μm) to the interstitial
glass also containing Au particles more likely indicates that Au
was introduced later by an infiltrating melt now quenched as a
glassy vein. Deposition of Au by the infiltrating melt could have
occurred through discontinuities or microsized crack seals, which
would be later sealed during silicate annealing. Crack propagation
is a well-known mechanism for the almost instantaneous
movement of fluids in the mantle27, and it can occur due to
fluid overpressure or where crystallisation in pore space in
subsolidus matrices is more rapid than the viscous relaxation of
the rock.

Discussion
Experimental studies have reported the formation of metallic
Au-rich alloys at magmatic temperatures (>1200 °C) from
S-undersaturated and Fe-containing silicate melts, under either
reducing conditions buffered by iron wustite (IW)28 or at fO2

near the fayalite–magnetite–quartz (FMQ) buffer29. The results of
these experiments demonstrate that native Au can crystallise over
a wide range of fO2 conditions depending on the sulfur content in
the basaltic melt. In fact, native Au micronuggets have been
documented in the glassy groundmass of mantle-derived rocks
such as lamproite dykes segregated at fO2 near the IW buffer30

and basanite lavas from Hawaii formed at ΔFMQ ≈+0.431. The
former author linked the direct crystallisation of native Au from
the lamproite magma to strongly reducing conditions, whereas
the latter argued for the solidification of droplets of immiscible
Au liquids. In the latter, an increase in alkali contents upon
fractionation of the melt increased the solubility of sulfur, which
promoted the resorption of sulfides entrained in the melt and the
segregation of immiscible Au liquid droplets.

The Au-bearing interstitial glass from the Cerro Redondo
mantle xenolith contains a mineral assemblage that includes
armalcolite, ilmenite, feldspar, apatite and Au-bearing sulfides,
reflecting the crystallisation of alkalic melts unusually enriched in

incompatible elements32, 33 and slightly more reduced (ΔFMQ≈
−2.35 at 1150–1200 °C and 1.3 GPa33) than estimated for the
primary silicates (ΔFMQ≈ 0.12–1.06; Supplementary Table 4).
These fO2 values reflect the infiltration of the alkalic melt into a
slightly more oxidised mantle peridotite. The idea that Au could
be transported by sulfide melts entrained in the silicate melt34 is
supported by the fact that clusters of native Au nanoparticles
and euhedral Au inclusions are found hosted in Cu-rich sulfides
(Fig. 2). Upon ascent, the infiltrating melt should undergo
decompression, as well as fractionation and oxidation by reaction
with the country rocks. The combination of these processes may
have shifted the balance between the stability of sulfide towards
the more soluble sulfate field35–37, promoting sulfide resorption
as evidenced by the presence of oxide rims in some of the studied
grains (Supplementary Fig. 8). This would result in the liberation
of Au as discrete grains from the sulfides with relatively high
contents of Au (Fig. 2, Supplementary Table 3). Subsequent
quenching of the melt into a glass would prevent complete dis-
solution of Au particles, whereas injection of some of them in
primary silicates would prevent further reaction with the infil-
trating silicate melt(s). These Au-bearing sulfides would undergo
further closed-system subsolidus modification during transport or
after solidification of the host silicate melt, promoting decom-
position of the original monosulfide solid solution into Ni-rich
and Cu-rich sulfides.

As noted above, a late infiltrating melt, i.e., the glassy vein,
introduced Au into the Cerro Redondo mantle peridotite. This
Au-bearing glass vein could represent: host basalt that penetrated
the xenolith, melt(s) produced by decompression melting of the
mantle peridotite during its ascent to the surface or small volume
melt(s) that infiltrated the mantle before the entrapment of
the xenoliths by the host basalt. If the glass resulted from the
injection of the enclosing basalt or from peridotite–host basalt
interaction, the interstitial vein and enclosing basalt should have
similar composition and mineral assemblages. Instead, the
interstitial glass contains a very rare mineral assemblage made up
of armalcolite, ilmenite, feldspar and apatite. This type of mineral
assemblage has been related to the crystallisation of highly
alkaline melts, anomalously enriched in incompatible elements33,
with a significant chemical mismatch with the host basalt or
eventual products of the reaction between the host basalt and the
mantle xenolith. This exotic mineral assemblage could not have
been formed by simple decompression melting owing the
nature of the primary minerals forming the xenolith. Therefore,
the Au-bearing interstitial glass observed in the studied xenolith
most likely represents the quenched product of a distinctive melt
that predates the eruption of the alkali basalts that brought the
xenoliths to the surface ~3.5 Ma ago.

A similar metasomatic assemblage including armalcolite,
ilmenite, feldspar and apatite was documented in peridotite
xenoliths that have sampled the mantle underlying the
plume-related hotspot of the Kerguelen Islands32, 33. Moreover,
terrestrial occurrences of armalcolite, although not very rare, are
mostly restricted to certain picritic lavas from the Karoo igneous
province38, high TiO2 basalts from the Kilauea volcano, Hawaii39

and ultrapotassic lavas from southeastern Spain40. The first two
are related to plume activity and the latter to a highly enriched
lithospheric mantle. Furthermore, native Au particles have been
reported in the Kilauea and southeastern Spain lavas30, 31.
Therefore, we interpret that the Au-bearing highly alkaline melt
might also represent the melting product of a mantle domain
previously affected by infiltration of plume-related melts.

Interestingly, mantle plume activity has been suggested to
produce large enrichments of Au (and noble metals) in the
lithospheric mantle and related crust overlying the Iceland
plume4. Further evidence for such type of enrichment includes a
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30 µm bleb of pure Au enclosed in a fresh olivine phenocryst in
a picritic lava from the Emeishan large igneous province in
south-western China. This Au bleb was interpreted as a xenocryst
of the deep mantle transported to shallow depths by a rising
plume and then captured by picritic melts41. Rising plumes
originating in the core-mantle boundary may potentially add Au
into the SCLM during their final ascent42.

During the Jurassic, active volcanism took place in Patagonia in
a geodynamical environment characterised by an extensional
regime related to the initial stages of the break-up of Gondwana
and the emplacement of the Karoo superplume to the east, and
episodic subduction from southern America to Antarctica to the
west13, 43. Interestingly, the epithermal Au–Ag deposits of
the Deseado Massif auriferous province are related to the
calc-alkaline stages of the CA-SLIP. Contrary to models of purely
crustal origin, some authors have suggested that the bimodal
CA-SLIP was produced from melts derived from a portion of
SCLM that was metasomatised and later thermally eroded by the
effects of the Karoo mantle plume44–47.

Considering this scenario, infiltration of melts derived from the
Karoo superplume could have added Au to the SCLM beneath the
Patagonian auriferous province (Fig. 3a). It is likely that this
mantle domain was affected by partial melting and already
transferring metals to the overlying continental crust since at least
the Proterozoic21, 22. The fact that the Au-bearing glassy vein in
the studied xenolith was formed just before its exhumation in the
Neogene, suggests that not all of the enriched SCLM was affected

by the processes involved in the generation of the gold deposits
of the Deseado Massif province during the Late Jurassic. This
provides evidence that enriched domains of the SCLM might be
relatively durable and store Au (and Ag) over large periods of
time until a later melting event triggers the release of the stored
metals7. As noted above, the Au-bearing metasomatic vein in the
Cerro Redondo peridotite xenolith represents the re-melting of
these mantle domains, highly enriched in both lithophile and
siderophile incompatible elements.

Consequently, the Patagonian CA-SLIP and concomitant
auriferous province is the result of mantle plume activity
generated during extension in a back-arc setting while subduction
of oceanic lithosphere occurred at the western margin of
Gondwana13, 14 (Fig. 3b). Subduction was a necessary component
to trigger mantle melting, as it lowered the peridotite solidus
and contributed oxidised fluids capable of scavenging Au
(i.e., ~FMQ>1). This is in good agreement with the fact that the
Deseado Massif mineralisation is hosted by the calc-alkaline
stages of the CA-SLIP.

The Deseado Massif auriferous province was the result of an
optimal amalgamation of three main factors: (i) the influence of a
mantle plume, which enriched a SCLM domain in incompatible
elements (including Au) and provided the necessary heat to
produce large volumes of magma over almost ~40Ma during
the Jurassic (Fig. 3a); (ii) the influence of the subduction zone
setting at the western (Pacific) margin of Gondwana, which may
have oxidised portions of the enriched mantle domain, enhancing
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the potential of magmas to transport Au as dissolved spe-
cies (Fig. 3b); and (iii) an extensional geodynamic setting that
facilitated these enriched magmas to ascend to crustal levels and
form the epithermal Au–Ag deposits (Fig. 3b).

We argue for a genetic model involving processes operating at
a lithospheric scale as the first-order factor controlling the early
stages of the formation of an auriferous province. These processes
may be overlapped in space but separated by large periods of
time. Thus, understanding global tectonics and evolution of the
SCLM through Earth’s history is of fundamental importance to
understand the factors that control metal transfer from deep
mantle sources to the uppermost crust, and is a critical step in the
development of new strategies for successful gold exploration
worldwide.

Methods
Field-emission scanning electron microscopy. All sulfides and gold particles
were imaged using a JEOL JSM-7100 FE-SEM at the Serveis Cientificotècnics,
University of Barcelona, Spain; and a QUANTA 650 FEG environmental SEM
(E-SEM) at the Instituto Andaluz de Ciencias de la Tierra, University of Granada,
Spain. Both the FE-SEM and E-SEM are equipped with SE, BSE and EDS detectors.
Accelerating voltage was 20 kV and beam current optimised for a sufficient number
of counts for each EDS analysis.

Electron microprobe analyses. The major and minor element composition of
silicates was determined using a FE Cameca SXFive electron microprobe at the
Raimond Castaing Center, Toulouse University. The operating conditions were:
accelerating voltage 15 kV; beam current 20 nA; and analysed surface is around 2 ×
2 μm2. The following standards were used: albite (Na), periclase (Mg), corundum
(Al), sanidine (K), wollastonite (Ca, Si), pyrophanite (Mn, Ti), haematite (Fe),
Cr2O3 (Cr), NiO (Ni), sphalerite (Zn) and V metal (V).

Sulfide mineral chemical analyses were performed with a five-channel JEOL
JXA-8230 electron microprobe at the Serveis Cientificotècnics, University of
Barcelona, Spain. The operating conditions were: accelerating voltage 20 kV, beam
current 20 nA and a 5 μm beam diameter. The following standards were used:
pyrite (S, Fe), Ni metal (Ni), chalcopyrite (Cu), Co metal (Co) and sphalerite (Zn).

Laser ablation-inductively coupled plasma-mass spectrometry. Concentrations
of trace elements in clinopyroxene were determined in situ by LA-ICP-MS using a
NewWave Research UP213 laser coupled to an Agilent 7500 ICP-MS instrument
(Raimond Castaing Center, Université Paul Sabatier—Toulouse III, France).
NIST 610 and NIST 612 glass standards were used to calibrate relative element
sensitivities. Each analysis was normalised using the Ca content determined by
electron microprobe. A beam diameter of 50 μm and a scanning rate of 20 μm s−1

was used. Typical theoretical detection limits range from 10 to 20 p.p.b. for all the
elements analysed.

Trace element concentrations of sulfides were carried out in the geochemical
analysis unit at CCFS/GEMOC, Macquarie University, Sydney using LA-ICP-MS.
Helium was used as the carrier gas, which was blended with Ar prior to
introduction into the plasma. The laser ablation system was operated at 5 Hz with
an average beam energy 6.9 mJ per pulse. Sulfur, determined by EMP, was used as
an internal standard for quantifying the trace element abundances. A quenched
NiS (PGE-A: Alard et al.48 and Alard et al.49), doped with selected chalcophile and
siderophile elements was used as an external calibration standard. Detection limits
for LA-ICP-MS analyses are calculated as average background concentrations plus
three standard deviations. Average detection limits for Au and PGE are: Au (0.008
p.p.m.); Os (0.08 p.p.m.); Ir (0.01 p.p.m.); Ru (0.03 p.p.m.); Rh (0.006 p.p.m.);
Pt (0.03 p.p.m.) and Pd (0.04 p.p.m.).

Data availability. The authors declare that the data supporting the findings of this
study are available within the paper and its Supplementary Information files.
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