
MAXIMAL Lp-REGULARITY FOR FRACTIONAL DIFFERENTIAL

EQUATIONS ON THE LINE

VERÓNICA POBLETE AND RODRIGO PONCE

Abstract. We characterize the Lp-maximal regularity of an abstract fractional differential
equation with delay on the Lebesgue spaces. The method is based on the theory of operator-
valued Fourier multipliers and weighted Sobolev spaces on the line.

1. Introduction

In this paper, we consider the following fractional differential equation with delay

(1.1) Dαu(t) = Au(t) + Fut + f(t), t ∈ R,

where A is a closed linear operator defined on a Banach space X, f ∈ Lp(R;X), 1 < p < ∞
and the fractional derivative for α > 0 is taken in the sense of Caputo. Here the delay F :
Lp([−r, 0];X) → X is supposed to be a bounded linear operator, and ut(·) = u(t + ·). Recent
investigations into physics, engineering, biological sciences and other fields have demonstrated
that the dynamics of many systems are described more accurately using fractional differential
equations and that fractional differential equations with delay are often more realistic to describe
natural phenomena than those without delay [27, 28, 43, 44].

We notice that in the case F ≡ 0, the fractional differential equation (1.1) is equivalent to the
integral equation

(1.2) u(t) =

∫ t

−∞
a(t− s)[Au(s) + f(s)]ds, t ∈ R,

where a(t) = tα−1

Γ(α) =: gα(t). The study of maximal regularity on Lp(R;X) for the integral

equation (1.2) (in the sense that for all f ∈ Lp(R;X) there exists a unique strong solution u of
equation (1.2)), for general kernels a ∈ L1(R+), goes back to Ph. Clément and G. Da Prato,
[16]. However, since gα ̸∈ L1(R+), the results in [16] are not applicable to equation (1.1). When
F ̸≡ 0, the equation (1.1) can not be equivalent to an integral equation. A complete study of
equations in the form of (1.2) can be found in the monograph [40]. We remark that the behavior
of fractional differential equations with and without delay are completely different, even in the
case when F is a bounded operator, see [31]. To the knowledge of the authors, time fractional
differential equations in Lp(R;X) and with delay have not been studied until now. Moreover,
we notice that one of the difficulties is to determine the right definition of fractional derivative
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to be used in this case. Here, we consider the so-called Caputo (or Weyl) fractional derivative
[25].

Time fractional differential equations with delay on periodic Lebesgue spaces Lp
2π(X), (X

being a UMD space and 1 < p < ∞) have been treated in [7, 8, 9, 10, 24, 31]. See also
[11, 12, 13, 15, 32, 33, ?, 38, 39].

In [3], Arendt and Duelli study the Lp-maximal regularity to equation (1.1) when α = 1, that
is,

(1.3) u′(t) = Au(t) + f(t), t ∈ R.

The authors showed, using Weis’s operator valued Fourier multiplier theorem [42], that if X
is a UMD space, then the problem (1.3) is maximal Lp-regular (1 < p < ∞) if and only if
the operator A is R-bisectorial and invertible. This result extends Mielke’s characterisation of
maximal Lp-regularity of (1.3) when the underlying space is a Hilbert space, see [35]. Applying
this results, the authors study the second-order problem

(1.4) u′′(t) = Au(t) + f(t), t ∈ R,

by transforming this equation into a first-order system. Other approaches of maximal regularity
to equation (1.3), using interpolation spaces, can be found in [45].

Maximal regularity on Lp(J ;X) where J = [0, T ], T > 0, or J = [0,∞) to fractional differential
equation (1.1) and have been studied, see for example [6, 19, 23].

In this paper, we study the problem of characterize the Lp-maximal regularity of the fractional
differential equation with delay (1.1) in Lp(R;X), the vector-valued Lp-spaces for 1 < p < ∞.

The paper is organized as follows. In Section 2, we review some results about vector-valued
Fourier multipliers and we recall the definition and some basic properties on fractional calculus.
Section 3 is devoted to our main result (Theorem 3.9), where a characterization of maximal reg-
ularity of problem (1.1) is obtained under some suitable assumptions. Finally, some applications
are examined in Section 4 and 5.

2. Preliminaries

Let X and Y be complex Banach spaces. We denote the space of all linear and bounded
operators from X to Y by B(X,Y ). In the case X = Y , we will write briefly B(X). Let A be
an operator defined on X. We will denote its domain by D(A), its domain endowed with the
graph norm by [D(A)], its resolvent set by ρ(A), and its spectrum set by σ(A) = C \ ρ(A).

For n ∈ N ∪ {0} ∪ {∞}, Cn(R;X) denotes the set of X-valued functions which are n-times
differentiable on R.

Given α > 0, the Liouville fractional integrals of order α, D−α
− f and D−α

+ f are defined,
respectively, by

(2.1) D−α
− f(t) :=

∫ t

−∞

(t− s)α−1

Γ(α)
f(s)ds, t ∈ R,

and

(2.2) D−α
+ f(t) :=

∫ ∞

t

(s− t)α−1

Γ(α)
f(s)ds, t ∈ R.
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A sufficient condition for that the fractional integrals (2.1) and (2.2) exist is that f(t) =
O(|t|−α−ϵ) for ϵ > 0 and t → ∞. Integrable functions satisfying this property are sometimes
referred to as functions of Liouville class, see [36].

The Caputo left and right-sided fractional derivatives, corresponding to those in (2.1) and
(2.2) are defined, respectively, by

Dα
−f(t) := D

−(n−α)
−

dn

dtn
f(t) =

∫ t

−∞

(t− s)n−α−1

Γ(n− α)
f (n)(s)ds

and

Dα
+f(t) := (−1)nD

−(n−α)
+

dn

dtn
f(t) = (−1)n

∫ ∞

t

(s− t)n−α−1

Γ(n− α)
f (n)(s)ds,

where t ∈ R, f ∈ Cn(R;X) and n = ⌈α⌉. Here ⌈α⌉ denotes the smallest integer greater than or
equal to α. More details of Caputo fractional calculus can be found in [25, Section 2.4] and [14].

We notice that the Caputo fractional calculus can also be applied to functions not belonging
to the Liouville class (see [36, p. 237]). For example, let g and h be measurable functions on R
such that D−α

± g exists and h = D−α
± g a.e. Then we set Dα

±h = g.

It is known that Dα+β
± = Dα

±(D
β
±) for any α, β ∈ R, where D0

± = Id denotes the identity

operator and (−1)nDn
+ = Dn

− = dn

dtn holds with n ∈ N. See [36].
In what follows, we refer to the Caputo left-sided fractional derivative, Dα

−f, as the Caputo
fractional derivative of order α > 0 of f and we write Dαf := Dα

−f. For example, for the

function eλt we have

D−α
− eλt = λ−αeλt and Dαeλt = λαeλt, Reλ > 0.

For α > 0, we define Wα,p(R;X) as the Banach space consisting of all u ∈ Lp(R;X), for
which there exists u′, u′′, ..., un ∈ Lp(R;X), n = ⌈α⌉, such that∫

R
u(t)Dαϕ(t)dt =

∫
R
Dαu(t)ϕ(t)dt

for all ϕ ∈ D(R).

Thus, if u ∈ Lp(R; [D(A)]) is a weak solution of equation (1.1), i.e.∫
R
u(t)Dαϕ(t)dt =

∫
R
(Au(t)+Fut + f(t))dt

for all ϕ ∈ D(R), then u ∈ Wα,p(R;X) and Dαu = Au+Fu· + f.

We denote by f̂ the Fourier transform of f, that is

f̂(s) :=

∫
R
e−istf(t)dt,

for s ∈ R and f ∈ L1(R;X).
We denote by D(R;X) the space of X-valued C∞−functions with compact support on R.

S ′(R;X) = B(S(R);X) is the space of all tempered distributions. Then the Fourier transform
F on S ′(R;X) is defined by

⟨Fu, ϕ⟩ = ⟨u, ϕ̂⟩,
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where u ∈ S ′(R, X) and ϕ ∈ S(R). If we identify S(R;X) with a subspace of S ′(R;X) by letting

⟨u, ϕ⟩ =
∫
R
u(t)ϕ(t)dt, ϕ ∈ S(R),

for all u ∈ S(R;X), then û = Fu, i.e.,∫
R
u(t)ϕ̂(t)dt =

∫
R
û(s)ϕ(s)ds,

for all u ∈ S(R;X), ϕ ∈ S(R). Thus F : S ′(R;X) → S ′(R;X) is an isomorphism extending the
isomorphism u 7→ û on S(R;X). We refer to [1] for all these properties.

For f ∈ L1
loc(R;X) of subexponential growth, that is∫ ∞

−∞
e−ϵ|t|∥f(t)∥dt < ∞, for each ϵ > 0,

we denote by f̃(λ) for the Carleman transform of f :

f̃(λ) =


∫∞
0 e−λtf(t)dt, Reλ > 0,

−
∫ 0
−∞ e−λtf(t)dt, Reλ < 0.

Definition 2.1. Let X,Y be Banach spaces, 1 < p < ∞. A function M ∈ C∞(R;B(X,Y )) is
an Lp

X,Y −multiplier if there exists a bounded operator T : Lp(R;X) → Lp(R;Y ) such that for

all f ∈ F−1D(R;X)

Tf ∈ S(R;Y ), and (Tf)∧(s) = M(s)f̂(s), s ∈ R.

Definition 2.2. A family of operators T ⊂ B(X,Y ) is called R-bounded if there is a constant
C > 0 such that for all T1, ..., Tn ∈ T , x1, ..., xn ∈ X, n ∈ N,

(2.3)

∫ 1

0

∥∥∥∥∥∥
n∑

j=1

rj(t)Tjxj

∥∥∥∥∥∥
Y

dt ≤ C

∫ 1

0

∥∥∥∥∥∥
n∑

j=1

rj(t)xj

∥∥∥∥∥∥
X

dt,

where (rj) is a sequence of independent symmetric {−1, 1}-valued random variables on [0, 1],
e.g. the Rademacher functions rj(t) = sgn(sin(2jπt)). The smallest such C is called R-bound of
T and we denote it by Rp(T ).

We note that in a Hilbert space every normbounded set T is R-bounded. Several properties
of R-bounded families can be found in the monograph of Denk, Hieber and Prüss [20]. See
moreover [26].

The following operator-valued multiplier theorem is due to Weis [42, Theorem 3.4].

Theorem 2.3. Let X,Y be UMD-spaces and 1 < p < ∞. Suppose that M ∈ C1(R;B(X,Y )),
and that the sets

{M(s) : s ∈ R} and {sM ′(s) : s ∈ R},

are R-bounded. Then M is an Lp
X,Y −multiplier.
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3. The Maximal Lp-regularity. The UMD case.

Let A : D(A) ⊆ X → X be a linear closed operator on the Banach spaces X. We consider the
following fractional differential equation

(3.1) Dαu(t) = Au(t)+Fut + f(t), t ∈ R,
where α ≥ 1, and f ∈ Lp(R;X) and for r > 0, F : Lp([−r, 0];X) → X is a linear and bounded
operator. Moreover ut is an element of Lp([−r, 0];X) which is defined as ut(θ) = u(t + θ) for
−r ≤ θ ≤ 0.

Definition 3.1. Let 1 < p < ∞. For f ∈ Lp(R;X), we call u ∈ Lp(R;X) a solution of equation
(3.1) if u ∈ Wα,p(R;X) ∩ Lp(R; [D(A)]) and u satisfies equation (3.1) for a.e. t ∈ R.

Definition 3.2. We say that the equation (3.1) has maximal Lp-regularity if for each f ∈
Lp(R;X) there exists a unique solution u of equation (3.1).

Remark 3.3.

Observe that if equation (3.1) has maximal Lp-regularity, it follows from the closed graph
theorem that the map M : Lp(R;X) → Wα,p(R;X) ∩ Lp(R; [D(A)]), which associates to f the
unique solution u of equation (3.1) is linear and continuous.

Indeed, since A is a closed operator, we have that the space H := Wα,p(R;X)∩Lp(R; [D(A)])
endowed with the norm

||u∥H := ∥Dαu∥Lp + ∥Au∥Lp + ∥u∥Lp

is a Banach space.
For appropriate functions, the Caputo left and right-sided fractional derivatives are adjoint

in the sense of the following lemma.

Lemma 3.4. If Dαf and D−α
+ g exist, then∫

R
f(t)g(t)dt =

∫
R
Dαf(t)D−α

+ g(t)dt.

Proof. The proof is similar to [25, p. 89].

Denote by eλ(t) := eiλt for all λ ∈ R, and define the operators {Fλ}λ∈R ⊆ B(X) by

Fλx := F (eλx), for all λ ∈ R and x ∈ X.

An easy computation shows that F̂ ut(s) = Fsû(s) for all s ∈ R and u ∈ L1(R;X).

For s ∈ R, we recall that (is)α is defined by (is)α = |s|αe
παi
2

sgn(s), where sgn(s) denotes the
sign of s. We define the real resolvent set ρ(A,F ) by

ρ(A,F ) := {s ∈ R : (is)αI − Fs −A has a bounded inverse }.
The real spectrum set σ(A,F ) is defined by

σ(A,F ) := R \ ρ(A,F ).

Proposition 3.5. Let 1 < p < ∞, and f ∈ F−1(R;X), and u ∈ Lp(R; [D(A)]). Assume that
σ(A,F ) = ∅. The following assertions are equivalent.

(i) u ∈ Wα,p(R;X) and u is a solution of equation (3.1);

(ii) u ∈ S(R; [D(A)]) and û(s) = ((is)α−Fs −A)−1f̂(s) for s ∈ R.
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Proof. (ii) ⇒ (i). Observe that D̂αu(s) = (is)αû(s), for all s ∈ R. In fact, since Dα
+(e

−ist) =

(is)αe−ist for all s ∈ R, we obtain by Lemma 3.4 that

(is)αû(s) =

∫
R
(is)αe−istu(t)dt =

∫
R
e−istDαu(t)dt = D̂αu(s).

Using that A is closed operator we have Âu(s) = Aû(s). Hence (Dαu − Fu· − Au)∧(s) =

((is)α − Fs −A)û(s) = f̂(s), for all s ∈ R. Consequently Dαu− Fu· −Au = f.

(i) ⇒ (ii). Let u ∈ Lp(R; [D(A)])∩Wα,p(R;X) be a solution of equation (3.1). Let ϕ ∈ S(R)
and R(A,F, s) := ((is)α−Fs −A)−1, s ∈ R. From Lemma 3.4 and Fubini’s theorem, we obtain∫

R
ϕ(s)R(A,F, s)f̂(s)ds =

∫
R
ϕ(s)R(A,F, s)

∫
R
e−istf(t)dtds

=

∫
R
ϕ(s)R(A,F, s)

∫
R
e−ist[Dαu(t)−Fut −Au(t)]dtds

=

∫
R
ϕ(s)R(A,F, s)

∫
R
u(t)Dα

+(e
−ist)−e−istFut − e−istAu(t)dtds

=

∫
R
ϕ(s)R(A,F, s)

∫
R
((is)α−Fs −A)u(t)e−istdtds

=

∫
R
ϕ(s)

∫
R
u(t)e−istdtds

=

∫
R
u(t)

∫
R
ϕ(s)e−istdsdt

=

∫
R
u(t)ϕ̂(t)dt.

Therefore, identifying Lp(R; [D(A)]) with a subspace of S ′(R; [D(A)]) by letting

⟨v, ϕ⟩ =
∫
R
v(t)ϕ(t)dt,

for v ∈ Lp(R; [D(A)]) and ϕ ∈ S(R). From the identity above, we have that û(s) = ((is)α−Fs −
A)−1f̂(s), for all s ∈ R, and Fu = ((i·)α−F·−A)−1f̂(·) ∈ D(R; [D(A)]). Hence u ∈ S(R; [D(A)]).

�
Lemma 3.6. Let α, β > 0. If f belongs to the Liouville class, then

Dα(e−β|t|f(t)) = e−β|t|
∞∑
k=0

(
α

k

)
(−sgn(t)β)kDα−kf(t), t ∈ R,

where
(
α
k

)
:= α(α−1)·...·(α−k+1)

k! .

Proof. Similar to [21, Lemma 5.3]. �
For β > 0 we define the following weighted Lp and Sobolev spaces on R with values in the
Banach spaces X

Lp
β(R;X) := {f : R → X measurable : ∥f∥β,p < ∞},

Wα,p
β (R;X) := {f : R → X measurable : f, f ′, . . . , fn ∈ Lp

β(R;X)} with n = ⌈α⌉,
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where ∥f∥β,p :=

(∫
R
∥e−β|t|f(t)∥pdt

)1/p

is the norm in Lp
β(R;X) and ∥f∥β,p + ∥f ′∥β,p + · · · +

∥f (n)∥β,p is the norm in Wα,p
β (R;X).

As in Definition 3.1, for f ∈ Lp
β(R;X) we call u ∈ Lp

β(R;X) a solution of equation (3.1) if

u ∈ Wα,p
β (R;X) ∩ Lp

β(R; [D(A)]) and u satisfies equation (3.1) for a.e. t ∈ R.

Further, we define the following mapping

¯ : Lp
β(R;X) → Lp(R;X)

u 7→ ū, where ū(t) := e−β|t|u(t).

The function ¯ is an isomorphism between Lp
β(R;X) and Lp(R;X).

The following lemma establishes the connection between solutions in Lp(R;X) and solutions in
Lp
β(R;X).

Lemma 3.7. Let 1 < p < ∞, β > 0 and f ∈ Lp
β(R;X). Then u ∈ Wα,p

β (R;X)∩Lp
β(R; [D(A)])

is solution of equation (3.1) if and only if ū ∈ Wα,p(R;X)∩Lp(R; [D(A)]) is solution of

(3.2) Dαū(t) = Aū(t)+Fut + f̄(t) + e−β|t|
∞∑
k=1

(
α

k

)
(−sgn(t)β)k Dα−k(eβ|t|ū(t)).

Proof. Follows directly from Lemma 3.6. �

This result includes the cases of first and second order (for F = 0) treated in [41]. Let
f ∈ Lp

β(R;X). In the particular case α = 1, we have that u ∈ Lp
β(R;X) is solution of u′(t) =

Au(t) + f(t) if and only if ū ∈ Lp(R;X) is solution of

ū′(t) = Aū(t) + f̄(t)− β sgn(t) ū(t).

For α = 2, it follows that u ∈ Lp
β(R;X) is solution of u′′(t) = Au(t) + f(t) if and only if

ū ∈ Lp(R;X) is solution of

ū′′(t) = Aū(t) + f̄(t)− β2 ū(t)− 2 sgn(t) ū′(t).

Lemma 3.8. If the equation (3.1) has maximal Lp-regularity, then there exists β > 0 such that
for all f ∈ Lp

β(R;X) there exists an unique solution u ∈ Wα,p
β (R;X)∩Lp

β(R; [D(A)]) of equation

(3.1) and the solution operator Mβ : Lp
β(R;X) → Wα,p

β (R;X)∩Lp
β(R; [D(A)]) is bounded.

Proof. Let f ∈ Lp
β(R;X). From Lemma 3.7 we obtain that u ∈ Wα,p

β (R;X)∩Lp
β(R; [D(A)]) is

solution of equation (3.1) if and only if ū ∈ Wα,p(R;X)∩Lp(R; [D(A)]) is solution of equation
(3.2). Define the mapping Tβ : Wα,p(R;X) → Wα,p(R;X)∩Lp(R; [D(A)]) by

Tβg := M (−hg) ,

where M is the solution operator of equation (3.1) and

hg(t) = e−β|t|
∞∑
k=1

(
α

k

)
(−sgn(t)β)kβ−1Dα−k(eβ|t|g(t)).
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From Lemma 3.6 in follows that hg ∈ Lp(R;X), hence Tβ is well-defined and is a bounded
operator. On the other hand, by (3.2) we have

Dα((1 + βTβ)ū)(t) = Dαū(t) + βDα(Tβū)(t)

= Aū(t)+Fut + f̄(t) + βhū(t) + βDα(Tβū)(t)

= Aū(t)+Fut + f̄(t) + βhū(t) + βDα(M(−hū))(t)

= Aū(t)+Fut + f̄(t) + βhū(t) + β[AM(−hū)(t)+F (M(−hū))t − hū(t)]

= Aū(t)+Fut + f̄(t) + β[AM(−hū)(t)+F (M(−hū))t]

= A[ū(t) + βM(−hū)(t)]+Fut+βF (M(−hū))t + f̄(t)

= A(1 + βTβ)ū(t)+Fut+βF (Tβū)t + f̄(t)

= A(1 + βTβ)ū(t)+F ((1 + βTβ)ū)t + f̄(t)+Fut − F (ū)t,

since F ((1 + βTβ)ū)t = F (ū)t + βF (Tβū)t. Therefore, M(f̄+g) = (1 + βTβ)ū, where g(·) =
Fu· − F (ū)· ∈ Lp(R;X). If β is small enough, then (1 + βTβ) is invertible. For this β, we have
that

Mβf = (̄ )−1(1 + βTβ)
−1M(f̄+g),

and by the closed graph theorem the operator Mβ which takes f ∈ Lp
β(R;X) into the unique

solution u ∈ Wα,p
β (R;X)∩Lp

β(R; [D(A)]) of equation (3.1) is a bounded operator. �

The main result in this section is the following theorem.

Theorem 3.9. Assume that X is a UMD-space and 1 < p < ∞. The following assertions are
equivalent.

(i) Equation (3.1) has maximal Lp-regularity;

(ii) σ(A,F ) = ∅ and {(is)α((is)α−Fs −A)−1}s∈R is R-bounded.

Proof. (i) ⇒ (ii). Assume that equation (3.1) has maximal Lp-regularity. Let s ∈ R and suppose

(3.3) ((is)α−Fs −A)x = 0,

for x ∈ D(A). Let u(t) := eistx. Then u ∈ Wα,p
β (R;X) ∩ Lp

β(R; [D(A)]) for all β > 0. Observe

that u is a solution to equation (3.1) with f ≡ 0. In fact, Dαu(t) = (is)αeistx (see [36, p. 248]).
Moreover, an easy computation shows that Fut = eistFsx and therefore by (3.3) we have

Au(t) = eistAx = eist[(is)α−Fs]x = Dαu(t)− Fut.

Hence, choosing the number β > 0 given in Lemma 3.8, we obtain by uniqueness that u ≡ 0,
that is, x = 0. Hence ((is)α−Fs −A) is injective.

In order to show the surjectivity, let y ∈ X be arbitrary. Let s ∈ R and β be small enough
as in Lemma 3.8. Let fs defined by fs(t) := eisty. Clearly fs ∈ Lp

β(R;X). Let Mβ : Lp
β(R;X) →

Wα,p
β (R;X) ∩ Lp

β(R; [D(A)]) be the bounded operator which takes each f ∈ Lp
β(R;X) to the

unique solution u of equation (3.1).
Let u = Mβfs. For fixed r ∈ R we have that v1(t) := u(t + r) and v2(t) := eisru(t) are both

solutions of (3.1) with g(t) = eisrfs(t). Hence, v1 = v2, that is, u(t+r) = eisru(t) for all r, t ∈ R.
Let x = u(0) ∈ D(A). If r = −t, then u(t) = eistx for all t ∈ R. Since Dαu(t) = (is)αeistx we
have Dαu(0) = (is)αx and therefore,

((is)α − Fs −A)x = Dαu(0)− Fu0 −Au(0).
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Since u(t) satisfies the equation (3.1) for all t ∈ R, we obtain,

((is)α − Fs −A)x = Dαu(0)− Fu0 −Au(0) = fs(0) = y.(3.4)

Therefore ((is)α − Fs −A) is surjective for all s ∈ R. Since A is a closed operator, we have that
σ(A,F ) = ∅.

Now, we show that {(is)α((is)α−Fs−A)−1 : s ∈ R} is R-bounded. In fact, since the operator
solution M of equation (3.1) is bounded, we have that if f ∈ F−1(R;X) then it follows from

Proposition 3.5 that u = Mf ∈ S(R; [D(A)]) and û(s) = M̂f(s) = ((is)α−Fs − A)−1f̂(s), for
all s ∈ R. Therefore, the function N : R → B(X; [D(A)]) given by N(s) = ((is)α−Fs − A)−1 is
an Lp

X;[D(A)]−multiplier and thus {N(s) : s ∈ R} is R-bounded (see [17, Proposition 1]). Since

A : D(A) → X is an isomorphism and Fs are bounded operators for all s ∈ R, we obtain that
{AN(s) + FsN(s) : s ∈ R} R-bounded. The identity (is)αN(s) = I + AN(s) + FsN(s) shows
that {(is)α((is)α−Fs −A)−1 : s ∈ R} is R-bounded.

(ii) ⇒ (i). For s ∈ R, define the operator N(s) := ((is)α−Fs − A)−1. Observe that by
hypothesis N ∈ C1(R;B(X, [D(A)])). We claim that {N(s) : s ∈ R} is a Lp

X,[D(A)]−multiplier.

In fact, the hypothesis shows that {N(s) : s ∈ R} is R-bounded. Moreover,

isN ′(s) = α(is)αN(s)N(s)− isN(s)F ′
sN(s).

An easy computation shows that {F ′
s : s ∈ R} is R-bounded (see [29, Proposition 3.2]) and

as consequence, {isN ′(s) : s ∈ R} is R-bounded. By Theorem 2.3, {N(s) : s ∈ R} is an
Lp
X,[D(A)]−multiplier. Therefore, there exits a bounded operator

T : Lp(R;X) → Lp(R; [D(A)])

such that for f ∈ F−1D(R;X), u := Tf ∈ S(R; [D(A)]) and û(s) = ((is)α−Fs − A)−1f̂(s) and
thus, by Proposition 3.5 it follows that u is a solution of equation (3.1). Observe that,

∥u∥Lp(R;[D(A)]) ≤ ∥T∥ ∥f∥Lp(R;X).

Now, let f ∈ Lp(R;X) be an arbitrary function. Then there exist fn ∈ F−1D(R;X) such that
fn → f in Lp(R;X). Let un = Tfn. Then un is a solution of equation (3.1) for fn. Moreover
un → u := Tf in Lp(R; [D(A)]). For ϕ ∈ D(R), one has by Lemma 3.4,∫

R
(Aun(t)+F (un)t + fn(t))ϕ(t)dt =

∫
R
Dαun(t)ϕ(t)dt =

∫
R
un(t)D

α
+ϕ(t)dt.

Letting n → ∞ we have by Lemma 3.4 that u is a weak solution of equation (3.1) and therefore
Dαu = Au+Fu· + f, that is, the equation (3.1) has maximal Lp-regularity.

To see the uniqueness, suppose that

(3.5) Dαu(t) = Au(t)+Fut, t ∈ R,
with u ∈ Wα,p(R;X) ∩ Lp(R; [D(A)]).

A simply computation shows that the Carleman transform of fractional derivative of u satisfies

D̃αu(λ) = λαũ(λ)−
n−1∑
k=0

u(k)(0)λα−1−k, for Reλ ̸= 0, n = ⌈α⌉.

Moreover, it is easy to show that ũ· ∈ Lp([−r, 0];X) (see [37]) and F̃ u·(λ) = Fgũ(λ) + Fgh,

for all Reλ ̸= 0, where g(θ) = eλθ and h(θ) =
∫ 0
θ e−λtu(t)dt, see [30].
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Taking Carleman transform in (3.5), we have

(λα − Fg −A)ũ(λ) =

n−1∑
k=0

u(k)(0)λα−1−k + Fgh, for Reλ ̸= 0, n = ⌈α⌉.

Since σ(A,F ) = ∅, it follows that the Carleman spectrum ũ of u is empty and therefore u = 0
(see [4, Theorem 4.8.2]).

�
Corollary 3.10. Let H be Hilbert space and let A : D(A) ⊆ H → H be a closed linear operator.
Then, the following assertions are equivalent for 1 < p < ∞.

(i) Equation (3.1) has maximal Lp-regular;

(ii) σ(A,F ) = ∅ and sup
s∈R

∥(is)α((is)α − Fs −A)−1∥ < ∞.

Corollary 3.11. In the context of Theorem 3.9, if condition (ii) is fulfilled, we have that Dαu,
Au ∈ Lp(R;X). Moreover, there exists a constant C > 0 independent of f ∈ Lp(R;X) such that

(3.6) ∥Dαu∥Lp(R;X) + ∥Au∥Lp(R;X) ≤ C∥f∥Lp(R;X).

The inequality (3.6) is a consequence of the closed graph theorem and known as the maximal
regularity property for equation (3.1). We deduce that the operator L defined by:

(Lu)(t) := Dβu(t)−Au(t)− Fut, t ∈ R,
with domain

D(L) = Wα,p(R;X) ∩ Lp(R; [D(A)]),

is an isomorphism onto. In fact, by Remark 3.3 we have that the space H := Wα,p(R;X) ∩
Lp(R; [D(A)]) becomes a Banach space under the norm

∥u∥H := ∥Dαu∥Lp(R;X) + ∥Au∥Lp(R;X) + ∥u∥Lp(R;X).

We remark that such isomorphisms are crucial for the handling of nonlinear evolution equa-
tions (see [1]). Indeed, assume that X is a Banach space and A,F satisfy the condition (ii) in
Theorem 3.9. Consider the semilinear problem

(3.7) Dαu(t) = Au(t) + Fut + f(t, u(t)), t ∈ R.
Define the Nemytskii’s operator N : H → Lp(R;X) given by N(v)(t) = f(t, v(t)) and the
bounded linear operator

T := L−1 : Lp(R;X) → H

by T (g) = u where u is the unique solution to linear problem

Dαu(t) = Au(t) + Fut + g(t).

To solve (3.7) we need to show that the operator R : H → H defined by R = TN has a fixed
point. For more details, we refer to Amann [1, 2].

For y ∈ X and r ∈ R, we define fr(t) := eirty. Is clear that fr ∈ Lp
β(R;X) for all r ∈ R since

||fr||β,p =
(∫

R
e−β|t|pdt

)1/p

||y|| =: Cβ,p ||y|| .
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Theorem 3.12. Let A be a linear operator on a Banach space X. Assume that equation (3.1)
has maximal Lp-regularity for equation (3.1) for some p ∈ (1,∞). Then σ(A,F ) = ∅ and there
exists a constant C > 0 such that

∥((is)α − Fs −A)−1∥ ≤ C

1 + |s|α
, s ∈ R.

Proof. Let s ∈ R and y ∈ X. As in the proof of Theorem 3.9 we have that ((is)α − Fs − A) is
biyective and hence there is z ∈ D(A) such that

((is)α − Fs −A)z = y.

Let β be small enought as in Lemma 3.8. From proof of Theorem 3.9 we have that for fs(t) :=
eisty, the unique solution of equation (3.1) is us(t) := eistz. Moreover,

∥us∥β,p = Cβ,p ∥z∥.

Let n = ⌈α⌉. Observe that

∥us∥β,p = Cβ,p ∥z∥
∥u′s∥β,p = |s|Cβ,p ∥z∥
∥u′′s∥β,p = |s|2Cβ,p ∥z∥

...

∥u(n)s ∥β,p = |s|nCβ,p ∥z∥

By Lemma 3.8 we have

(1 + |s|+ |s|2 + ...+ |s|n)Cβ,p∥z∥ = ∥us∥β,p + ∥u′s∥β,p + ...+ ∥u(n)s ∥β,p
= ∥us∥Wα,p

β (R;X)∩Lp
β(R;[D(A)])

= ∥Mβfs∥Wα,p
β (R;X)∩Lp

β(R;[D(A)])

≤ ∥Mβ∥∥fs∥Lα,p
β (R;X)

= CCβ,p∥y∥.

Therefore

∥((is)α − Fs −A)−1y∥ ≤ C

1 + |s|+ |s|2 + ...+ |s|n
∥y∥

≤ C

1 + |s|α
∥y∥.

�

4. Maximal regularity of a particular abstract equation

In this section, we consider the following equation

(4.8) Dαu(t) +Aεu(t) = f(t), t ∈ R,

where A is a sectorial operator, 1 < α < 2, and ε > 0. Maximal regularity to this class of
equations have been studied in [18, 24].
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We begin with some preliminaries on sectorial operators. We recall that a closed, densely
defined operator A is sectorial of angle β ∈ (0, π) if σ(A) ⊂ Σβ, and for every β′ ∈ (β, π)

sup
z∈C\Σβ′

∥z(z −A)−1∥ < ∞,

where Σβ := {z ∈ C : | arg z| < β}. For a sectorial operator, define the sectorial angle ω(A) by

ω(A) := inf{β ∈ (0, π) : A is sectorial of angle β}.

For every β ∈ (0, π) we write

H∞(Σβ) := {f : Σβ → C holomorphic : ∥f∥∞ < ∞} ,

H∞
0 (Σβ) :=

{
f ∈ H∞(Σβ) : ∃ε > 0 such that sup

z∈Σβ

|f(z)|
∣∣∣∣1 + z2

z

∣∣∣∣ε < ∞

}
.

If A is a sectorial operator of angle β ∈ (0, π), then

ΦA(f) := f(A) :=
1

2πi

∫
∂Σβ′

f(z)(z −A)−1dz

defines a functional calculus from H∞
0 (Σβ′) into B(X) for every β′ > β. This functional calculus

may be extended in a natural way in order to define the fractional powers Aε for every ε > 0,
see [22, 34].

A sectorial operator A admits a bounded H∞ functional calculus of angle β ∈ [ω(A), π) if the
functional calculus on H∞

0 (Σβ′) extends to a bounded linear operator on H∞(Σβ′) for every
β′ ∈ (β, π). The infimum of all such β is denoted by ωH(A).

The well-known examples for general classes of closed linear operator with a bounded H∞

calculus are

(1) normal sectorial operators in a Hilbert space;
(2) m-accreative operators in a Hilbert space;
(3) generators of bounded C0-groups on Lp-spaces;
(4) negative generators of positive contraction semigroups on Lp-spaces.

The class of sectorial operators A which admit a bounded H∞ calculus is denoted by H∞(X).
The operator A is said to admit a bounded RH∞-functional calculus of angle β ∈ [ωH(A), π) if,
in addition, for every β ∈ (β′, π), the set

{f(A) : ∥f∥H∞(Σ′
β)

≤ 1}

is R-bounded.
The main result of this section is the following.

Theorem 4.13. Let A be a sectorial operator which admits a bounded RH∞ functional calculus
of angle ω ∈

(
0, πε (1−

α
2 )
)
on a UMD Banach space X, where 1 < α < 2 and ε > 1. If 0 ∈ ρ(A)

and 1 < p < ∞, then (4.8) has maximal Lp-regularity.

Proof. Follow the same lines of [24, Theorem 4.6]. Since ω ∈
(
0, πε (1 −

α
2 )
)
, there exists β > 0

such that β < π
ε (1 − α

2 ). For each z ∈ Σβ and s ∈ R, define N(is, z) := (is)α((is)α + zε)−1.

Note that zε

(is)α belongs to the sector Σπα
2
+βε, where

πα
2 + βε < π. Hence the distance from the
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sector Σπα
2
+βε, to −1 is always positive. Therefore, there exists a constant M > 0 independent

of s ∈ R and z ∈ Σβ, such that

|N(is, z)| =
∣∣∣∣ 1

1 + zε

(is)α

∣∣∣∣ ≤ M.

Since A admits a RH∞ functional calculus of angle ω, we conclude by [20, Proposition 4.10] that
the set {N(is, A) : s ∈ R \ {0}} is R-bounded. Since A invertible, the operators ((is)α +Aε)−1

exist for all s ∈ R. Therefore, {N(is, A) : s ∈ R} is R-bounded. We conclude by Theorem 3.9,
that the equation (4.8) has maximal Lp-regularity. �

We recall that a linear operator A defined on X is called non-negative if (−∞, 0) ∈ ρ(A) and
there exists M > 0 such that

∥λ(λ−A)−1∥ ≤ M, for all λ < 0,

and A is said to be positive if it is non-negative and if, in addition, 0 ∈ ρ(A). See [34] for more
details.

Since each self-adjoint, positive operator admits a bounded RH∞ calculus of angle 0, we
obtain the following Corollary.

Corollary 4.14. Let A be a selfadjoint, positive operator defined on a Hilbert space H, 1 < α < 2
and ε > 1. Then for every f ∈ Lp(R;H) there exists a unique u ∈ Lp(R; [D(A)]) ∩Wα,p(R;H)
such that (4.8) holds for all t ∈ R.

Since A := −∆ with domain D(A) := {f ∈ L2(R;C) : d2f
dx2 ∈ L2(R;C)} is a self-adjoint and

positive operator, we have the following result.

Corollary 4.15. Let 1 < α < 2 and ε > 1. Then for every f ∈ Lp(R;L2(R;C)) there exists a
unique u ∈ Lp(R; [D(A)]) ∩Wα,p(R;L2(R;C)) such

Dαu(t) + (−∆)εu(t) = f(t),

holds for all t ∈ R.

5. Examples

We conclude the paper, with an application of the previous results. Let η : [−h, 0] → B(X)
be a strongly continuous function. Let F : Lp([−h, 0];X) → X be the bounded linear operator
given by

F (ϕ) =

∫ 0

−h
η(θ)ϕ(θ)dθ, ϕ ∈ Lp([−r, 0], X).

We notice that an important special case consists of those operators F defined by

F (ϕ) =

n∑
k=0

Ckϕ(τk), ϕ ∈ Lp([−r, 0];X),

where Ck ∈ B(X) and τk ∈ [−r, 0] for k = 0, ..., n. For concrete equations dealing with the above
classes of delay operators see the monograph of Bátkai and Piazzera [5, Chapter 3].
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Consider the following problem with delay

(5.9)

 Dαu(t, x) =
∂2

∂x2
u(t, x) +

∫ 0

−1
g(θ)u(t+ θ, x)dθ + f(t, x), (t, x) ∈ R× [0, π],

u(t, 0) = u(t, π) = 0, t ∈ R,

where 1 < α < 2, g : [−1, 0] → R is a continuous function and r = 1. We assume that the map
defined by R ∋ t → f(·, t) ∈ X := L2([0, π]) belongs to Lp(R, X). On X define the operator A
by

Av :=
d2

dx2
v(x), with domain D(A) := {v ∈ X : v ∈ H2([0, π]), v(0) = v(π)}.

The delay operator F is defined by

F (ϕ) =

∫ 0

−1
g(θ)ϕ(θ)dθ, ϕ ∈ Lp([−r, 0];X).

With these notations, the problem (5.9) adopts the abstract form of equation (3.1).
It is well known that A is the infinitesimal generator of an analytic semigroup, that A has

discrete spectrum with eigenvalues of the form −n2, n ∈ N, and the corresponding normalized

eigenfunctions are given by zn(ξ) := ( 2π )
1
2 sin(nξ). In addition, {zn : n ∈ N} is an orthonormal

basis for X, and thus

Ax =
∞∑
n=1

−n2⟨x, zn⟩zn,

for all x ∈ D(A). Therefore

((is)α −A)−1x =

∞∑
n=1

1

(is)α + n2
⟨x, zn⟩zn, for all x ∈ X.

We notice that if 1 < α < 2, then Re((is)α) < 0, and therefore,

|(is)α + n2| ≥ |Im((is)α)| = |s|α sin
(π
2
α
)
, (s ̸= 0),

and thus,

∥(is)α −A)−1∥ ≤ 1

|s|α sin
(
π
2α

) , (s ̸= 0).

Observe that,

∥F∥ ≤ ∥g∥∞ := C < ∞.

Since the identity

(is)α((is)α − Fs −A)−1 = (I − ((is)α −A)−1Fs)
−1(is)α((is)α −A)−1,

is valid for all s ∈ R we have

∥(is)α((is)α − Fs −A)−1∥ < ∞, when
C

sin
(
π
2α

) < 1 and 1 < α < 2.

By Theorem 3.9, we conclude that the problem (5.9) has maximal Lp-regularity (1 < p < ∞).

Moreover, the solution u of (5.9) satisfies Dαu, ∂
2u

∂x2 ∈ Lp(R;L2([0, π])).
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