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Cancer is characterized by an uncontrolled cell proliferation rate even under low 
nutrient availability, which is sustained by a metabolic reprograming now recognized 
as a hallmark of cancer. Warburg was the first to establish the relationship between 
cancer and mitochondria; however, he interpreted enhanced aerobic glycolysis as 
mitochondrial dysfunction. Today it is accepted that many cancer cell types need 
fully functional mitochondria to maintain their homeostasis. Calcium (Ca2+)—a key 
regulator of several cellular processes—has proven to be essential for mitochondrial 
metabolism. Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ transfer from 
the endoplasmic reti culum to the mitochondria through the mitochondrial calcium 
uniporter (MCU) proves to be essential for the maintenance of mitochondrial function 
and cellular energy balance. Both IP3R and MCU are overexpressed in several cancer 
cell types, and the inhibition of the Ca2+ communication between these two organelles 
causes proliferation arrest, migration decrease, and cell death through mechanisms 
that are not fully understood. In this review, we summarize and analyze the current 
findings in this area, emphasizing the critical role of Ca2+ and mitochondrial metabolism 
in cancer and its potential as a novel therapeutic target.

Keywords: inositol triphosphate receptors, mitochondrial Ca2+ uniporter, mitochondrial transport, TCA cycle, 
respiratory chain, AMPK

inTRODUCTiOn

Mitochondria arose around two billion years ago as the result of a symbiotic interaction between 
an archaeon ancestor and a α-proteobacterium (1). The modern mitochondria has retained a small 
circular polycystronic 16 kilobase genome (2) that controls the synthesis of about 67 proteins, includ-
ing 13 proteins that are core constituents of the electron transport chain (complex I–IV) (3). The 
terminal complex V of the electron transport chain, the ATP synthase, catalyzes the synthesis of 
most of the ubiquitous cellular energy currency, ATP (4). In addition, mitochondria play a vital role 
in metal ion homeostasis (5), programmed cell death (6–8), and the synthesis of building blocks for 
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the generation of amino acids, lipids, and nucleotides (9). In many 
cancer types, glucose-derived pyruvate is transported away from 
mitochondria, turned to lactate and excreted (10). Detection of 
glutamine-derived carbon as lactate has established glutamine as 
an important energy source in tumor cells (11, 12). Glutamine 
contributes the bulk of carbon to the tricarboxylic acid (TCA) 
cycle through a phenomenon known as anaplerosis (13), main-
taining a robust amount of citrate and malate for biosynthesis of 
lipids and nucleotides, respectively, in addition to providing an 
extra supply of reductive power (NADH) (9, 14). Also, glutamine 
activation of the TCA cycle helps to maintain the mitochondrial 
membrane potential (ΔΨm) (15), avoiding opening of the perme-
ability transition pore and the release of pro-apoptotic factors (16). 
Mitochondria play a pivotal role in maintaining cellular homeo-
stasis, and their function is essential for the viability of cancer cells.

MiTOCHOnDRiAL MeTABOLiSM in 
CAnCeR

A hallmark feature of cancer cells is a re-programming of their 
metabolism even when nutrients are available (17, 18). All major 
tumor suppressors and oncogenes are now recognized to have 
fundamental connections with metabolic pathways (10, 19, 20). 
Warburg suggested that cancer originates from an irreversible 
injury to mitochondria followed by a compensatory increase of 
glycolysis (21), but growing evidence indicates that most cancer 
cells rely on mitochondrial metabolism (20, 22–24). For example, 
mitochondrial function is essential for the survival of diffuse large 
B  cell tumors (25), primary glioblastoma sphere cultures (26), 
pancreatic (27), and leukemic cancer (28). Moreover, a subset of 
cancer cells that exclusively rely on glycolysis for ATP production 
[with mutations either in components of the succinate dehydro-
genase complex or the fumarate hydratase rendering mitochon-
drial oxidative phosphorylation (OXPHOS) dysfunctional] still 
use and need the oxidation of alpha-ketoglutarate (α-KG) in the 
mitochondria to generate the reducing equivalents necessary to 
sustain the reductive carboxylation pathway and the generation 
of metabolic intermediates (29). The mitochondrial function in 
cancer cells is sustained by a high uptake of the non-essential 
amino acid glutamine (15), which is converted to glutamate by 
glutaminases and subsequently converted to α-KG by either 
glutamate dehydrogenases or aminotransferases (30). α-KG then 
enters the TCA cycle where it is a substrate of the α-KG dehydro-
genase (α-KGDH), a highly regulated enzyme that catalyzes the 
conversion of α-KG, coenzyme A and NAD+ to succinyl-CoA, 
CO2 and NADH providing electrons to the respiratory chain  
(14, 29). Importantly in the context of this review, α-KGDH activ-
ity is strongly Ca2+ dependent (31). Ca2+ also activates directly 
the isocitrate dehydrogenase (ISDH) and indirectly the pyruvate 
dehydrogenase (PDH) through regulation of its phosphorylation 
state (32, 33). In general, increases of Ca2+ in the 0.1–10 µM range 
up-regulates the activities of these enzymes, resulting in higher 
mitochondrial NADH levels (34, 35). The regulation by Ca2+ of 
these three key mitochondrial dehydrogenases has a strategic 
task in coordinating cellular workload and generation of ATP 
(36). Several studies demonstrate that Ca2+ signaling plays an 

important role in cancer progression by promoting proliferation, 
cell migration, metastasis and vascularization, and conferring 
apoptosis resistance (37). However, how Ca2+ signals may affect 
mitochondrial metabolism and impact the aforementioned 
features remains poorly understood. Although Ca2+ is the focus 
of this mini-review, it is not the only ion able to affect mito-
chondrial metabolism. For example, K+ transport modulates the 
coupling between mitochondrial respiration and ATP synthesis 
(38). In fact, inhibition of the mitochondrial potassium channel 
Kv1.3 or the two-pore potassium channel TASK-3 compromises 
mitochondrial function (39, 40). Mg2+ is also important, since 
the knockdown of Mrs2, a Mg2+-selective channel in the inner 
mitochondrial membrane (IMM), induces the loss of complex I 
and causes mitochondrial membrane depolarization (41).

inOSiTOL 1,4,5-TRiSPHOSPHATe 
ReCePTORS (iP3Rs) AnD CAnCeR

The IP3Rs are a ubiquitous family of Ca2+ release channels 
composed of three isoforms (1, 2, and 3) present primarily in 
the endoplasmic reticulum (ER) (42) but can also be found in 
the nuclear envelope where they regulate gene transcription 
(43, 44). In addition, Ca2+ release through the IP3R regulates 
numerous other cellular functions including secretion, motil-
ity and autophagy (42, 45). Agonist-induced IP3R Ca2+ signals 
enhance mitochondrial function (46–48) primarily by stimu-
lating the TCA cycle dehydrogenases (PDH, α-KGDH, and 
ISDH) (31), as well as respiratory chain components to promote 
OXPHOS and ATP production (49, 50). The above is possible 
in part by the spatial proximity that exists between these two 
organelles, which allows the establishment of a structural and 
functional coupling known as mitochondria-associated mem-
branes (MAMs). These structures were reported in the early 
1950s (51–53) and have been described as signaling platforms 
involved in many cellular processes including metabolism 
control, migration, differentiation, proliferation and cell death 
(54). Interestingly, many oncosupressors and oncogene proteins 
are located in the MAMs and interact with the IP3R (such as 
AKT, PML, PTEN, and mTORC2) modifying calcium release 
patterns and cellular fate, which has been thoroughly discussed 
elsewhere (55, 56).

In cancer, the expression of IP3Rs, in particular the IP3R-3 
isoform, is up-regulated in glioblastoma (57), gastric (58), small 
and non-small lung (59), and colorectal cancer (60). Importantly, 
the over-expression of IP3R-3 in gastric cancer was found in cell 
lines established from cells that invade the peritonea, while the 
ones made from primary tumor cells show normal levels of IP3R 
expression (58). Along these lines, in colorectal cancer IP3R-3 
was found in the advancing margins of the tumors, correlating 
with depth of invasion, lymph node metastasis and liver metas-
tasis (60). In glioblastoma, the inhibition of IP3R with caffeine, a 
non-specific inhibitor of the IP3R, decreased migration in various 
in vitro assays and increased mean survival in a mouse xenograft 
model of glioblastoma (57). In addition, siRNA silencing of 
IP3R-3 in the colon cancer cell line CACO-2, or non-specific 
pharmacological inhibition of IP3R by 2APB in gastric cancer 
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TABLe 1 | Effects of inositol 1,4,5-trisphosphate receptor (IP3R) or MCUC component modulation on cancer cells.

Protein expression levels or activity 
modulation

Outcome reported Tumor types or cell lines Reference

IP3R Up-regulation Possible involvement in dissemination Gastric cancer, colorectal cancer (58, 60)
Alters endoplasmic reticulum-calcium homeostasis Lung carcinoma cell lines (59)

Caffeine inhibition Reduces of invasion and extends survival Glioblastoma (57)
Knockdown Cell death CACO-2 (60)

MCF7, T47D, PC3, DU145 (65)
Decreases estradiol-induced proliferation MCF7 (61)

XeB inhibition Cell death MCF7, T47D, PC3, DU145 (65)

MCU Down-regulation Provide cancer cell survival upon apoptotic challenges Colon cancer (87)
Knockdown Reduces migration and metastasis MDA-MB-231 (91)

Potentiates caspase-independent cell death MDA-MB-231 (88)
No effects on cell survival MDA-MB-231 (89)
Cell death Transformed primary skin fibroblast (65)

Knockdown or Ruthenium red inhibition Reduces migration (involves store-operated Ca2+ entry) MDA-MB-231 (90)
Enhances activity Cell death Hela, EA.hy926 (94)

MICU1 Knockdown Reduces migration and sensitizes to apoptotic stimulus HeLa (95)
Sensitizes to apoptotic stimulus Melanoma, head and neck squamous cell 

carcinoma
(96, 97)

Inhibits tumor growth, migration and invasion Ovarian cancer (98)

MCUR1 Knockout Increases resistance to cell death HeLa (100)
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cells, induces apoptosis, while over-expression of the receptors 
protects the cells from apoptosis induced by staurosporine 
(60). Regarding breast cancer, both estradiol- and ATP-induced 
proliferations in the MCF7 cell line are mediated by the IP3R-3 
(61, 62). Moreover, the breast cancer metastasis suppressor 1, a 
protein able to suppress formation of secondary tumor masses 
without blocking growth of neoplastic cells at orthotopic or sub-
cutaneous sites, reduces phosphoinositide signaling, including 
IP3 in the MDA-MB-435 cell line (63). Clearly, IP3R plays a role 
in cancer progression and metastasis; however, the mechanism 
of its involvement has not been elucidated. A summary of the 
expression of IP3R in cancer and the effect of manipulating its 
activity is found in Table 1.

Constitutive IP3R-mediated Ca2+ transfer to mitochondria is 
essential to maintain cell bioenergetics in normal cells, and its 
absence induces a bioenergetic stress that causes diminished oxi-
dative respiration (OXPHOS) and leads to an adaptive response 
characterized by AMPK and autophagy activation (Figure 1A) 
(64). We find that breast and prostate cancer derivate cells, as well 
as transformed primary fibroblasts, similar to normal cells need 
constitutive transfer of IP3R released Ca2+ to the mitochondria 
to maintain the optimal activity of PDH and, therefore, sufficient 
amounts of NADH to support the TCA cycle (Figure 1A) (unpub-
lished data). Genetic or pharmacological inhibition of either IP3R 
or MCU elicits comparable effects to those observed in normal 
cells, including diminished OXPHOS, AMPK activation, and 
induction of a pro-survival autophagy (Figures 1B,C); however, 
whereas normal cells were able to survive these challenges, much 
of the cancer cell population (60–70%) could not (Figure 1C). 
The cancer cell death was caused by a lack of mitochondrial 
function because mitochondrial substrates, which bypassed the 
inhibition of the TCA cycle and enabled mitochondria to work, 
were able to rescue the cells (65, 66). Moreover, we determined 
that a decrease in nucleotides, whose synthesis occurs partially in 

the mitochondria, added to the inability of cancer cells to arrest 
the cell cycle upon metabolic stress and was most likely respon-
sible for the mitotic catastrophe that leads to cell death in cancer 
cells, as supplementation with nucleotides promoted survival.

MCU AnD CAnCeR

In the early 1960s, it was observed that energized mitochondria 
were capable of taking up and accumulating Ca2+ in the matrix 
(67–69) and further studies found that mitochondrial Ca2+ 
uptake could be pharmacologically inhibited by ruthenium red 
and Ru360 (70–72). Nevertheless, this mitochondrial feature was 
ignored for many years and, only in the 1990s, did mitochondrial 
Ca2+ uptake begin to be considered an important mechanism for 
Ca2+ homeostasis (73–75). The capacity to take up and accumu-
late Ca2+ in the mitochondrial matrix is substantial, reaching 
concentrations of 100  µM (5). Nevertheless, most of the Ca2+ 
that enters the mitochondrial matrix is quickly chelated due to 
the action of phosphate; therefore, free [Ca2+] within the matrix 
is much lower compared to total [Ca2+], which can reach up to 
1 M, as occurs in neurons. According to the chemiosmotic theory 
of Mitchell, the entrance of Ca2+ into the mitochondrial matrix 
is driven by the negative potential inside the membrane (76). 
However, exactly how Ca2+ enters the mitochondrial matrix was 
a critical question unsolved for more than 50 years.

Ca2+ crosses the outer mitochondrial membrane through the 
voltage-dependent anion-selective channels (VDACs), a family 
of channels by which different ions and molecules enter into 
the intermembrane space (77). VDACs play a significant role 
in cancer by supporting glycolytic metabolism and preventing 
apoptosis, which has been comprehensively reviewed recently 
elsewhere (78). Ca2+ then enters the mitochondrial matrix 
through the so-called uniporter, whose molecular identity was 
unknown until recently (79, 80). The discovery of the regulatory 
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FigURe 1 | Inositol 1,4,5-trisphosphate receptor (IP3R)-mediated calcium 
transfer to mitochondria in normal and cancer cells. (A) In normal and cancer 
cells Ca2+ released from the endoplasmic reticulum (ER) through the IP3R 
enters the mitochondrial matrix through the mitochondrial calcium uniporter 
(MCU) and activates key dehydrogenases of the tricarboxylic acid (TCA) 
cycle, maintaining a robust amount of ATP and metabolic intermediates or 
building blocks for the generation of fatty acids, amino acids and nucleotides 
allowing the cells to enter the cell cycle, proliferate, and keep normal 
homeostasis. (B) In normal cells, the inhibition of the Ca2+ transfer to 
mitochondria generates a decrease in TCA cycle activity with the 
concomitant reduction in ATP and metabolic intermediates, inducing AMPK, 
autophagy and the complete shutdown of the cell cycle caused in part by a 
reduction in the availability of nucleotides. (C) In cancer, a similar 
phenomenon is observed after inhibition of Ca2+ transfer to mitochondria; 
decrease in TCA cycle activity, ATP, and metabolic intermediates, activation 
of AMPK and autophagy, and reduction in the amount of nucleotides 
available. However, cancer cells continue entering the cell cycle despite the 
metabolically unfavorable environment causing cell death (65, 66).
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subunit mitochondrial Ca2+ uptake 1 (MICU1) was the first step 
in this field, discovered in 2010 by Mootha’s group, who used 
siRNA screening of over 13 candidates and identified an IMM 
protein of 54 kDa necessary for mitochondrial Ca2+ uptake (81). 
A year later, Mootha’s and Rizzuto’s group in parallel identified 
a 40 kDa protein as the pore-forming element of the uniporter, 
the mitochondrial calcium uniporter (MCU) (79, 80). These find-
ings radically opened further studies, and today, we know that 
the mitochondrial uniporter is a multi-protein complex (MCUC) 
formed by MCU, MCUb, EMRE (core components of the pore) 
(82–84), MICU1 and 2 (81, 85), MCUR1 (86), and SLC25A23 
(86) (associate regulators).

The role of the MCUC in cancer is just beginning to be explored 
and already with contradicting results (see Table 1) For example, 

the reduced expression of MCU caused by over-expression of the 
microRNA miR-25 in colon cancer favors cancer cell survival by 
preventing mitochondrial Ca2+ overload upon several apoptotic 
challenges (87). In contrast, several groups, using various differ-
ent algorithms, find that the expression of MCU correlates with a 
poor prognosis, invasive behavior, and metastasis in breast cancer 
(88–91). Zou’s group shows that knockdown of MCU decreases 
migration through a mechanism that implies a reduction of the 
store-operated Ca2+ entry (90); however, the molecular details 
of this mechanism remain unclear. More recently, Tosatto et al. 
elegantly show that MCU silencing decreases migration and 
metastasis through a mechanism that includes an increase in the 
NAD(P)H/NADH ratio, changing the antioxidant capacity of 
the cell and decreasing the steady-state levels of mitochondrial 
 reactive oxygen species (ROS). This in turn affects the stabilization 
of Hypoxia-inducible factor-1α (HIF-1α), with the concomitant 
decrease in its target genes such as the hexokinase II, the glucose-
6-phosphate isomerase and the lysyl oxidase, which are critical 
for migration (91). The change in the NAD(P)H/NADH cannot 
be explained solely as the result of a decrease in the TCA cycle 
flux suggesting the presence of other Ca2+-sensitive mechanisms 
in the mitochondria that need to be explored.

The knockdown of MCU in the highly aggressive breast can-
cer cell line MDA-MB-231 does not affect proliferation or cell 
viability (88–91), unless the cells are challenged with a caspase-
independent cell death inducer such as ionomycin, which shows 
that MCU knockdown cells are significantly more sensitive than 
MCU expressing cells (88). Interestingly, in transformed primary 
skin fibroblasts, the knockdown of MCU induces a massive 
cell death (64), perhaps reflecting cell type-specific differences 
regarding the role of MCU or the use of the mitochondria, since 
the MDA-MB-231 cells are highly glycolytic while the skin pri-
mary fibroblasts are more oxidative. Along these lines, primary 
endothelial cells derived from tissue-specific MCU or MCUR1 
null mice also show a reduction in migration but, contrary to 
work in breast cancer, also show reduction in proliferation that 
correlates with the decrease in mitochondrial Ca2+ uptake and 
impaired mitochondrial bioenergetics (92). Interestingly, in 
endothelial cell lines, the oxidation of MCU Cys-97 enhances 
MCU channel activity increasing mitochondrial Ca2+ uptake and 
ROS generation. The persistent elevation of mitochondrial Ca2+ 
and ROS generation harms mitochondrial bioenergetic function, 
reducing migration and sensitizing cells to death (93). Also, a 
decrease in sarco/ER calcium ATPase (SERCA) activity in HeLa 
and EA.hy926 cancer cell lines caused by a drop in mitochon-
drial ATP levels (using resveratrol, piceatannol, or oligomycin) 
enhanced mitochondrial Ca2+ uptake causing Ca2+ overload and 
apoptosis, specifically in cancer cells (94).

The knockdown of MICU1, which is contrary to the MCU 
or MCUR1 knockdown, causes a constitutive entry of Ca2+ to 
the mitochondria, also reduced migration, and sensitized cells 
to apoptotic stimuli (95). In agreement, in melanoma, one of 
the most aggressive and lethal cancers, the knockdown of the 
ribosomal protein S3, reduced the expression of MICU1 allow-
ing a mitochondrial Ca2+ overload that triggered apoptosis (96). 
Similarly, the inhibition of the enhancer of zeste homolog 2, a 
component of the Policomb repressive complex 2, involved in 
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the regulation of homeotic (Hox) gene expression in head and 
neck squamous cell carcinoma downregulated MICU1 and 
caused cell death (97). Along these lines, MICU1 expression in 
ovarian cancer decreased PDH activity and hence the TCA cycle, 
shifting the cells toward glycolysis, providing chemoresistance 
but leading to a poor overall survival. Silencing MICU1 increases 
OXPHOS and inhibits tumor growth, migration, and invasion 
(98). Physiologically, MICU1 is a gatekeeper for MCU-mediated 
Ca2+ uptake, establishing a threshold that prevents Ca2+ uptake 
when [Ca2+] is low (<3 µM), similar to that observed during rest 
or during weak agonist stimulation. At higher [Ca2+] MICU1 
allows the entry of Ca2+, essential to maintain cellular bioenerget-
ics and viability (95). In fact, a recent publication of Graier group 
has demonstrated that cancer cells use the uncoupling proteins 
2 and 3 (UCP2/3) to re-establish MICU1 function (and in turn 
mitochondrial Ca2+ uptake), which is desensitized by methylation 
mediated by PRMT1 (99), an arginine methyl transferase highly 
expressed in cancer (100). The presence of this compensatory 
mechanism confirms the importance of preserved mitochondrial 
function in cancer. Finally, MCUR1 knockdown inhibits cell 
death induced by mitochondrial Ca2+ overload and is involved 
in establishing the mitochondrial permeability transition (101) 
and, therefore, it will be interesting to determine its role in cancer. 
Clearly, fine-tuning of mitochondrial calcium is fundamental 
for mitochondrial performance and ultimately cellular fate, and 
it will be exciting to further decipher the role of the MCUC in 
cancer.

RYAnODine ReCePTOR (RyRs) AnD 
SeRCAs in CAnCeR

The RyRs and the SERCA are the major Ca2+ players in the ER 
together with the IP3R (102). RyRs are a family of Ca2+-release 
channels composed of three isoforms (1, 2, and 3) that have rarely 
been associated with cancer, despite the fact that they regulate 
proliferation of melanocytes and T cells (103, 104) and migration 
in astrocytes (105). Implications in apoptosis regulation in pros-
tate cancer cell line LNCaP (106) and a direct correlation with 
tumor grades on breast cancer (107) are the strongest findings so 
far. It is possible that the limited participation of RyR in MAMs 
and Ca2+ communication with mitochondria prevents them from 
participating more actively in cancer.

In contrast, SERCA, consisting of three isoforms, such as 
SERCA1–2, which is expressed differentially in several tissues, 
and SERCA3, which is ubiquitously expressed (108), has been 
broadly associated with different types of cancer. Alteration of 
SERCA expression has been reported in oral squamous cancer 
(109), choroid plexus (110), thyroid (111), lung (59, 112), colon 

(113, 114), acute promyelocytic leukemia (108), cervical (115), 
and breast cancers (116). In colon cancer, SERCA3 expression 
decreases progressively during the tumorigenesis process 
becoming virtually null in poorly differentiated tumors (114). 
Similarly, ductal carcinomas show absence of SERCA3 expres-
sion compared to their normal counterparts (116) as well as acute 
promyelocytic leukemia cells (108) and Burkitt’s lymphoma 
cells (117), the details of which have been discussed thoroughly 
elsewhere (37, 108, 118).

COnCLUSiOn

Warburg was the first to propose a link between mitochondria 
and cancer by suggesting that the origin of cancer cells was an 
irreversible lesion in mitochondria that raises the glycolytic rate 
as a compensatory mechanism. Today, increasing evidence has 
demystified Warburg’s theory, demonstrating that mitochondria 
are key actors for cancer biology. To support their uncontrolled 
proliferation rate, cancer cells need a constant supply of building 
blocks to feed biomass production. This is achieved by a meta-
bolic re-programming that favors certain metabolic pathways 
and in this context; mitochondrial metabolism has proven to be 
essential. Accumulating evidence points to the Ca2+ communica-
tion between the ER and mitochondria as key for mitochondrial 
function and, therefore, for cancer progression. Unfortunately, 
the limited access of inhibitors either for IP3R or for MCU has 
prevented the development of pharmacokinetics and pharma-
codynamics experiments in  vivo, hindering the understanding 
of the real potential of this pathway as a therapeutic option, as 
has been achieved for other ion channels and the SERCA pump 
(118) Thus, the design of new drugs targeting the functional 
Ca2+ coupling between ER and mitochondria is fundamental to 
further understand the role of this pathway in phenomena such 
as angiogenesis, metastasis, chemoresistance, and cancer relapse.
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