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We introduce a dynamic data structure for the compact representation of binary relations R ⊆ A × B . The 

data structure is a dynamic variant of the k 2 -tree, a static compact representation that takes advantage 

of clustering in the binary relation to achieve compression. Our structure can efficiently check whether 

two objects ( a, b ) ∈ A × B are related, and list the objects of B related to some a ∈ A and vice versa. Ad- 

ditionally, our structure allows inserting and deleting pairs ( a, b ) in the relation, as well as modifying the 

base sets A and B . We test our dynamic data structure in different contexts, including the representation 

of Web graphs and RDF databases. Our experiments show that our dynamic data structure achieves good 

compression ratios and fast query times, close to those of a static representation, while also providing 

efficient support for updates in the represented binary relation. 
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1. Introduction 

Binary relations arise everywhere in Computer Science: graphs,

matchings, discrete grids or inverted indexes in document retrieval

are just some examples. Consider a binary relation between two

sets A and B , defined as a subset R ⊆ A × B . Typical operations of

interest in a binary relation are: determine whether a pair ( a, b )

is in R , find all the elements b ∈ B such that (a, b) ∈ R , given a

∈ A , and vice versa. More sophisticated ones aim, for example, at

retrieving all pairs (a, b) ∈ R where a ∈ [ a 1 , a 2 ] and b ∈ [ b 1 , b 2 ]. 

Web graphs, where nodes are Web pages and relations are hy-

perlinks, can be seen as a binary relation between two (usually

equal) sets of Web pages A and B . In this context, basic binary re-

lation operations are translated into queries to find the direct or

reverse neighbors of a node. The “range” query involving all pairs

(a, b) ∈ R where a ∈ [ a 1 , a 2 ] and b ∈ [ b 1 , b 2 ] can be used to re-

trieve all the links between two Web sites, considering that Web
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ages are sorted lexicographically and therefore all pages in a Web

ite are consecutive in an ordering of the base sets. In the context

f document retrieval, an inverted index can be seen as a binary

elation between a set of documents D and a set of terms (usually

ords) �. In this context, we can use binary relation operations to

nd all the documents where a term w appears (all d ∈ D where

(w, d) ∈ R ⊆ D × �) or to find whether a term appears in a docu-

ent (checking if (w, d) ∈ R ). 

In addition to the previous examples, other multidimensional

ata can be naturally represented as collections of binary relations.

 usual case occurs when a dataset contains “labeled” relations be-

ween two base sets (that is, the relation itself has a property or

abel); in this case, a 3-dimensional dataset can actually be seen as

 collection of binary relations, one for each value in the third di-

ension. A good example of this kind of datasets is RDF (Resource

escription Framework) graphs. RDF is a standard for the repre-

entation of knowledge in the Web of Data. RDF graphs are labeled

raphs with a set of subject (origin) nodes S , a set of target (object)

odes and a set of predicates (labels) P . An edge in an RDF graph

epresents a property of element s , given by predicate p and with

alue o . A usual strategy to store and query these datasets is to ap-

ly a vertical partitioning strategy [2] to divide the data by pred-

cate, since the number of predicates is generally small. Through

ertical partitioning, an RDF graph can be transformed into a col-

ection of binary relations R p ⊆ (S, O ) for each p ∈ P , representing

he valid pairs ( s, o ) for each predicate. 

There are two natural ways to represent binary relations: a bi-

ary adjacency matrix or an adjacency list. On large binary rela-

ions, reducing space while retaining functionality is crucial in or-
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er to operate efficiently in main memory. Therefore, simple repre-

entations such as plain adjacency matrices are usually unfeasible

n these datasets. On the other hand, simple adjacency lists can

fficiently compress sparse binary relations, but an adjacency list

epresentation usually lacks the ability to answer queries symmet-

ically, or to efficiently retrieve information on ranges of elements.

he limitations of simple data structures has led to different pro-

osals for compressing general binary relations [3] , as well as spe-

ific ones such as Web graphs [4] . 

Brisaboa et al. [5] introduced a compact data structure called

 

2 -tree . It was initially proposed for the compression of Web

raphs, where it was shown to be very competitive (see also [6] ).

ince then, it has also been successfully applied to other domains

uch as RDF databases [7] and social networks [6] . In fact, k 2 -

rees can be used for the representation of general binary relations

nd take advantage of clustering in the binary matrix to achieve

ompression. They support elegantly all the described operations

simple and sophisticated) as instances of the most general range

uery. 

However, just like the other compressed representations of

raphs and binary relations, k 2 -trees are essentially static. This dis-

ourages their use in cases where the binary relation changes due

o the insertion or deletion of pairs ( a, b ) (e.g., adding or removing

dges in a graph) or of elements in A and B (e.g., adding or remov-

ng graph nodes, or words or documents in inverted indexes). 

Dynamic representations of compact data structures are usu-

lly affected by a slowdown factor over the equivalent static data

tructure [8, Chapter 12] . For example, a dynamic bitmap has a

ower bound of �( log n 
log log n 

) for many operations that static bitmaps

olve in O(1) . Another example exists in 2-dimensional grids, that

re queried by k 2 -trees: range reporting queries have a complex-

ty of O( log n 
log log n 

) in a static representation, but a lower bound of

(( log n 
log log n 

) 2 ) exists in a dynamic approach. Hence dynamic repre-

entations of a structure like the k 2 -tree are expected to be slower,

nd larger, than a static representation, in many cases. In practice,

n applications where update operations are required, the slow-

own factor of the dynamic representation and the frequency of

pdates become key to determine which is the best approach. 

In this paper we introduce the dk 2 -tree , a dynamic version of

he k 2 -tree. Our data structure achieves space utilization close to

hat of the static structure, and allows the insertion and dele-

ion of pairs and elements in the sets (i.e., changing bits and

nserting/deleting rows/columns in the binary matrix). Our ex-

eriments show that dk 2 -trees achieve good space/time tradeoffs

n comparison with the equivalent static representation. In Web

raphs, where k 2 -trees obtained good compression results and

uery times, our dynamic representation obtains query times less

han twice those of the static representation. Our results also show

hat, depending on the characteristics of the datasets, update oper-

tions in the dk 2 -tree can also be as efficient as queries. 

We apply our proposal to the representation of RDF databases,

here static k 2 -trees were competitive with state-of-the-art al-

ernatives but lacked the update capabilities usually required in

his kind of graphs [9] . We show that our representation can eas-

ly answer all queries supported by static k 2 -trees using simi-

ar algorithms, while providing update capabilities. Our dynamic

ata structure only requires a 20–50% space overhead to store the

ataset, and requires less than twice the query times of the equiva-

ent static representation to answer most of the queries. We choose

DF databases as an example where static k 2 -trees have already

een used but are limited by their static nature. However, there

re several other application domains where the use of a dynamic

ata structure for the compact representation of binary relations

ould also be worthwhile: time-evolving regions (e.g. oil stains),

ommunication networks, social graphs, etc. 
o
. Related work 

.1. Previous concepts 

In this section we present some necessary background to bet-

er understand our contribution and to make the manuscript self-

ontained. 

.1.1. Rank and select over bitmaps 

Bit vectors (often referred to as bitmaps, bit strings, etc.) sup-

orting rank and select operations [10] are the basis of many other

uccinct data structures. We next describe them in detail. 

Let be B [1, n ] a binary sequence of size n . Then rank and select

re defined as: 

• rank b (B, p) = i if the number of occurrences of the bit b from

the beginning of B up to position p is i . 

• select b (B, i ) = p if the i th occurrence of the bit b in the se-

quence B is at position p . 

Given the importance of these two operations in the perfor-

ance of other succinct data structures, like full-text indexes [11] ,

any strategies have been developed to efficiently implement rank

nd select . 

Jacobson [10] proposed an implementation for this problem

ble to compute rank in constant time. It is based on a two-

evel directory structure. The first-level directory stores rank b ( B,

 ) for every p multiple of s = � log n � � log n/ 2 � . The second-level

irectory holds, for every p multiple of b = � log n/ 2 � , the rela-

ive rank value from the previous multiple of s . Following this ap-

roach, rank 1 ( B, p ) can be computed in constant time adding val-

es from both directories: the first-level directory returns the rank

alue until the previous multiple of s . The second-level directory

eturns the number of ones until the previous multiple of b . Fi-

ally, the number of ones from the previous multiple of b until

 is computed sequentially over the bit vector. This computation

an be performed in constant time using a precomputed table that

tores the rank values for all possible block of size b . As a result,

ank can be computed in constant time. The select operation can

e solved using binary searches in O (log log n ) time. The sizes s

nd b are carefully chosen so that the overall space required by

he auxiliary dictionary structures is o ( n ): O ( n /log n ) for the first-

evel directory, O ( n log log n /log n ) for the second-level directory and

 (log n log log n ) for the lookup table. Later works by Clark [12] and

unro [13] obtained constant time complexity also for the select

peration, using additional o ( n ) space. For instance, Clark proposed

 new three-level directory structure that solved select 1 , and could

e duplicated to also answer select 0 . 

The previous proposals solve the problem, at least in theory,

f adding rank and select support over a bit vector using o ( n ) ad-

itional bits. However, further work was devoted to obtain even

ore compressed representations, taking into account the actual

roperties of the binary sequence [14–16] . 

Another alternative study, called gap encoding , aims to com-

ress the binary sequences when the number of 1 bits is small.

t is based on encoding the distances between consecutive 1 bits.

everal developments following this approach have been presented

17–21] . 

.1.2. ETDC and DETDC 

End-Tagged Dense Code (ETDC): It is a semi-static statistical byte-

riented encoder/decoder [22,23] , that achieves very good com-

ression and decompression times while keeping similar compres-

ion ratios to those obtained by Plain Huffman [24] (the byte-

riented version of Huffman [25] that obtains optimum byte-

riented prefix codes). 
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1 The size of the matrix is assumed to be a power of k . If n is not a power of k , we 

use instead n ′ = k � log n 	 , the next power of k . Conceptually, the matrix is expanded 

with new zero-filled rows and columns until it reaches n ′ × n ′ . 
2 We refer the reader to [28] for specific implementation details. 
Consider a sequence of symbols D = d 1 . . . d n . In a first pass

ETDC computes the frequency of each different symbol in the se-

quence, and creates a vocabulary where the symbols are placed

according to their overall frequency in descending order. ETDC as-

signs to each entry of the vocabulary a variable-length code, that

will be shorter for the first entries of the vocabulary (more fre-

quent symbols). Then, in a second pass, each symbol of the original

sequence is replaced by the corresponding variable-length code. 

The key idea in ETDC is to mark the end of each codeword

(variable-length code): the first bit of each byte will be a flag, set

to 1 if the current byte is the last byte of a codeword, or 0 other-

wise. The remaining 7 bits in the byte are used to assign the dif-

ferent values sequentially, which makes the codeword assignment

extremely simple in ETDC. Consider the symbols of the vocabulary,

that are stored in descending order by frequency: the first 128 (2 7 )

symbols will be assigned 1-byte codewords, the next 128 2 sym-

bols will be assigned 2-byte codewords, and so on. The codewords

are assigned depending only on the position of the symbol in the

sorted vocabulary. The simplicity of the code assignment is the ba-

sis for the fast compression and decompression times of ETDC. In

addition, its ability to use all the possible combinations of 7 bits to

assign codewords makes it very efficient in space. Notice also that

ETDC can work with a different chunk size for the codewords: in

general, we can use any chunk of size b , using 1 bit as flag and the

remaining b − 1 bits to assign codes, hence having 2 b−1 codewords

of 1 chunk, 2 2(b−1) codewords of 2 chunks and so on. Neverthe-

less, bytes are used as the basic chunk size ( b = 8 ) in most cases

for efficiency. 

Dynamic End-Tagged Dense Code (DETDC): It is an adaptive (one-

pass) version of ETDC [26] . As an adaptive mechanism, it does not

require to preprocess and sort all the symbols in the sequence be-

fore compression. Instead, it maintains a vocabulary of symbols

that is modified according to the new symbols received by the

compressor. 

The solution of DETDC for maintaining an adaptive vocabu-

lary is to keep the vocabulary of symbols always sorted by fre-

quency. This means that new symbols are always appended at the

end of the vocabulary (with frequency 1), and existing symbols

may change their position in the vocabulary when their frequency

changes during compression. 

The process for encoding a message starts by reading the mes-

sage sequentially. Each symbol read is looked up in the vocabulary,

and processed depending on whether it is found or not: 

• If the symbol is not found in the vocabulary it is a new sym-

bol, therefore it is appended at the end of the vocabulary with

frequency 1. The encoder writes the new codeword to the out-

put, followed by the symbol itself. The decoder can identify a

new symbol because its codeword is larger than the decoder’s

vocabulary size, and add the new symbol to its own vocabulary.

• If the symbol is found in the vocabulary, the encoder simply

writes its codeword to the output. After writing to the output,

the encoder updates the frequency of the symbol (increasing it

by 1) and reorders the vocabulary if necessary. Since the sym-

bol frequency has changed from f to f + 1 , it is moved to the

region where symbols with frequency f + 1 are stored in the

vocabulary. This reordering process is performed swapping ele-

ments in the vocabulary. The key of DETDC is that the encoder

and the decoder share the same model for the vocabulary and

update their vocabulary in the same way, so changes in the vo-

cabulary during compression can be automatically performed

by the decoder using the same algorithms without transmitting

additional information. 

DETDC and its variants are able to obtain very good results to

compress natural language texts, obtaining compression very close
o original ETDC without the first pass required by the semi-static

pproach. 

.2. The k 2 -tree 

A k 2 -tree is conceptually a k 2 -ary tree built by recursively parti-

ioning a binary matrix. At each partitioning step, the current ma-

rix of size n × n is divided into k 2 submatrices of size n / k × n / k . 1

ig. 1 shows a 10 × 10 binary matrix, virtually expanded to size

6 × 16, and the conceptual k 2 -tree that represents it, for k = 2 .

he submatrices are numbered from 0 to k 2 -1, starting from left

o right and top to bottom. The first level of the tree contains one

ode with k 2 children, representing the k 2 submatrices in which

he original matrix is divided following a quadtree-like subdivision.

ach node is represented using a single bit: 1 if the submatrix has

t least one cell with value 1, or 0 otherwise. A 0 child means that

here are no ones in the corresponding submatrix, and it has no

hildren. The decomposition continues recursively for each 1 child

ntil the current submatrix is full of zeros or we reach the individ-

al cells of the original matrix. The underlying conceptual tree is in

act an MX-Quadtree [27] , that recursively decomposes the space

n four quadrants stopping only when the region is fully empty (all

ells set to 0) or when the maximum precision is reached (individ-

al cells of the adjacency matrix). Hence, a k 2 -tree that uses k = 2

an be seen as a compact and efficient representation of this con-

eptual quadtree. 

This conceptual tree is implemented using two bit arrays: T

ontains the bits for all the levels of the tree except for the last

ne, taken in a levelwise traversal of the tree. L stores the bits of

he last level of the tree. 

The k 2 -tree allows navigation of the conceptual tree using only

he bitmap representations thanks to a basic property: given any

nternal node in the k 2 -tree (a position pos in T ), its k 2 children

ill be located at pos ′ = rank 1 (T , pos ) × k 2 , because each bit set to

ne adds k 2 bits to the next level and bits set to zero do not have

escendants. If the position exceeds the length of T , L [ pos ′ − | T | ] is
sed. A rank structure is built over T to provide an efficient rank 1 
peration. All query operations are based on this basic navigation

f the conceptual tree. 

To access a cell of the matrix, the tree is navigated from the

oot until a 0 is found or the last level is reached. At each level,

he child whose submatrix contains the target cell is selected. If

he bit value of that node is 0 we know the cell in the region is

 0, and navigation ends. If the value is 1, we proceed recursively

o the appropriate children. For instance, let us suppose we want

o retrieve the value of the cell at row 9, column 6 in the matrix

f Fig. 1 . The path to reach that cell has been highlighted in the

onceptual k 2 -tree. To perform this navigation, 2 we would start at

he root of the tree (position 0 in T ). In the first level, we need to

ccess the third child (offset 2), since we are accessing the bottom-

eft quadrant; hence we access position 2 in T . Since T [2] = 1 , we

now we are in an internal node. Its children will begin at posi-

ion rank 1 (T , 2) × k 2 = 12 , where we find the bits 0100 . In this

evel we must access the second child (offset 1), so we check

 [12 + 1] = T [13] = 1 . Again, we are at an internal node, and its

hildren are located at position rank 1 (T , 13) × k 2 = 9 × 4 = 36 . We

ave reached the third level of the conceptual tree, and we need to

ccess now the second child (offset 1). Again, T [36 + 1] = 1 , so we

ompute the position of its children using p = rank 1 (T , 36) × 4 =
0 . Now p is higher than the size of T (40), so the k 2 bits will be

ocated at position p − | T | = 80 − 40 = 40 in L . Finally, in L we find
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Fig. 1. Example of k 2 -tree for a binary matrix using k = 2 . 
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Fig. 2. Dynamic k 2 -tree representation. 
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he k 2 bits 1010 , and need to check the third element. We find a

 in L and return the result. 

In addition to the retrieval of a single cell of the matrix, k 2 -

rees can perform other operations efficiently: with some addi-

ional calculations, we can modify the basic search to find all the

nes in a row/column, or a range [a 1 , a 2 ]–[b 1 , b 2 ]. To do this, at

ach level of the k 2 -tree we must access all the children of the cur-

ent node that overlap the region we are interested in, traversing

ll the branches of the tree that intersect the region of interest. The

ost to perform a general range reporting query in a k 2 -tree, over

 region of size p × q , is bounded by the size of the region and the

umber occ of results found. The upper bound for the query time is

 (p + q + (occ + 1) k log k s ) , where s is the size of the longest side

f the matrix [8, Section 10.2.1] . 

.2.1. Improvements 

Several enhancements have been proposed to obtain better

ompression results in the k 2 -tree (see [29] ). The first modification

s the use of different values of k in different levels of the k 2 -tree.

y using a bigger k for the first levels and a smaller value for the

emaining ones, one can achieve better query times (because the

 

2 -tree’s height is reduced) with good space results. This is called

 hybrid k 2 -tree representation. 

Another major improvement proposed over basic k 2 -trees is the

se of a compression method for the bitmap L . In this approach,

he lowest levels of the k 2 -tree are grouped, yielding submatrices

f size k ′ × k ′ (for instance, to use 8 × 8 submatrices as the last

evel of the tree instead of 2 × 2). These submatrices are sorted

ccording to their overall frequency and stored in a matrix vo-

abulary L voc . Then, the bitmap L is replaced by a sequence of

ariable-length codes L seq . The variable-length codes are assigned

sing (s,c)-Dense Codes [30] , and L seq is encoded using Direct Ac-

ess Codes [31] to provide direct access to any entry in the se-

uence. This variant can reduce significantly the size of the repre-

entation while showing similar query times. 

. The dynamic k 

2 -tree: dk 

2 -tree 

.1. Data structures 

The conceptual k 2 -tree is represented, in its static variant, us-

ng two bit arrays, T and L . In our dynamic version, we represent

 and L with two trees, that we call T tree and L tree . Our approach

o represent the k 2 -tree using these trees is called dk 2 -tree . Our

rees, T tree and L tree , are in fact practical implementations of dy-

amic bit vectors [32] replacing the static bitmaps T and L . The
eaves of T tree and L tree contain roughly the bits in T and L , while

he internal nodes provide access to arbitrary positions and also

ct as a dynamic rank structure. 

Consider a static k 2 -tree representation (bitmaps T and L ). To

uild a dk 2 -tree representation from it, we partition T and L in

locks of up to B bits. The generated blocks will be the leaves of

 tree and L tree . The internal nodes of our trees contain a set of en-

ries that allow us to access the leaves for query and update op-

rations. Each entry in T tree is of the form 〈 b, o, P 〉 , where b and

 are counters and P is a pointer to the corresponding child node.

he values b and o in each entry will allow us to efficiently access

nd perform rank operations in the dynamic bitmaps. If P points

o a leaf node, the counters will store the number b of bits stored

n the leaf and the number of them that are ones ( o ). If P points

o an internal node, b and o will contain the sum of all the b - and

 -counters in the child node. Internal nodes in L tree are very sim-

lar, but entries only store values 〈 b, P 〉 , since rank support in L is

ot needed. Fig. 2 shows a dk 2 -tree representation for the k 2 -tree

f Fig. 1 . Values of b - and o -counters are represented in the nodes,

nd pointers are visually represented. 

The nodes of T tree and L tree may in general be partially empty.

ach node has a maximum and minimum capacity and may con-
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tain any number of bits or entries between those parameters. A

size field is added to keep the current size of a node. In leaf nodes,

this field contains the number of bits stored in the block. In inter-

nal nodes, it stores the number of fixed-size entries used. The tree

is completely balanced, and nodes may be split or merged when

the contents change. The behavior of T tree and L tree on update op-

erations will be explained in more detail in Section 3.3 . 

3.2. Query algorithms 

All the queries supported by k 2 -trees are based on access and

rank operations over the bitmaps T and L . As explained before, our

tree structures, T tree and L tree , are essentially dynamic replacements

for the static bitmaps. By providing basic support for these two

simple operations in the bitmaps stored by T tree and L tree , all the

queries supported by static k 2 -trees can be directly supported by

our dk 2 -tree. 

The navigation of a conceptual k 2 -tree is based on a sequence

of access operations, to check the value of a node, followed by pos-

sible rank operations to locate its children. The access operation,

that is trivial in a static bitmap, is decomposed in our T tree and L tree 

in two steps: first, an operation findLeaf is used to locate the leaf

that contains the desired bitmap, and the offset in the leaf node

where the bit should be; then, we access the leaf node’s bitmap

to retrieve the actual values. This findLeaf operation also computes

information about the number of ones up to the beginning of the

leaf node, to allow efficient computation of rank operations if nec-

essary. 

Two slightly different algorithms are used to access a leaf in

T tree and L tree , but the essential steps are the same. Starting at the

root of T tree or L tree , the entries of the current node are checked

from left to right, accumulating the values of b - and o -counters in

two variables, b before and o before , until we exceed the desired po-

sition p . The algorithms proceed to the corresponding child node

that would contain p . When a leaf node is found, the values of

b before and o before contain the bit count and rank to the left of the

node. 

Once findLeaf returns the leaf node N � that contains the desired

position, we can access the desired bit at position p − b before in the

bitmap of the leaf node ( T � ). If the bit has value 0, navigation ends.

Otherwise, and assuming we are still in the upper levels of the

conceptual k 2 -tree, we would need to locate its children, that will

be located at position rank 1 (T tree , p) × k 2 . The rank value is com-

puted as o before + rank 1 (T � , p − b before ) . 

The rank operation in T � can still be a costly operation for rela-

tively large node sizes. In order to speed up the local rank opera-

tion inside the leaves of T tree ( rankLeaf operation), we add a small

rank structure to each leaf of T tree . This rank structure is simply a

set of counters that stores the number of ones in each block of S T 
bits. S T determines the number of samples that are stored in each

leaf and provides a space/time tradeoff for the local rank opera-

tion inside the leaves of T tree . Using this modified leaf structure,

rank 1 ( T � , p ) is obtained adding the values of all samples previous

to position p and performing a sequential counting operation only

from the last sampled position. 3 

3.2.1. Improving access times 

An actual query in a k 2 -tree involves usually a top-down traver-

sal, following a number of branches of the conceptual tree. This

top-down traversal actually translates into a set of accesses to the

bitmaps T and L . These accesses follow a well-defined pattern,

starting at the beginning of the bitmap and accessing new posi-

tions left to right. 
3 With a cost comparable to that of many practical static rank structures. 

 

c  
Taking advantage of this property, we propose an alternative

trategy to navigate the dk 2 -tree. In this strategy, to access a po-

ition in T tree or L tree we start the search from the previously ac-

essed leaf instead of the root node. Instead of a fixed number of

nternal nodes to be traversed top-down, the new algorithm will

rst traverse the tree bottom-up until a descendant of the new

ode is found, and then continue top-down as the original algo-

ithm. This method aims at taking advantage of the access patterns

n the k 2 -tree bitmaps, since many accesses, especially in upper

evels, will be located in the same or very close leaf nodes in T tree .

To be able to start search from a previously accessed leaf node,

 new findLeaf ∗ operation must store a small array containing in-

ormation about the last traversed path. levelData [ T tree .depth ] is

ept, that stores for each level of T tree , an entry 〈 N, e, s, b, o 〉 , where

 is the T tree node accessed at that level, e the entry that was tra-

ersed, s is the number of bits covered by N and b and o are the

alues of b before and o before . A similar array is kept for L tree , only

gnoring the o values in each entry. 

The path information from the previous call allows findLeaf ∗ to

etermine whether the current leaf node contains the new desired

osition. If it does, the method returns immediately. Otherwise, the

arent node is checked recursively until we find an internal node

hat “covers” the new position. From that point on, the algorithm

ehaves exactly like the original findLeaf and its top-down traver-

al. 

.3. Update operations 

In addition to the queries supported by static k 2 -trees, dk 2 -

rees must support update operations over the binary relation.

irst, relations between existing elements may be created or

eleted (changing zeros of the adjacency matrix into ones and vice

ersa). Additionally, dk 2 -trees support changes in the base sets of

he binary relation (new rows/columns can be added to the binary

djacency matrix, and existing rows/columns can be removed as

ell). 

.3.1. Changing the contents of the binary matrix 

Changes in the binary matrix represented by a k 2 -tree lead to

 set of modifications in the conceptual tree representation, essen-

ially the creation or removal of branches in this conceptual k 2 -

ree. We will describe the changes caused in the conceptual tree

nd its bitmap representation. Then we will explain how these

hanges in the bitmaps are implemented over the data structures

 tree and L tree . 

In order to insert a new 1 in a binary matrix represented with

 k 2 -tree, we need to make sure that an appropriate path exists in

he conceptual tree that reaches the cell. The insertion procedure

egins searching for the cell that has to be inserted, until a 0 is

ound in the conceptual tree. Two cases may occur: 

• If the 0 is found in the last level of the conceptual tree, the 0

is simply replaced by a 1 to mark the new value of the cell and

the update is complete. 

• If the 0 is found in the upper levels of the conceptual tree, a

new path must be created in the conceptual tree until the last

level is reached. First, the 0 is replaced with a 1 as in the pre-

vious case. Then, groups of k 2 bits must be added in the lower

levels. After replacing the 0 with a 1, a rank operation is per-

formed to compute the position where its children should be

located. Then k 2 0 bits are added as children, and the one that

“covers” the position inserted is set to 1. The procedure contin-

ues recursively until it reaches the last level in the conceptual

tree. 

Notice that there is still a third scenario corresponding to the

ase where a 1 already exists in the cell to be inserted. However
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Fig. 3. Insert operation in a k 2 -tree: changes in the conceptual tree. 
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i  
e do not consider it, as in this case the element is already in-

erted (and the appropriate path is already present as well), hence

o change is actually made in the representation. Fig. 3 shows an

xample of insertion in a conceptual tree. At a given level in the

onceptual tree a 0 is found and replaced with a 1, and a new

ath is created adding k 2 bits to all the following levels. The new

ranch is highlighted in gray and the changes in the bitmaps of

he k 2 -tree are also highlighted. 

To change a 1 into a 0 in the binary matrix, we need to set to 0

he bit of the last level that corresponds to the cell. Then, the cur-

ent branch of the conceptual tree must be checked and updated if

ecessary. First, we locate the position of the cell to be deleted in

he tree. The bit (node) corresponding to that cell is set to 0. Af-

er this, we check the k 2 − 1 bits corresponding to the siblings of

hat node. If at least one of the bits is set to 1 the procedure ends.

owever, if all of them are set to 0, this means that there are no 1s

emaining in the current branch: we need to delete the complete

roup of k 2 0 bits, move one level up in the conceptual tree and

et the bit corresponding to their parent node to 0. We recursively

epeat the same procedure upwards until a group of non-zero k 2 

its is found. 

Summarizing the previous explanation, in order to support in-

ertions and deletions in the conceptual dk 2 -tree we only need

o provide three basic update operations in the dynamic bitmaps

 tree and L tree : flipping the value of a single bit, adding k 2 bits at
Fig. 4. Insert operation in a dk 2 -tree:
 given position and removing k 2 bits starting at a given position.

or example, Algorithm 1 shows the complete process of insertion

lgorithm 1 Insert operation. 

function insert (tree, r, c) 
p ← 0 
mode ← Search 
for l ← 0 to tree.nlevels - 1 do 

5: p ← computeChild (p, r, c, l) 
( N � , b before , o before ) ← findLeaf ( T tree , p) 
T � ← N � .data 
if mode = Search then 

if access (T � , p − b before ) = 0 then 
10: flip (T � , p − b before ) 

mode ← Append 
end if 

else 
append4 (T � , p − b before ) 

15: flip (T � , p − b before ) 
end if 
rank ← o before + rank 1 (T � , p − b before ) � rank 1 (tree, p)
p ← rank × k 2 

end for 
0: l ← tree.nl e v el s 

p ← p − tree.T tree .length 
p ← computeChild (p, r, c, l) 
( N � , b before ) ← findLeaf ( L tree , p) 
T � ← N � .data 

5: if mode = Search then 
if access (T � , p − b before ) = 0 then 

flip (T � , p − b before ) 
mode ← Append 

end if 
0: else 

append4 (T � , p − b before ) 
flip (T � , p − b before ) 

end if 
end function 

f new 1s in the matrix. 

To flip a single bit in T tree or L tree , we first retrieve the leaf node

 � . The bit is changed in the bitmap of N � and its local rank di-

ectory is updated (simply adding or subtracting 1 to the value of

he appropriate counter). Finally, if we are updating T tree , the o -

ounters in the entries followed in the path to N � must be updated

o reflect the change. Fig. 4 shows an example of the conceptual

hanges as applied to the actual tree structures. 

To add k 2 bits at a given position in N � , the k 2 bits are inserted

n the bitmap of N � directly, and the counters in the rank directory
 changes in the data structures. 
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of N � must be updated accordingly (in this case, all the counters

from the position in N � where the insertion has been done until

the end of N � bitmap must be updated, since the bitmap is dis-

placed). After updating N � , the b - and o -counters of its ancestors

are also updated accordingly (the b - and o -counters are increased

by k 2 and 1, respectively). Notice that we only update the b - and

o -counters of the entries in the path to N � because only those en-

tries are affected by changes in the bitmap of N � . 

When a leaf of T tree or L tree reaches its maximum node size we

split it in two nodes, always keeping groups of k 2 sibling bits in

the same leaf. This change is propagated to the parent of the leaf

node, causing the insertion of a new entry pointing to the new

node and updating the b - and o -counters accordingly. Eventually,

internal nodes may also be split, evenly splitting their entries in

two new nodes. 

To achieve better space utilization the dk 2 -tree can store nodes

of different maximum sizes. Given a base node size B , we allow

a number e of partial expansions of the node before splitting it.

Hence, T tree and L tree may contain nodes of size B , B + 

B 
e +1 , ���, B +

(e ) B 
e +1 (class-0, ���, class- e nodes). If a node overflows, its contents

are reallocated in a node of the next class. If a fully-expanded node

overflows, it is split into two class-0 nodes. 

3.3.2. Changes in the rows/columns of the adjacency matrix 

The dk 2 -tree also supports the insertion of new rows/columns

in the adjacency matrix it represents, as well as deletion of existing

rows/columns. 

The insertion of new rows/columns to the adjacency matrix is

trivial in many cases in the dk 2 -tree. Note that if the size of the

matrix is not a power of k it is virtually expanded to the next

power of k to represent it with a k 2 -tree. Therefore, in a k 2 -tree

we usually have unused rows and columns that can be made avail-

able. If the size of the matrix is exactly a power of k we can easily

add new unused rows expanding the matrix. To do this, we add a

new root node to the conceptual k 2 -tree: its first child will be the

current root and its k 2 -1 remaining children will be 0. This virtu-

ally increases the size of the matrix from k n × k n to k n +1 × k n +1 .

This operation simply requires the insertion of k 2 bits 10 0 0 at the

beginning of T tree . 

To delete an existing row/column, the procedure is symmetric

to the insertion. The last row/column of the matrix can be removed

by updating the actual size of the matrix and zeroing out all its

cells. Rows/columns at other positions may be deleted logically, by

adding these positions to a list of deleted rows and columns after

zeroing all their cells. This deleted rows/columns could be reused

later when new rows/columns are inserted, by just taking one from

the list. 

3.4. Analysis 

As previously stated in Section 1 , dynamic representations of

compact data structures are usually affected by a slowdown factor

that limits their overall efficiency when compared to a static repre-

sentation. The static k 2 -tree is essentially a LOUDS-based cardinal

tree, and a dynamic representation of a LOUDS tree has a slow-

down factor of O(ω) to perform range queries [8, Section 12.5.2] .

In the RAM model, we can assume this to mean a slowdown of

O( log n ) for any dynamic representation of a LOUDS tree. 

Note that in Section 3.2.1 we described an optimization that

takes into account the access pattern in the k 2 -tree (accesses to the

tree are not random when performing queries; they follow a well-

defined pattern with many consecutive accesses to close positions).

This reduces the overall cost from the original O ( C log n ) (where C

is the cost of the static representation, described in Section 2.2 ) to

O(C log n ) , improving the result especially for costly queries. 
C 
Update operations over LOUDS cardinal trees require O( log k n )

pdates, in blocks of k bits [8, Section 12.4.1] . The time required

or an update operation becomes O(ω) if k = O(ω 

2 ) . As this is a

ather permissive value for k in practice, we may consider the up-

ate cost over the dynamic representation to be O( log n log k n ) . 

. Improved compression with a matrix vocabulary 

Recall from Section 2.2.1 that the k 2 -tree space results can be

mproved using a matrix vocabulary to compress the bitmap L .

his improvement replaces the plain bitmap L with a sequence

f variable-length codes and a matrix vocabulary. In this section

e introduce a similar proposal for dk 2 -trees. In this proposal, the

eaves in L tree will store a sequence of variable-length matrix iden-

ifiers encoded using ETDC [22,23] . 

Note that the management of a matrix vocabulary is much

ore complex in the dk 2 -tree: we should be able to add and

emove entries from the vocabulary, as well as efficiently check

hether a given matrix already exists in the vocabulary. Also,

hen L tree stores a sequence of codewords, the actual number of

its and ones in a leaf is no longer the same as the logical values

tored in b - and o -counters of its parent entry. This does not af-

ect the tree structure because the actual size of each leaf node is

tored in the size field of its header, and this is the value used to

etermine when to expand or split a leaf, while the values in the

ounters are still used as before to access the appropriate leaf. 

To store the matrix vocabulary we built a simple implementa-

ion that stores a hash table H to look up matrices. An array V

tores the position in H where each matrix is stored. Finally, we

dd another array F that stores the frequency of each matrix. An

dditional list V 

empty stores the codewords that are not being cur-

ently used. 

Fig. 5 shows an example with a complete vocabulary represen-

ation. The leaves of L tree (bottom, nodes N2 and N3) store a se-

uence of variable-length codes represented with ETDC (we con-

ider 2-bit chunks in this simplified example). Notice that the b -

nd o -counters in internal node N1 still refer to the logical size of

he leaf: the entry pointing to N2 marks it as containing 64 bits (4

ubmatrices of size 4 × 4) and 5 ones. The submatrices are stored

n a hash table that contains for each matrix its offset in the vo-

abulary (that can be easily translated into its ETDC codeword). V

oints to the entry in H for each vocabulary codeword, and F stores

ts frequency. 

To access a position in L tree when using a matrix, we obtain a

ogical offset in the leaf from findLeaf . To retrieve the actual bit,

e sequentially traverse the sequence of variable-length codes in

he leaf. When we find the code that contains the desired position,

e translate the codeword into an array index, and V is used to

etrieve the actual matrix in H . For example, suppose we want to

ccess position 21 in the example of Fig. 5 . Our findLeaf operation

ould take us to node N2, offset 21. To obtain the actual matrix we

ould traverse the codes in N2, taking into account the actual size

f each submatrix (16 bits), so our offset would be at position 5 in

he second submatrix. We go over the code 10 and find the second

ode 0010 . To find the actual matrix, we convert this code to an

ffset (2) and access V [2] to locate the position in H where the

atrix is actually stored (3, second non-empty position). Finally,

n H we can access bit 5 in the matrix bitmap (0). 

The main difference with a static implementation is the need to

equentially traverse the list of variable-length codes. We can re-

uce the overhead of this sequential traversal adding to the leaves

f L tree a set of samples that store the actual offset in bytes of each

 L th codeword. The idea is similar to the sampling used for rank in

he leaves of T tree . With this improvement, to locate a given posi-

ion we can simply use the samples to locate the previous sampled

odeword and then start the search from the sampled position. 



N.R. Brisaboa et al. / Information Systems 69 (2017) 106–123 113 

Fig. 5. Dynamic vocabulary management: vocabulary (top) and L tree (bottom). 
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.1. Update operations 

Update operations in L tree , when using a matrix vocabulary, re-

uire us to add, remove or modify variable-length codes from the

eaves of L tree . All the update operations start by finding the real

ocation in the node where the variable-length code should be

dded/removed/modified. 

To insert groups of k 2 bits we need to add a new codeword.

he matrix corresponding to the new codeword is looked up in H ,

dding it to the vocabulary if it did not exist and increasing its

requency in F . Then, the codeword for the matrix is inserted in

he leaf, updating the counters in the node and its ancestors. 

To remove groups of k 2 bits in a leaf node of L tree a code-

ord must be removed: we locate the codeword in L tree , decrease

ts frequency in F and then we remove the code from the leaf

ode, updating ancestors accordingly. If the frequency of the code-

ord reaches 0, the corresponding index in V is added to V 

empty .

hen new entries must be added to the vocabulary V 

empty will be

hecked to reuse previous entries and new codes will only be used

hen V 

empty is empty. 

To change the value of a bit in L tree we need to replace existing

odewords. First, the matrix for the current codeword is retrieved

n H and its frequency is decreased in F . We look up the new ma-

rix in H . Again, if it already existed, its frequency is increased, and

f it is new, it is added to H and its frequency set to 1. Then, the

odeword corresponding to the new matrix is inserted in L tree re-

lacing the old codeword. 

Following the example of Fig. 5 , suppose that we need to set

o 1 the bit at position 21 in L tree . findLeaf would take us to N2,

here we have to access the second bytecode 00 10 at offset 5.

his bytecode (C2) corresponds to offset 2 in the ETDC order. We

ould access V [2] to retrieve the corresponding matrix. The oper-

tion would require us to transform the matrix as follows: 

0 0 0 0 

0011 

0 0 0 0 

0 0 0 0 

−→ 

0 0 0 0 

0111 

0 0 0 0 

0 0 0 0 

The new submatrix already exists, at position 3 in V with fre-

uency 1. Hence, we would need to update the leaf node replacing

he old codeword 00 10 with the new codeword C3: 00 11 . The

ocabulary would also be updated, decreasing the frequency of C2

o 1 and increasing the frequency of C3 to 2. 
.2. Handling changes in the frequency distribution 

The compression achieved by the matrix vocabulary depends

eavily on the evolution of the matrix frequencies. As the distri-

ution of the submatrices changes the efficiency of the variable-

ength codes will degrade. The simplest approach to mitigate this

roblem is to use a precomputed vocabulary from a fraction of the

atrix to obtain a reasonably good frequency distribution. 

To obtain the best compression results, when the frequency of a

ubmatrix changes too much its codeword should also be changed

o obtain the best compression results. This is a process similar

o the vocabulary adjustment in dynamic ETDC (DETDC [26,33] ).

owever, in a dk 2 -tree, to change the codeword of a submatrix, we

ust also update all the occurrences of the codeword in the leaves

f L tree . Therefore, a space/time tradeoff exists between vocabulary

ize and update cost. 

To maintain a compression ratio similar to that of static k 2 -trees

e can use simple heuristics to completely rebuild L tree and the

atrix vocabulary: rebuild every p updates or count the number

f inversions in F . To rebuild L tree , we must sort the matrices in

 according to their actual frequency and compute the new opti-

al codes for each matrix. Then we have to traverse all the leaves

n L tree from left to right, replacing the old codes with optimal

nes. Notice that the replacement cannot be executed completely

n place, because the globally optimal codes may be worse locally,

ut the complete process should require only a small amount of

dditional space. After L tree is rebuilt, the old vocabulary is simply

eplaced with the optimal values. 

Instead of using the simple heuristics to rebuild the matrix vo-

abulary, we can keep track of how good the current compression

s. To guarantee that the compression of L tree is never too far from

he optimum, we can keep track of the actual optimum vocabu-

ary. To do this, we propose an enhanced vocabulary representa-

ion, similar to the adaptive encoding used in DETDC. In our case

t would be unfeasible to change the actual vocabulary each time

he length of a codeword changes, but we store the optimal vocab-

lary to know exactly the amount of space that would be gained

sing an optimal vocabulary. 

To this aim we store, in addition to H and F , a permutation VP

etween the current vocabulary and the optimal one: VP ( i ) gives

he optimal position of the codeword at offset i , while V P −1 (i )

ives the current position given the optimal position. This permu-

ation will allow us to keep V and F always sorted in descending
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Fig. 6. Extended vocabulary to keep track of the optimal codewords. 
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4 Dataset from the WebGraph project, that comprises some Web graphs gathered 

by UbiCrawler [34] . These datasets are made available to the public by the members 

of the Laboratory for Web Algorithmics ( http://law.di.unimi.it ) at the Università Degli 

Studi Di Milano . 
order of frequency (that is, according to the optimal vocabulary).

Fig. 6 shows the data structures required to represent the same

vocabulary of Fig. 5 using the new method. 

In this representation, we obtain the matrix for a codeword as

in the previous version; the only difference is that we first obtain

the offset of the codeword in the optimal vocabulary and then we

use V P −1 to compute the offset in the current vocabulary. Also, to

find the matrix for a given codeword we compute the optimal off-

set for the codeword using VP and then use V to find the position

of the matrix. 

To keep track of the changes in frequencies, we also build an

array, Top , that stores, for each different frequency, the position in

V of the first codeword with that frequency. The array Top is used

to swap codewords when frequencies change, as it is performed in

DETDC. If the frequency of a matrix at index i in V changes from

f to f + 1 , the new optimum position for it would be the position

Top [ f ]. The indexes in V, VP and H would be updated to reflect the

change. The case when the frequency of a matrix decreases from f

to f − 1 is symmetric: we swap the current position of the matrix

with T op [ f − 1] + 1 , updating the corresponding indexes in F and

VP . 

The use of the extra data structures allows us to control pre-

cisely how much space is being wasted at any moment. This means

that we can set a threshold reb L tree 
and rebuild L tree when the ratio

size cur 
size opt 

surpasses it. 

In order to physically store all the data structures required for

the dynamic vocabulary, we resort to simple data structures that

can be easily updated. H is a simple hash table backed by an ar-

ray. V and F are extendible arrays. If we want to set the threshold

reb L tree 
we need additional data structures for VP and Top. Top can

be implemented using an extendible array and two extendible ar-

rays can store VP and its inverse. The goal of these representations

is to provide efficient update times (recall that each update opera-

tion in the dk 2 -tree will always lead to a change in L tree , that will

cause at least one frequency change in the vocabulary). 

5. Experimental evaluation 

In this section we experimentally test the efficiency of the

dk 2 -tree in order to demonstrate its capabilities to answer simple
ueries in space and time close to those of the static k 2 -tree data

tructure. 

First, we will study the different parameters of the dk 2 -tree

nd their effect in compression and query efficiency. Then, we

ill show the efficiency when compared to the equivalent static

ata structure in the original application domain of k 2 -trees: Web

raph representation. Finally, Section 6 will be devoted to describe

he application of dk 2 -trees to the representation of RDF datasets,

here the k 2 -tree has been already used and dynamic operations

re of interest. In this context, we will compare our representa-

ion with state-of-the-art alternatives including a similar static ap-

roach based on k 2 -trees. 

All the experiments in this article were run on an AMD-

henom-II X4 955@3.2 GHz, with 8GB DDR2 RAM. The operating

ystem is Ubuntu 12.04. All our code is written in C and compiled

ith gcc version 4.6.2 with full optimizations enabled. 

.1. Parameter tuning 

The main parameters used to settle the efficiency of the dk 2 -

ree are the sampling period s in the leaves of T tree ( S T ) and L tree 

 S L ), the block size B on the nodes and the number of partial ex-

ansions e ; the value k ′ in the last level is also important when

 matrix vocabulary is used for L . We will first focus on the ef-

ect of the first parameters, and then study the effect of the matrix

ocabulary independently. 

We use for our experiments a Web graph dataset, eu-2005, 4 a

mall graph with 19 million edges. The results of parameter tun-

ng are similar for other datasets used in following sections. We

o not use a matrix vocabulary in this first example. Fig. 7 shows

he evolution of the dk 2 -tree size and the creation and rebuild

ime depending on each parameter. The dk 2 -tree size, in MB, is

he overall memory used by the data structure. The creation time

s the time to build the dk 2 -tree from a plain representation in-

erting each edge separately, so it provides an estimation of the

verage update time of the structure. Finally, the rebuild time is

http://law.di.unimi.it
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Fig. 7. Evolution of space/time results of the dk 2 -tree changing the parameters s, B and e . 
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d  
he time to retrieve all the 1s in the adjacency matrix in a sin-

le range query covering the complete matrix, and it is shown as

 rough estimation of the expected evolution of query times. Both

imes are shown in microseconds per element inserted/retrieved. 

The top-left plot in Fig. 7 shows the results obtained for differ-

nt values of the sampling interval s , with fixed B = 512 bytes and

 classes = e + 1 = 4 , but the tradeoff is similar for different values.

maller values of s increase the size of the trees slightly, but a con-

iderable reduction in query time is obtained. Additionally, update

perations can also be improved by using smaller values of s . Even

hough blocks with more samples are more costly to update when

heir contents change, the recomputation of the samples is only

erformed if the node contents actually change. On the other hand,

he rankLeaf operation must always be performed at all the levels

f the conceptual tree, and its cost is significantly reduced when

sing smaller values of s . Therefore, a small sampling period can

e used to obtain faster access times with only a minor increase

n the size of the dk 2 -tree. 

The top-right plot in Fig. 7 shows the results for different values

f B , for fixed s = 128 bytes and # classes = e + 1 = 4 . The block size

 provides a clear space/time tradeoff: small values of B yield big-

er dk 2 -trees due to the amount of overhead to store many smaller

odes, while larger values of B make updates become more costly.

uery times are not very different depending on B for usual values.

n our experiments we will choose values of B = 256 or B = 512 to

btain good space results with small penalties in update times. 

The bottom plot of Fig. 7 shows the evolution with e for fixed

 = 128 and B = 512 . If we use a single block size ( e + 1 = 1 ), the

ode utilization is low and the figure shows poor space results, but

ven for a relatively small number of block sizes the space results
mprove fast with only minor changes in the creation and rebuild

imes. 

After measuring the basic parameters of the dk 2 -tree data

tructure, we focus on the analysis of the matrix vocabulary vari-

nt. We build a dk 2 -tree for several Web graph datasets with and

ithout a matrix vocabulary and for different values of the pa-

ameter k ′ . We compare the static and dynamic representations

n two different Web graph datasets 5 : the indochina-2004 dataset,

ith 200 million edges, and the uk-2002 dataset, with 300 mil-

ion edges. In all cases we built a hybrid variant of the k 2 -tree

r the dk 2 -tree, with k = 4 in the first 5 levels of decomposition

nd k = 2 in the remaining levels. For the variants with matrix

ocabulary, we test the values k ′ = 4 and k ′ = 8 . In the dk 2 -tree

e choose a block size B = 512 , e = 3 (4 different block sizes) and

 = 128 . The static k 2 -tree representation uses a sampling factor of

0 for its rank data structures, hence requiring an additional 5%

pace. 

We use in the dk 2 -tree the most complex version of the matrix

ocabulary, that keeps track of the optimum vocabulary and re-

uilds the complete vocabulary when the total size is 20% worse

han the optimum. Additionally, we set a threshold of 100 KB

or the size of L tree , so that the vocabulary is only checked (and

ebuilt if necessary) when L tree reaches that size. We also con-

ider in the dk 2 -tree two different scenarios: the space required

y the simplest version of the vocabulary ( dynamic ) and the total

pace required to keep track of the optimum vocabulary ( dynamic-

omplete ). 

Fig. 8 shows the evolution of the space utilization for both

atasets required by original k 2 -trees (static) and a dk 2 -tree (dy-
5 Again, datasets obtained from the WebGraph project ( http://law.di.unimi.it ). 

http://law.di.unimi.it
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Fig. 8. Space utilization of static and dynamic k 2 -trees with different matrix vocabularies in Web graphs. 

Fig. 9. Time to retrieve the successors of a node in a static k 2 -tree and a dk 2 -tree. Query times in μs/query. 
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namic). Note that the dk 2 -tree space utilization is always close

to that of the static k 2 -tree when no matrix vocabulary is used

( noVoc ). The space overhead of dk 2 -trees, around 20%, is mostly

due to the space utilization of the nodes of T tree and L tree . 

Static k 2 -trees obtain better compression for larger values of

k ′ , reaching their best space utilization when k ′ = 8 . On the other

hand, the dk 2 -tree improves its space results only for small k ′ .
Note also that the variant that keeps track of the optimum vo-

cabulary ( dynamic − complete ) is always bigger than the simpler

approach. In fact, in our experiments the graphs were only re-

built once, when the size of L tree reached the threshold, showing

that once a small fragment of the adjacency matrix has been built

the resulting matrix vocabulary becomes good enough to compress

the overall matrix with a relatively small penalty in space. Hence,

the size of the additional data structures required to keep track of

the optimum vocabulary is higher than the space reduction of the

vocabulary itself. Considering these results, a simpler strategy to

maintain a “good” matrix vocabulary (such as using a predefined

matrix vocabulary extracted from experience or simply rebuilding

after x operations) may be the best approach in many domains. On

the other hand, the strategy to keep track of the optimum vocabu-

lary could still be of application in domains where the relative size

of the matrix vocabulary is expected to be of small size. 

5.2. Query and update times 

In this section we extend the previous analysis of the dk 2 -tree

measuring the efficiency of our proposal in terms of query and up-

date times. 

To measure the query efficiency, we focus on the representation

of Web graphs, the original application domain of the static k 2 -

tree. We choose the most usual query in this domain, namely, the

successor query that asks for the direct neighbors of a specific node

(all the cells with value 1 in a specific row of the adjacency ma-

trix). For each dataset we run successor queries for all the nodes

in the dataset and measure the average query times in μs/query. 
As shown in Fig. 9 , the dk 2 -tree is always slower than a static

epresentation. Comparing the dk 2 -tree version that obtained the

est space results ( k ′ = 4 ) with the best static k 2 -tree version ( k ′ =
 ), the dk 2 -tree is 50–80% slower than the static data structure.

his difference in query times is significant, but for specific scenar-

os where update operations are frequent, the dk 2 -tree turns out

o be a reasonable solution especially if we consider the slowdown

hat affects any dynamic representation, and the limitations of its

tatic version. 

The cost of update operations in the dk 2 -tree depends on sev-

ral factors, such as the choice of parameters B and s . The char-

cteristics of the dataset also have a great influence in its k 2 -tree

nd dk 2 -tree representation, since the clusterization of 1s lead to a

etter compression of the data. In the dk 2 -tree, the clusterization

f 1s and the sparsity of the adjacency matrix also affect update

imes: when new 1s must be inserted and they are far apart from

ny other existing 1, the insertion operation must insert k 2 bits in

any levels of the conceptual k 2 -tree, which increases the cost of

he operation. Therefore, insertion costs are expected to be higher

n average when datasets are very sparse. 

To measure this effect of the distance between 1s on update

osts, we choose to use synthetic datasets. Since we aim to eval-

ate the insertion cost depending on the level of the conceptual

ree where that insertion is performed, synthetic data allow us to

pecifically control that without depending on other features of

pecific real Web graphs that were used instead. We create a set

f very sparse synthetic datasets. In them, 1s are inserted every

 

d rows and 2 d columns, so that the k 2 -tree representation has a

nary path of length d to each edge. Table 1 shows a summary

ith the basic information of the datasets. We choose the separa-

ion for the different dataset sizes so that all the datasets have the

ame number of edges (4,194,304). 

We measure the insertion cost with these datasets, depending

n the number of levels � that must be created in the conceptual

 

2 -tree to insert the new 1. We compare the insertion costs for � ∈
0, 10]. For each dataset and value of � , we create a set of 20 0,0 0 0
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Fig. 10. Insertion and query times (left) and estimation of update cost (right) in the dk 2 -tree varying � . 

T able 1 

Synthetic sparse datasets used to measure insertion costs. 

Dataset #rows/columns Separation between 1s (2 d ) # k 2 -tree levels 

synth_22 4,194,304 2048 ( d = 11 ) 22 

synth_24 16,777,216 8192 ( d = 13 ) 24 

synth_26 67,108,864 32,768 ( d = 15 ) 26 
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ells of the matrix that require exactly � new levels in the concep-

ual tree. In this experiments we use a simple setup with a sin-

le block size. Additionally, we compute the cost to query the new

ells over the unmodified synthetic datasets. These queries are an

pproximation of the insertion cost that is actually due to locat-

ng the node of the conceptual k 2 -tree where we must start the

nsertion. 

Fig. 10 (left) shows the evolution of insertion and query times,

n μs / edge , in the different datasets. When � is small (new 1s are

nserted very close to existing 1s), insertion and query times are

lmost identical. As � increases the insertion cost becomes higher

hile query times become lower because the first 0 in the concep-

ual tree (the node where insertion should start) is found in upper

evels of the tree. Fig. 10 (right) shows an estimation of the actual

ost devoted to update the tree depending on � , and computed by

ubtracting query times from insertion times. Notice that it is 0 for

mall � and steadily increases with � . 

Our overall results suggest that insertion times in the dk 2 -tree

an be very close to query times if the represented dataset has

ome properties that are also desirable for compression, particu-

arly the clustering of 1s in the binary matrix. The evolution of in-

ertion times shows that insertions at the upper levels of the tree

ay be several times more costly than insertions in the lower lev-

ls of the tree. However, insertions in the upper levels of the tree

hould be very infrequent in most of the datasets where a dk 2 -tree

ill be used, since compression in k 2 -trees also degrades when

atrices have no clusterization at all. 

. Representation of RDF databases 

RDF ( Resource Description Framework ) [35] has become an in-

reasingly popular language recommended by the W3C for the de-

cription of facts in the Web of Data. It follows a graph-based data

odel, in which the information is represented as a set of triples.

ach triple is an edge of a labeled graph, and represents a prop-

rty of a resource using a subject S (element of interest, or source

ode), a predicate P (property of the element, or edge label), and

n object O (value of the property, or target node). These ( S , P , O )
riples can be queried using a standard graph-matching language

amed SPARQL [36] . This language is built on top of triple pat-

erns, that is, RDF triples in which each component may be a vari-

ble (variables are preceded, in the pattern, by the symbol ?): ( S,

, O ), (? S, P, O ), (? S , ? P, O ), etc. Yet, more complex queries can be

reated by joining sets of triple patterns. 

Many different proposals have appeared in recent years to ef-

ciently store and query RDF datasets. Many of these so called

RDF stores” are based on relational databases, creating specific

atabase structures to store the triple patterns in the RDF data

37,38] . Other particular solutions rely on specific data structures

esigned to compactly store the data while allowing efficient query

perations [39–42] . 

RDF datasets can be built from snapshots of data and therefore

tored in static form. However, in many cases new information is

ontinuously appearing and must be incorporated into the dataset

o keep it updated. In these cases, a purely static representation

f the dataset is unfeasible, since a way to efficiently update the

ontents in the RDF dataset is needed. Most of the relational ap-

roaches for RDF storage can handle update operation. However,

pecific compact representations usually lack the same flexibility,

ut still some proposals exist, like X-RDF-3X [43] , a dynamic evo-

ution of the existing multi-indexing native solution RDF-3X. 

A representation of RDF datasets based on k 2 -trees, called k 2 -

riples, has been presented in [44] . This representation uses a col-

ection of k 2 -trees to represent the triples corresponding to each

redicate in the RDF dataset. This representation was proved to be

ery competitive in space and query times with state-of-the-art al-

ernatives. However, this proposal was limited to a static context

ue to the static nature of k 2 -trees. 

In this section we propose a dynamic representation of RDF

atasets based on dk 2 -trees, that simply replaces static k 2 -tree rep-

esentations with a dk 2 -tree per predicate. We aim to demonstrate

hat a representation based on the dk 2 -tree can obtain query times

lose to the static k 2 -triples approach, but more importantly that

he dk 2 -tree representation provides the basis to perform update

perations on the RDF dataset, which are actually expected opera-

ions in real applications. 

.1. Our proposal 

Our proposal simply replaces the static k 2 -tree representation

n k 2 -triples with a dk 2 -tree per predicate. We consider a partition

f the RDF dataset by predicate, and build a dk 2 -tree for each pred-

cate in the dataset. For each predicate we consider a matrix stor-

ng all relations between subjects and objects with that predicate.
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d  
All matrices will contain the same rows/columns, where subject–

objects (elements that appear as both subjects and objects in any

triple) will be located together in the first rows/columns of the ma-

trix and the remaining rows (columns) of the matrices will contain

the remaining subjects (objects). 6 

Our proposal based on dk 2 -trees aims to solve the representa-

tion of the structural part of an RDF dataset. We assume that ad-

ditional data structures must be used to store vocabularies of sub-

jects, objects and predicates and map them with rows/columns of

the matrices represented by dk 2 -trees. The creation of a dynamic

and efficient dictionary representation to manage large collections

of URIs and literal values is a complex problem, since the vocabu-

lary may constitute a large part of the total size of an RDF dataset

[45] . 

As previously stated, the main query operations in RDF datasets

are based on triple-pattern matching. These triple patterns can be

easily translated into a collection of simple queries in one or more

of the k 2 -trees used to store the complete RDF dataset. Hence, our

proposal can directly answer all triple pattern queries: ( S, P, O ) and

( S , ? P, O ) queries are actually cell retrieval queries (involving one

dk 2 -tree or all the dk 2 -trees in the collection, respectively), ( S, P ,

? O ), ( S , ? P , ? O ), (? S, P, O ) and (? S , ? P, O ) are row/column queries

and (? S, P , ? O ) is a full range retrieval query that asks for all the

cells in a dk 2 -tree. 

Triple patterns can usually be joined to build more complex

queries. Join operations involve matching multiple triple patterns

with a common element. For instance, the query (? S, P 1 , O 1 ) �(? S,

P 2 , O 2 ) represents all the subjects that relate to O 1 with predicate

P 1 and to O 2 with predicate P 2 . The join variable is marked with

an ?, and is a common element to both triple patterns. In static

k 2 -triples, three different strategies were proposed to solve triple

patterns, and all of them can be also used in our dk 2 -trees: 

• Independent evaluation separates any join operation in two

triple pattern queries and a simple merge that intersects the re-

sults of both queries. The adaptation to dk 2 -trees is trivial using

the basic operations explained. 

• Chain evaluation chains the execution, solving first one of the

triple pattern and then restricting the second pattern to the re-

sults of the first. 

• Interactive evaluation is a more complex operation, in which

two k 2 -trees are traversed simultaneously. The basic elements

of this strategy include a synchronized traversal of the concep-

tual trees. Regardless of the type or complexity of the join oper-

ation, the essential steps of interactive evaluation are based on

the access to one or more nodes in the conceptual trees of dif-

ferent k 2 -trees, operations that are directly supported by dk 2 -

trees. 

6.1.1. Update operations using dk 2 -trees 

Our proposal is able to answer all the basic queries supported

by k 2 -triples simply replacing static k 2 -trees by dk 2 -trees. Next, we

will show that update operations in RDF datasets can also be easily

supported by our proposal. This is presented as a proof of concept

of the applicability of dk 2 -trees to this domain, even though our

proposal focuses only on the representation of the triples. 

The most usual update operation in an RDF dataset is probably

the insertion of new triples, either one by one or, more frequently,

in small collections corresponding to new information retrieved or

indexed regularly. The insertion of new triples in an existing RDF

database involves several operations in our representation based

on dictionary encoding: 
6 Notice that we follow the same subject–object arrangement than that used by 

the static approach, thus assuming the use of a similar strategy to create the vo- 

cabulary of terms. 

t  

d  

a  

R  

b  
• First, the values of the subject, predicate and object of the new

triple must be searched in the dictionary, and added if neces-

sary. If all the elements existed in the dictionary the new triple

is stored as a new entry in the dk 2 -tree corresponding to its

predicate. 

• If the triple corresponds to a new predicate, a new empty dk 2 -

tree can be created to store the new subject–object pair. 

• If the subject and/or object are new, we must add a new

row/column to all the dk 2 -trees. As explained before, this op-

eration is usually trivial in dk 2 -trees. In the worst case, we

must increase the size of the matrices, an operation (with a

cost comparable to the insertion of a new 1 in the matrix) that

must be repeated in all the dk 2 -trees. 

The removal of triples to correct or delete wrong information

s a typical update operation in RDF datasets, as well. The possible

hanges when triples are removed are similar to the insertion case:

hen triples are removed we may need to simply remove a 1 from

 dk 2 -tree or remove a row/column (marking it as unused) if the

ubject/objects has no associated triples. 

We assume in our representation that subject–object elements

re stored together in the top-left region of the matrices, so that

oin operations do not need to perform additional computations.

his allows us to focus on triple pattern queries and ignore the ef-

ect of an RDF vocabulary. However, the insertion of triples may

ause a subject (object) to become a subject–object, and the dele-

ion of triples may transform a subject–object in just a subject or

bject. A simple solution to avoid the problem in the dynamic case

ould be to use a different setup where rows/columns of the ma-

rices would contain all the elements (subjects and objects) instead

f storing only subjects in the rows and objects in the columns. It

hould have small effect in the overall compression, since k 2 -trees

nd dk 2 -trees depend mostly on the number and distribution of

he 1s in the matrix than on the matrix size. 

In order to follow the original setup with subject–object ele-

ents in the first rows/columns of the matrix, when a subject (ob-

ect) becomes a subject–object we need to move it to the beginning

f the matrix. This requires finding all the 1s in the corresponding

ow (column), allocating a new row and column at the beginning

f the matrix and inserting the 1s in the same locations in the new

ow (column). Note that, even though we only described the abil-

ty of dk 2 -trees to add new rows at the end of the matrix, the pro-

ess can be trivially extended to add rows at the beginning: given

n n × n matrix, let us assume we place elements starting from

he center instead of doing it from the first row/column. With this

etup, we can add new subject–object elements from the center

owards the top-left corner (thus, expanding the matrix towards

he top-left corner), and append new subjects and objects in the

sual way (towards the bottom-right corner). That is, we can ex-

and our virtual matrix to add subjects and objects as usual, but

lso attach new subject–object elements in unused rows/columns

n the upper-left section of the matrix. This change has small ef-

ect on compression (the elements are still grouped essentially in

he same way) and allows us to keep the list of subject–object el-

ments together, hence following the same ordering of the static

epresentation. 

.2. Experimental evaluation on RDF datasets 

We compare our proposal based on dk 2 -trees with the static

ata structures used in k 2 -triples and its enhanced version, k 2 -

riples + , presented in [44] . The goal of these experiments is to

emonstrate the efficiency of dk 2 -trees in this context, and their

bility to act as the basis for a dynamic compact representation of

DF databases. Note that in [44] k 2 -triples were already proved to

e competitive with state-of-the-art representations, both in com-
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Table 2 

RDF datasets used in our experiments. 

Collection #triples #predicates #subjects #objects 

jamendo 1,049,639 28 335,926 440,604 

dblp 46,597,620 27 2,840,639 19,639,731 

geonames 112,235,492 26 8,147,136 41,111,569 

dbpedia 232,542,405 39,672 18,425,128 65,200,769 
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Table 3 

Space results for all RDF collections (sizes in MB). 

Collection k 2 -triples k 2 -triples + dk 2 -trees 

jamendo 0.74 1.28 1.61 

dblp 82.48 99.24 125.34 

geonames 152.20 188.63 242.60 

dbpedia 931.44 1,178.38 1,151.90 
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ression and query times. We will compare the space results and

uery times of dynamic and static representations to show that

k 2 -trees can store RDF datasets with a reduced overhead over the

pace and time requirements of a static representation. 

.2.1. Experimental setup 

We experimentally compare our dynamic representation with

he equivalent one using static k 2 -trees. We use a collection of

DF datasets of very different sizes and number of triples, and

lso include datasets with few and many different predicates. 7 

able 2 shows a summary with some information about the

atasets used. The dataset jamendo 8 stores information about Cre-

tive Commons licensed music; dblp 9 stores information about

omputer science publications; geonames 10 stores geographic infor-

ation; finally, dbpedia 11 is a large dataset that extracts structured 

nformation from Wikipedia. As shown in Table 2 , the number of

redicates is small in all datasets except dbpedia , that is also the

argest dataset and will be the best example to measure the scala-

ility of queries with variable predicate. 

We build our dynamic representation following the same pro-

edure used for static k 2 -trees, and a similar setup. Elements that

re both subject and object in any triple pattern are grouped in the

rst rows/columns of the matrices. We use a hybrid k 2 -tree rep-

esentation, with k = 4 in the first 5 levels of decomposition and

 = 2 in the remaining levels. The dk 2 -tree uses a sampling factor

 = 128 in the leaf blocks, while static k 2 -trees use a single-level

ank implementation that samples every 20 integers (80 bytes). In

k 2 -trees we use a block size B = 512 and e + 1 = 4 different block

izes. 

We test query times in all the approaches for all possible triple

atterns (except (? S , ? P , ? O ), that simply retrieves the complete

ataset) and some join queries involving just 2 triple patterns. We

se the experimental testbed 

12 in [44] to directly compare our rep-

esentation with k 2 -triples. To test triple patterns, we use a query

et including 500 random triple patterns for each dataset and pat-

ern. To test join operations we use query sets including 50 differ-

nt queries, randomly selected from a larger group of 500 random

ueries and divided in two groups: 25 have a number of results

bove the average and 25 have a number of results below the av-

rage. 

The experimental evaluation of join operations is expected to

ield similar comparison results to triple patterns, considering the

act that the implementation of the different strategies to an-

wer join queries is identical in dk 2 -trees and static k 2 -trees. As

 proof of concept of the applicability of dk 2 -trees in more com-

lex queries, we will experimentally evaluate dk 2 -trees, and k 2 -

riples to answer join operations (? V, P 1 , O 1 ) �(? V, P 2 , O 2 ) ( join 1 :

nly the join variable is undetermined) and (? V, P 1 , O 1 ) �(? V , ? P 2 ,
7 The datasets and general experimental setup used are based on the experimen- 

al evaluation in [44] , where k 2 -triples and k 2 -triples + are tested. We use the same 

atasets and query sets in our tests. 
8 http://dbtune.org/jamendo . 
9 http://dblp.l3s.de/dblp++.php . 

10 http://download.geonames.org/all-geonames-rdf.zip . 
11 http://wiki.dbpedia.org/Downloads351 . 
12 The full testbed is available at http://dataweb.infor.uva.es/queries-k2triples.tgz . 

o  

o  

a  

t

 

a  

i  

d  

d  
 2 ) ( join 2 : one of the predicates is variable). Notice that each join

ype can lead to 3 different join operations depending on whether

he join variable is subject or object in each of the triple patterns:

or example, join 1 can be of the form (? V, P 1 , O 1 ) �(? V, P 2 , O 2 )

S–S), ( S 1 , P 1 , ? V ) �(? V, P 2 , O 2 ) (S–O) and ( S 1 , P 1 , ? V ) �( S 2 , P 2 , ? V )

O–O). 

.2.2. Space results 

We compare the space requirements of our dynamic represen-

ation, based on dk 2 -trees, with k 2 -triples and its improvement,

 

2 -triples + , in all the studied datasets. We select the k 2 -tree repre-

entations that obtain the best compression results: static k 2 -trees

sed in k 2 -triples and k 2 -triples + use a matrix vocabulary with

 

′ = 8 ; dk 2 -trees do not use a matrix vocabulary. Table 3 shows

he total space requirements on the different collections studied. 

Our dynamic representation is significantly larger than the

quivalent static version, k 2 -triples, in all the datasets. In jamendo ,

 very small dataset, the dynamic representation requires more

han twice the space of k 2 -triples. However, the overhead required

y the dynamic version is smaller in larger datasets and partic-

larly in dbpedia . The dk 2 -tree with no matrix vocabulary is also

ble to store the dataset with an overhead below 50% extra in the

blp and geonames datasets. Even though the overhead is signif-

cant, the results are still relevant since k 2 -triples was proved to

e several times smaller than other RDF stores like MonetDB and

DF-3X in these datasets (at least 4 times smaller than MonetDB,

he second-best approach in space, in all the datasets except dbpe-

ia [44] ). 

In the dbpedia dataset our proposal has a space overhead

round 20% over k 2 -triples, and becomes smaller than the k 2 -

riples + static representation. This result is mostly due to the char-

cteristics of the dbpedia dataset, that contains many predicates

ith few triples. The static representations based on k 2 -triples

tore a static k 2 -tree representation for each different predicate,

ach one containing its own matrix vocabulary. The utilization of

 matrix vocabulary does not improve compression in these ma-

rices. However, most of the cost of the representation is in the

atrices with many triples, so the matrix vocabulary still obtains

he best results overall. 

.2.3. Query times 

Triple patterns: We first measure the efficiency of our dynamic

roposal in comparison with k 2 -triples to answer simple queries

triple patterns) in all the studied datasets. The results for all the

atasets are shown in different tables: Table 4 shows the results

or jamendo ; Table 5 , the results for dblp ; Table 6 , for geonames and

able 7 , for dbpedia . For each dataset we show the query times of

 

2 -triples, k 2 -triples + (only in queries with variable predicate) and

ur equivalent dynamic representation of k 2 -triples. The last row

f each table shows the ratio between our dynamic representation

nd k 2 -triples, as an estimation of the relative efficiency of dk 2 -

rees. 

In most of the datasets and queries, query times of dk 2 -trees

re between 1.2 and 2 times higher than in k 2 -triples. The results

n Table 4 for the dataset jamendo show some anomalies, with the

k 2 -tree performing faster than a static representation. However,

ue to the reduced size of the dataset we shall disregard these

http://dbtune.org/jamendo
http://dblp.l3s.de/dblp++.php
http://download.geonames.org/all-geonames-rdf.zip
http://wiki.dbpedia.org/Downloads351
http://dataweb.infor.uva.es/queries-k2triples.tgz
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Table 4 

Query times for triple patterns in jamendo . Times in μs/query. 

S, P, O S, P , ? O ? S, P, O ? S, P , ? O S , ? P, O S , ? P , ? O ? S , ? P, O 

k 2 -triples 1.0 4.6 102.8 6954.1 4.9 39.4 29.3 

k 2 -triples + 1.1 23.6 10.0 

Dynamic 1.9 4.8 235.6 12788.5 6.0 34.6 28.4 

Ratio 1.88 1.06 2.29 1.84 1.22 0.88 0.97 

Table 5 

Query times for triple patterns in dblp . Times in μs/query. 

Solution S, P, O S, P , ? O ? S, P, O ? S, P , ? O S , ? P, O S , ? P , ? O ? S , ? P, O 

k 2 -triples 1.2 79.8 1016.4 771061.6 3.6 1294.1 187.5 

k 2 -triples + 1.7 1102.1 140.8 

Dynamic 6.5 92.9 2776.3 1450058.3 14.0 1421.8 247.9 

Ratio 5.54 1.16 2.73 1.88 3.87 1.10 1.32 

Table 6 

Query times for triple patterns in geonames . Times in μs/query. 

Solution S, P, O S, P , ? O ? S, P, O ? S, P , ? O S , ? P, O S , ? P , ? O ? S , ? P, O 

k 2 -triples 1.2 59.4 4588.0 1603677.4 2.9 1192.9 273.7 

k 2 -triples + 1.4 915.9 139.0 

Dynamic 9.4 79.6 9544.2 2958262.4 17.9 1514.7 423.5 

Ratio 7.71 1.34 2.08 1.84 6.11 1.27 1.55 

Table 7 

Query times for triple patterns in dbpedia . Times in μs/query. 

Solution S, P, O S, P , ? O ? S, P, O ? S, P , ? O S , ? P, O S , ? P , ? O ? S , ? P, O 

k 2 -triples 1.1 441.4 10.5 1859.5 7960.3 54497.4 29447.7 

k 2 -triples + 1.4 2216.7 518.3 

Dynamic 6.6 561.9 19.1 3870.7 23045.4 83340.2 57051.8 

Ratio 6.21 1.27 1.82 2.08 2.90 1.53 1.94 
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results and focus on the larger datasets. The results in Tables 5 –

7 show very different query times but the ratios shown in each

table are very similar in all three datasets. 

Our results evidence that dk 2 -trees are several times slower

than static k 2 -trees in triple patterns that are implemented with

single-cell retrieval queries (i.e. patterns ( S, P, O ) and (? S, P , ? O )).

Particularly, dk 2 -trees are 5.5–7.7 times slower than static k 2 -trees

to answer ( S, P, O ) queries. In this queries, the cost of accessing

T tree and L tree is very high since a single position is accessed per

level of the tree. 

In all the remaining patterns, i.e. those that are translated into

row/column or full-range queries in one or many k 2 -trees, dk 2 -

trees are much more competitive with static k 2 -trees, obtaining

query times less than 2 times slower than k 2 -triples in most cases.

These differences are mostly due to the indexed representation

used in dk 2 -trees, that avoids complete traversals of T tree or L tree 

when many close positions are accessed in each query. In all these

patterns, multiple positions are accessed at each level of the dk 2 -

tree, in many cases these positions are actually in the same leaf

node of T tree or L tree , so the additional cost of traversing T tree or

L tree is greatly diminished. 

Let us focus now on the effect of the additional indexes used in

k 2 -triples + . In the datasets with few predicates, that are the most

usual RDF datasets, k 2 -triples + is around 1.5–3 times faster than

k 2 -triples, hence up to 10 times faster than dk 2 -trees in ( S , ? P, O )

queries and up to 3 times faster in the remaining patterns with

variable predicate. In the dbpedia dataset, the relative efficiency of

k 2 -triples + is much more significant, reducing query times by sev-

eral orders of magnitude. This makes dk 2 -trees much slower than

k 2 -triples + in this dataset to answer patterns with variable predi-
cate. t  

m  
Join operations: Next we test the efficiency of dk 2 -trees in com-

arison with k 2 -triples to answer join queries. Considering the re-

ults obtained with single triple patterns, and in order to better

how the relative efficiency of our dynamic representation, we fo-

us on the join operations that are more selective, or require more

elective operations in the matrices. 

We start our experiments with join 1 ((? V, P 1 , O 1 ) �(? V, P 2 , O 2 )).

e test the 3 different join strategies applied to this join: (i) inde-

endent evaluation requires two row/column queries in different

 

2 -trees and an intersection of the results; (ii) in chain evaluation,

e run a row/column query in the k 2 -tree corresponding to P 1 and

or each result v obtained we run a single cell retrieval in the k 2 -

ree for P 2 ; (iii) the interactive evaluation runs two synchronized

ow/column queries in both k 2 -trees. We test all the join categories

–O, S–S and O–O and query sets with few results (small) or more

esults (big). 

Fig. 11 shows the results for join 1 . Given the significant differ-

nces in query times between datasets, strategies and even query

ets, we normalize all the results so that the query times of static

 

2 -trees are always at the same level. The height of the bar for the

tatic representation will always be 1, and the bar for the dk 2 -tree

epresentation shows the actual overhead of our dynamic repre-

entation. The actual query times in the static representation are

lso displayed, in ms/query. 

Results show that dk 2 -trees are very competitive with k 2 -triples

n most of the datasets and strategies: independent evaluation (left

lots of Fig. 11 ) yields the worst results for dk 2 -trees, that are 3–4

imes slower than k 2 -triples in most of the query sets, except on

he larger dataset dbpedia where our solution is on average less

han 2 times slower than static k 2 -trees. In chain evaluation dk 2 -

rees are less than 2 times slower than a static representation in

ost of the datasets and query sets. Finally, if we use the inter-
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Fig. 11. Comparison of static and dynamic query times in join 1 in all the studied datasets and query types. Results are normalized by static query times. Query times of the 

static representation are shown in ms/query. 
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ctive evaluation strategy dk 2 -trees are able to obtain query times

ery close to static k 2 -trees in most of the cases. 

Averaging the results in all the datasets and query sets for each

valuation strategy, dk 2 -trees are 3.5 times slower than static k 2 -

rees in the independent evaluation strategy, 2.6 times slower us-

ng the chain evaluation strategy and only 27% slower using the

nteractive evaluation strategy. Even though the results vary signif-

cantly between datasets and query sets, the overall results show

hat dk 2 -trees are able to support the query operation with a rea-

onable overhead in space and query times. 

Join queries with variable predicate: Next we analyze our pro-

osal in join operations with variable predicates. We compare dk 2 -

rees with static k 2 -triples and k 2 -triples + (static-DACs) to answer

he join 2 ((? V, P 1 , O 1 ) �(? V , ? P 2 , O 2 )), that involves a variable pred-

cate. 

The results are shown in Fig. 12 . Bar heights are also normal-

zed by the static query times in these graphs. Again, we obtain

iverse results in the comparison depending on the dataset, the

valuation strategy and the query set. In spite of the varying re-

ults, dk 2 -trees show again an overhead in query time limited by

o  

e  
 small factor: our dynamic representation is between 1.5 and 3

imes slower than k 2 -triples. 

If we compare dk 2 -trees with the best static representation,

hat is now k 2 -triples + , the overhead required by the dynamic rep-

esentation becomes larger. Notice that in Fig. 12 there are some

uery sets for which the query times of k 2 -triples + ( static-DACs )

re so much lower than k 2 -triples that the result for k 2 -triples + 

s not even visible in the plot. This is consistent with the results

btained in triple patterns, where the use of S–P and O–P indexes

n k 2 -triples + resulted in a major improvement. However, in many

ases the improvement obtained by k 2 -triples + is not so significant

nd dk 2 -trees are still reasonably close in query times. 

. Conclusions 

The compact representation of static binary relations can be

seful in many contexts, but in many application areas relations

ay be subject to frequent changes. We have introduced the dk 2 -

ree, a representation of binary relations with support for update

perations. The dk 2 -tree is an evolution of the k 2 -tree, an inher-

ntly static data structure that obtained great compression and
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Fig. 12. Comparison of static and dynamic query times in join 2 in all the studied datasets and query types. Results are normalized by query times of k 2 -triples. Query times 

of the static representation are shown in ms/query. 
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query times in different types of binary relations. Our dynamic

representation is able to obtain good compression and query times,

relatively close to those of static k 2 -trees, and provides at the same

time support for the most usual update operations: insertion and

deletion of pairs in the binary relation, and also changes in the

base sets A and B of the relation. 

Our experimental evaluation shows that the dk 2 -tree, even

though it has a significant overhead compared with the static rep-

resentation, is able to obtain results close enough to those of the

static representation to be competitive in areas where the orig-

inal static representation was already efficient. In particular, we

demonstrate that our representation obtains compression results

close to a static data structure in Web graphs, and we study the

overhead required in the representation of RDF graphs. Our repre-

sentation performs in general at the same order of magnitude than

static k 2 -trees in this domain, where state-of-the-art alternatives

are orders of magnitude larger or slower. Additionally, in many op-

erations and datasets the overhead required by our representation

becomes small enough (around 20% space or time overhead in dif-

ferent cases) to be a good representation even in a context of dy-

namic binary relations with low rate of changes. 
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