Nrf2: a novel therapeutic target in fragile X syndrome is modulated by NNZ2566

By: Deacon, RMJ (Deacon, R. M. J.)\[1\,2\,3\] ; Hurley, MJ (Hurley, M. J.)\[3\,4\] ; Rebolledo, CM (Rebolledo, C. M.)\[5\] ; Snape, M (Snape, M.)\[6\] ; Altimiras, FJ (Altimiras, F. J.)\[1\,7\] ; Farias, L (Farias, L.)\[1\,7\] ; Pino, M (Pino, M.)\[1\] ; Biekofsky, R (Biekofsky, R.)\[10\] ; Glass, L (Glass, L.)\[8\] ; Cogram, P (Cogram, P.)\[1\,3\,9\] 

GENES BRAIN AND BEHAVIOR
Volume: 16
Issue: 7
Pages: 1-10
DOI: 10.1111/gbb.12373
Published: SEP 2017
Document Type: Article

View Journal Impact

Abstract
Fragile X-associated disorders are a family of genetic conditions resulting from the partial or complete loss of fragile X mental retardation protein (FMRP). Among these disorders, fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and autism. Progress in basic neuroscience has led to identification of molecular targets for treatment in FXS; however, there is a gap in translation to targeted therapies in humans. This study introduces a novel therapeutic target for FXS, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a transcription factor known to induce expression of over 100 cytoprotective genes. We also show that NNZ2566, a drug that has successfully completed a phase 2 clinical trial in FXS, is effective in modulating this target in FXS, partially reversing the FXS phenotype; NNZ2566 has a therapeutic role as Nrf2 activator. Effectively, treatment with NNZ2566 normalizes the translocation of Nrf2 to the nucleus, inducing expression of numerous oxidative stress-related genes including NQO1 (NAD(P) H dehydrogenase quinone 1), GST-alpha 1 (glutathione S-transferase alpha-1) and EH (epoxide hydrolase) and has a knockdown effect on E-cadherin. In summary, the Nrf2/ARE (antioxidant response element) pathway appears to be a novel promising therapeutic target for FXS and NNZ2566 appears to be acting as an activator of the Nrf2/ARE pathway and suggests a potential benefit across multiple symptoms that could be associated with the pathobiological processes underlying FXS.

Keywords
Author Keywords: Autism spectrum disorder; behavior; E-cadherin; Fmr1 knockout mouse; fragile X syndrome; GST-alpha 1; NNZ2566; NQO1; Nrf2/ARE pathway; oxidative stress
KeyWords Plus: GLYCINE-PROLINE-GLUTAMATE; BRAIN INJURY; NEURODEGENERATIVE DISEASES; TERMINAL TRIPEPTIDE; OXIDATIVE STRESS; MOUSE MODEL; RAT MODEL; NNZ-2566; MICE; INFLAMMATION

Author Information

Reprint Address: Deacon, RMJ; Cogram, P (reprint author)


Addresses:

[5] Univ Chile, Fac Ciencias, Santiago, Chile
[7] Univ Adolfo Ibanez, Fac Ingn & Ciencias, Santiago, Chile
[8] Neuren Pharmaceut, Bethesda, MD USA
[9] Univ Chile, IEB, Fac Sci, Santiago, Chile

E-mail Addresses: robertmj.deacon@gmail.com; patricia.cogram@gmail.com

Funding

<table>
<thead>
<tr>
<th>Funding Agency</th>
<th>Grant Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRAXA Research Foundation</td>
<td></td>
</tr>
<tr>
<td>Neuren Pharmaceuticals Ltd</td>
<td>NNZ2566</td>
</tr>
</tbody>
</table>

View funding text

Publisher

WILEY, 111 RIVER ST, HOBOKEN 07030-5774, NJ USA

Journal Information

- Impact Factor: Journal Citation Reports

Categories / Classification

Research Areas: Behavioral Sciences; Neurosciences & Neurology
Web of Science Categories: Behavioral Sciences; Neurosciences