Tabla de contenido

1. Introducción1		
1.1.	Antecedentes generales	1
1.1.1	. Materiales Cerámicos	1
1.1.2	. Dopaje	2
1.2.	Motivación	2
1.3.	Objetivos y alcances	2
1.3.1	. Objetivo general	3
1.3.2	. Objetivos específicos	3
1.3.3	. Alcances	3
2. Ante	cedentes específicos	3
2.1.	Celdas de combustible de óxido sólido	3
2.2.	Celdas electrolizadoras de óxido sólido	5
2.3.	Materiales perovskíticos y $La0.6Sr0.4FeO3 - \delta$ como material para cátodos	6
2.4.	$La0.6Sr0.4FeO3 - \delta$ dopado con Mn	8
2.5.	$La0.6Sr0.4FeO3 - \delta$ dopado con <i>Mo</i>	11
2.6.	Síntesis Sonoquímica	14
2.7.	Técnica de excitación por impulso (IET)	15
2.8.	Indentación de Micro Dureza Vickers y Tenacidad a la Fractura	17
2.9.	Estructura Cristalina y Composición de Fases	20
3. Meto	odología	22
3.1.	Metodología Experimental	22
3.2.	Síntesis de Nanopolvos	23
3.3.	Prensado Uniaxial de Nanopolvos y Sinterización	24
3.4.	Pulido y Limpieza	25
3.5.	Thermal Etching	26
3.6.	Difracción de Rayos X	27
3.7.	Excitación de Impulso IET	28
3.8.	Indentación y Fotografía SEM	29
3.9.	Recursos	30
3.9.1	. Recursos no financieros	30
3.9.2	. Reactivos Químicos	31
4. Resu	ltados y Discusión	32
4.1. Caracterización Mecánica		
5. Conclusiones		

6.	Bibliografía	. 4	9
----	--------------	-----	---

Índice de tablas

Tabla 3.1: Reactivos utilizados en síntesis de nanopolvos	23
Tabla 4.1: Reactivos utilizados para síntesis de La0.6Sr0.4FeO3.	
Tabla 4.2: Reactivos utilizados para síntesis de $La0.6Sr0.4Mo0.1Fe0.903 - \delta$	
Tabla 4.3: Reactivos utilizados para síntesis de $La0.6Sr0.4Mn0.1Fe0.903 - \delta$	
Tabla 4.4: Frecuencias naturales para modos de pastilla de LSF.	
Tabla 4.5: Frecuencias naturales para modos de pastilla de LSMnF	
Tabla 4.6: Frecuencias naturales para modos de pastilla de LSMoF	
Tabla 4.7: Variables y módulo de Young para La0.6Sr0.4FeO3.	
Tabla 4.8: Variables y módulo de Young para $La0.6Sr0.4Mn0.1Fe0.903 - \delta$	
Tabla 4.9: Variables y módulo de Young para La0.6Sr0.4Mo0.1Fe0.903 – δ	
Tabla 4.10: Durezas y Tenacidades para La0.6Sr0.4FeO3.	
Tabla 4.11: Durezas y tenacidades para La0.6Sr0.4Mn0.1Fe0.903 – δ	
Tabla 4.12: Durezas y tenacidades para $La0.6Sr0.4Mo0.1Fe0.903 - \delta$	

Índice de figuras

Figura 2.1: Esquema de una celda combustible de óxido sólido en operación
Figura 2.5: Patrones XRD para discos de LSCF, LSNF y LSCuF sinterizados a 1250°C por 2 [hr].
Figura 2.6: Sobrepotencial catódico en función de la intencidad de corriente durante la electrólisis a 1073K para La0.6Sr0.4Fe0.9M0.103-δ10
Figura 2.7: Comportamiento de diferentes composiciones de perovskitas catódicas para la electrólisis de CO2
Figura 2.8: Espectro de difracción de rayos X para La0.6Sr0.4Mo0.1Fe0.9O3-δ fabricado mediante método cítrico ácido-nitrato
Figura 2.9: Conductividades del La0.6Sr0.4Mo0.1Fe0.9O3-δ y del LaSrFeO3 entre 300 y 800°C
Figura 2.10: Conductividad del La0.6Sr0.4Mo0.1Fe0.903- δ en atmósferas de 02, aire y N2 en un rango de temperaturas entre 300 y 800°C
Figure 2 11: Modos de vibración para discos donde $d > 10 \cdot h$
Figura 2.12: Configuración de los equipos y elementos para la toma de datos
Figura 2.13: Imágenes de indentaciones generadas con microscopio electrónico de barrido (SEM). Fuente: Elaboración Propia
Figura 2.14: Variables importantes a medir en indentación Vickers
Figura 2.15: Patrones XRD para discos de LSCF, LSNF y LSCuF sinterizados a 1250°C por 2 horas
Figura 2.16: Laboratorio de Difracción de Rayos X DFI
Figura 3.1: Equipos para filtración al vacío
Figura 4.0.2: Mortero con nanopolvos de La0.6Sr0.4Mo0.1Fe0.9O3-δ sin calcinar34
Figura 4.0.3: Nanopolvos de La0.6Sr0.4Mn0.1Fe0.9O3-δ y La0.6Sr0.4FeO3 en cápsulas plásticas
Figura 4.6: Equipo de ensayo de tracción-compresión con el molde cargado dispuesto en su interior.
Figura 4.7: Pastillas de La0.6Sr0.4Mn0.1Fe0.9O3-8 y La0.6Sr0.4FeO3 sobre un crisol, dispuesto
sobre un ladrillo refractario antes de entrar al proceso de sinterizado
Figura 4.8: Lijas utilizadas en pulido de muestras
Figura 4.9: Limpieza de pieza en tina de ultrasonido. Figura 24: Horno Nabertherm utilizado en
Tratamientos termicos
Figura 4.10: Diffactograma obtenido para Lau.oSru.4Mnu.1Feu.903-o y
Educosi C.4 Moo.1 Feb. 905-0 sintenzados à 1250 C poi 2[iii]
Figura 4.12: Gráfico de barras comparativo de la densidad aparente de las pasinias estudiadas. 41
41
Figura 4.13: Disposición de indentaciones en muestras
Figura 4.14: Gráfico de dureza para F=4,904 y 9,807 para materiales en estudio
Figura 4.15: Gráfico de tenacidad Anstis para F=4,904 y 9,807 para materiales en estudio 45 Figura 4.16: Gráfico de tenacidad Niihara para F=4,904 y 9,807 para materiales en estudio 46