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a b s t r a c t

This paper presents a new algorithm to find under-dense regions called voids inside a 2D point set. The
algorithm starts from terminal-edges (local longest-edges) in a Delaunay triangulation and builds the
largest possible low density terminal-edge regions around them. A terminal-edge region can represent
either an entire void or part of a void (subvoid). Using artificial data sets, the case of voids that are detected
as several adjacent subvoids is analyzed and four subvoid joining criteria are proposed and evaluated.
Since this work is inspired on searches of a more robust, effective and efficient algorithm to find 3D
cosmological voids the evaluation of the joining criteria considers this context. However, the design of
the algorithm permits its adaption to the requirements of any similar application.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

A practical geometrical problem is to find underdense zones
in either 2D planar point sets or 3D volumetric point sets and
represent their shapes by using simple polygons or polyhedra,
respectively. This problem appears in many areas of science but it
is particularly relevant in astronomy, where regions almost empty
of bright galaxies in the 3-D galaxy distribution are known as
cosmological voids.

In the astronomical literature there are several algorithms for
finding large empty spaces in the 3-dimensional distribution of
galaxies, however there is not yet a generally accepted method to
find and characterize them. Some algorithms are based on growing
spheres (see El-Ad and Piran (1997), Hoyle and Vogeley (2002)
and Foster and Nelson (2009) for example). That is, the algorithm
divides the point space (where each point represents a galaxy posi-
tion) into cells (grid) and then it findsmaximal empty balls starting
from the center of each cell. Balls are grown in a given direction
until their surfaces make contact with a point. Afterwards these
balls are merged and processed to identify cosmological voids.
Other algorithms first build the Voronoi diagram or Delaunay tes-
sellation of the point set and use it mainly for computing the point
density field (Platen et al., 2007; Neyrinck, 2008). In particular, the
algorithm proposed in Platen et al. (2007) starts with a Delaunay
tessellation but after computing the density fields it works on a
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cubic grid. Both methods use a flooding algorithm based on the
watershed transform to find the voids. It is worth pointing out that
they mention that it could be a good idea to work further over the
Delaunay tessellation yet they did not. In Hervías et al. (2013), we
proposed an algorithm that only uses the Delaunay tessellation to
find underdense regions. The algorithm recovered voids of convex
shape well but voids of non-convex shape were fragmented. Very
recently, an algorithm that also uses the Delaunay tessellation
during the whole process was presented in Way et al. (2015). This
algorithm applies the watershed transform over tetrahedra to find
and build voids.

In computational geometry, a similar and well studied problem
is to find large convex holes in a planar point set P. A convex hole
is represented by a convex polygon that contains no point of P in
its interior. The key question here is the expected size (number of
vertices) of the convex polygons that can be found (Pinchasi et
al., 2006; Balogh et al., 2013). A special case of this problem, is to
find the largest empty rectangle and an extension to the empty
rectangle problem is to look for the empty staircase polygon of
largest area (Nandy and Bhattacharya, 2003). This last problem
appears in Very-large-scale integration (VLSI) layout design. It
appears to be that none of the existing solutions use the Delaunay
triangulations of the point set as the basis for finding large empty
spaces, possibly because they usually deal with convex holes. Such
solutions would not generally apply to the problem in astronomy,
where the cosmological voids are almost always not convex and
may contain a few galaxies in its interior.

Another related problem, the computation of the α-shape of a
set of points (Edelsbrunner et al., 1983) which is a generalization
of the convex hull of a set of points, can also be seen as a related
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problem. The α-shape is represented by a set of polylines, closed
or not that adjust ‘‘better’’ to the set of points. The algorithm starts
by building a Delaunay triangulation of the set of points, and then,
according to the radius of a circular rubber, eliminates all the edges
of the triangulation that are greater than this value. The objective of
the α-shape algorithm is to represent the shape of the set of points
and not to compute the empty spaces inside the convex hull of the
set of points. As it is designed, the eliminated edges depend on an
user parameter and this value does not changewhile the algorithm
is applied. This is not the case when we find astronomical voids,
which is why we did not adapt/extend the alpha shape algorithm
to find voids.

Aswe have said before, cosmological voids are located in the 3D
space and a useful algorithm should find these 3D voids. However,
first we decided to focus in building an effective and robust 2D al-
gorithm that can be extended to 3D before developing an efficient,
effective and robust 3D version. In addition, we think that the 2D
algorithm can be useful to solve similar problems in other fields.

This paper presents a new approach to detect and build simple
polygons representing underdense regions or voids on a planar
point set. The algorithm is divided in two main steps: (1) Building
subvoids and (2) Joining subvoids. In the first step, each triangle
is attached to the terminal-edge region (a triangle set) it belongs
to. In the second step, fragmented voids, represented by several
terminal-edge regions, are joined to buildwhole voids. Each void is
described by a simple polygon defined by the edges which appear
only once in the triangle set. The main ideas behind step (1) and
its application to the detection of 2D and 3D convex voids were
presented in Hervías et al. (2013), without (i) the theoretical
foundations that support the algorithm, (ii) the detection of non-
convex polygonal voids nor (iii) implementation issues. We have
called the algorithm DELFIN (DEL aunay void FIN der).

The paper is organized as follows: Section 2 recalls the prop-
erties of the Delaunay triangulation and the Voronoi diagram and
introduces basic geometrical concepts. Section 3 presents themain
ideas of the algorithm and the theoretical foundations that sup-
port it. Section 4 describes the implementation of the algorithm
including the handling of special cases. Section 5 shows how the
algorithm was validated with artificial data and Section 6 includes
the analysis of the experimental evaluation. Finally Section 7 gives
some conclusions and outlines the ongoing work.

2. Basic concepts

The fundamental ideas of the proposed algorithm are based on
the properties of Delaunay triangulations. That is why we start
this section recalling them. Then we introduce several definitions;
some of them are already known in the literature related to trian-
gulations but they are necessary to clearly describe and demon-
strate the basis of the proposed algorithm.

2.1. Voronoi tessellations and Delaunay triangulations

Voronoi tessellations (Voronoi, 1908) and Delaunay triangula-
tions (Delaunay, 1934) are dual geometrical structures that allow
one to find quickly the input points (sites) that are (locally) close
or far from each other. The Voronoi tessellation consists of convex
polygonal regions, one for each site, whose interior points are
closer to this site than to any other site. Voronoi edges represent
points equidistant to two sites. The Delaunay triangulation is ob-
tainedby adding edges between the sites that share aVoronoi edge.
The endpoints of a Delaunay edge show that these sites are the
closest ones in that direction. Since each edge is a Delaunay edge,
there exists an empty circle that passes through its endpoints.
Then, there are circular regions that do not contain any other site in
its interior (O’Rourke, 1998). Such a circle may be centered in any

point of the shared edge (Voronoi edge) between the correspond-
ing Voronoi regions. The locally largest circular regions will be
considered as the starting point of the proposed algorithm which
we are going to explain in detail in the next sections.

2.2. Geometrical concepts

Let T be a conforming triangulation of n points andm triangles.
Let ti be a triangle, i = 0, . . . ,m − 1.

Definition 2.1. Longest-, second-longest- and shortest-edge: The
longest-edge of a triangle is the edge with the largest length; the
second-longest edge is the edge with the intermediate length,
and the shortest-edge is the one with the smallest length. In case
of equilateral or isosceles triangles, the equal length edges are
arbitrarily ordered. Then any triangle, including equilateral and
isosceles triangles, has a well defined size order for its edges.

In Section 4, we describe how the algorithm gives the arbitrary
order to the triangle edges of equilateral and isosceles triangles,
and in Section 6.4, we discuss why this order does not impact the
results.

The following definitions and theorems constitute the ba-
sis of our method and they require and use the concepts of
longest-, seond-longest- and shortest-edge. We will use the
terms Longest-edge propagation path and Terminal-edge were first
introduced by Rivara in the context of new algorithms for the
refinement/improvement of triangulations (Rivara, 1997) to char-
acterize the terminal-edge regions, that is, the void candidates.

Definition 2.2. Terminal-triangles and -edges (Rivara et al.,
2001): Two triangles are called terminal triangles if they share their
longest-edge. This shared longest-edge is called terminal-edge.

Definition 2.3. Longest-edge propagation path (Rivara et al.,
2001): For any triangle t0 in any conforming triangulation T , the
Longest-Edge Propagation Path of t0 (Lepp(t0)) will be the ordered
list of all the triangles t0, t1, t2, . . . , tl−1, tl, such that ti is the neighbor
triangle of ti−1 by the longest-edge of ti−1, for i = 1, 2, . . . , l. The
longest-edge shared by tl−1 and tl is a terminal-edge and tl−1 and tl
are terminal-triangles.

Definition 2.4. Boundary edge and boundary terminal-edge: The
edges that belong to only one triangle of a triangulation are called
boundary edges. If a boundary edge is the longest-edge of the
triangle, it will be called boundary terminal-edge.

Definition 2.5. Voids: Let S be a planar set of points and let P be
the polygon that represents its convex hull. A void is an underdense
region inside P . Voids can be represented by any simple polygon
(convex or not).

The term void is commonly used in astronomy to describe
underdense point regions in the space. Note that in one extreme
a void can be empty and, if it has a convex shape, can coincide with
the concept ‘‘convex hole’’ used in the computational geometry
area, but in the other extreme it is enough for the point density
inside a polygon to be lower than the background density. The
threshold density value to consider a region as a void may be
defined by the application.

3. The method

Let S be a set of planar points and T its Delaunay triangulation.
Since each edge of T is a Delaunay edge, there exists an empty circle
that passes through its endpoints. The question now iswhere voids
can be located. The largest empty circles are natural candidates to
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Fig. 1. Delaunay triangulation of a point set. The square window shows a subset of
points.

be part of voids. This fact influenced us to design an algorithm that
starting from two triangles that share a terminal-edge (initial tri-
angle set), builds the largest possible set of triangles (final triangle
set) of equal or increasing density by adding neighboring triangles
whose longest edge is shared with a triangle of the current set.
The algorithm stops when no neighboring triangle fulfills this
condition. The void candidate is defined by the simple polygon
formed by the edges that are only once in the final triangle set.

Fig. 1 shows the Delaunay triangulation of a point set. The
subset of points and triangles inside the square window will be
used in Fig. 2 to illustrate the steps of the proposed method.
Fig. 2(a) shows this subset of points and Fig. 2(b) the corresponding
Delaunay triangulation clipped by the square window sides. The
largest terminal-edge and the two terminal-triangles are drawn as
a thick red line and light blue triangles in Fig. 2(c) and Fig. 2(d),
respectively. These triangles are the seed triangles to start the
computation (initial triangle set). Figs. 2(e) and 2(f) show in light
blue the two neighbor triangles that share their longest-edge with
the terminal-triangles. These are added to the current triangle set.
Figs. 2(g) and 2(h) show the added triangles next and the final
triangle set is shown in Fig. 2(i). This region will be considered as a
void candidate.

3.1. Theoretical foundations

In this section we define the concept of terminal-edge region
and demonstrate that terminal-edge regions partition the space
without overlapping. As we have said before, for the cases of
equilateral and isosceles triangles the edges of equal length are also
assigned an order. Then every triangle has a unique longest-edge,
a second longest-edge and a shortest-edge.

Definition 3.1. Terminal-edge region: A terminal-edge region R is a
region formed by the union of all triangles ti such that Lepp(ti) has
the same terminal-edge. In case the terminal-edge is a boundary-
edge the region will be called boundary terminal-edge region.

Fig. 2(i) shows in light blue the terminal-edge region of the
terminal-edge shown in Fig. 2(c).

Definition 3.2. Frontier-edge: A frontier-edge is an edge that is
shared by two triangles, each one belonging to a different terminal-
edge region.

Lemma 3.1. Let ti and tj be two triangles that share the edge e. If the
edge e is a frontier-edge, then e is neither the longest-edge of ti nor
of tj.

Proof. Let us assume that e is either the longest-edge of ti or tj. Then
ti would belong to the Lepp(tj) or tj belongs to the Lepp(ti) through
e. This means that both triangles belong to the same terminal-edge
region and this contradicts that e is a frontier edge. □

Note that the opposite is false. In fact, Fig. 3 shows two triangles
ti, tj whose shared edge is not the longest-edge of any of them and
these two triangles belong to the same terminal-edge region Ri. e
is still a particular case frontier-edge in the sense that the region Ri
cannot grow through it. But, since e does not separate two different
regions we designate this kind of edge as barrier-edges.

Definition 3.3. Barrier-edge: A barrier-edge of a region R is an edge
shared by two triangles of R which is not the longest-edge of any
of them.

Definition 3.4. Internal-edge: An internal-edge of a region R is an
edge that is neither a terminal-edge, a frontier-edge, a barrier-edge
nor a boundary-edge.

Lemma 3.2. The edge e is an internal-edge of a terminal-edge region
iff e is the longest-edge of only one of two triangles that share it.

Proof. The proof is direct from the definition of the Longest-
edge propagation path and from the construction of terminal-edge
regions. □

Lemma 3.3. Let T be a conforming triangulation of any set of points
P and let CH be the convex hull of P. Then the set of terminal-edge
regions in T do not overlap.

Proof. Let us assume by contradiction that tj belongs to Ri and
Rk, the terminal-edge regions associated to edges ei and ek, respec-
tively. Since by Definition 2.1, tj has only one longest-edge, Lepp(tj)
finishes in either ei or ek, but not in both. Then tj belongs only to one
region and this contradicts our assumption. □

Fig. 4(c) shows a set of terminal edge regions built from the
triangulation shown in Fig. 4(b). Large terminal-edge regions will
be natural void candidates as the one in gray at the center of
Fig. 4(c). Note that we cannot always model a large empty space
with only one terminal-edge region as shown in Fig. 5(b). In this ex-
ample we show an artificially inserted non-convex polygonal void
and its fragmentation in seven terminal-edge regions generated
by our original algorithm (Hervías et al., 2013). Since for some
applications such as finding cosmological voids it is important to
recognize these subvoids as part of a larger void, in the next section
we propose several geometric criteria that can be used to join
subvoids before we describe the algorithm implementation.

3.2. Criteria to join subvoids

The criteria to join terminal-edge regions will certainly depend
on the problem to be solved. As we have said before, since our
motivation is to develop a 3D cosmic void detection algorithm, we
have looked for criteria that fulfill the following requirements:

• Easily extensible to 3D.
• Devoid of any preconceived assumptions about shape.
• Appropriate to join adjacent terminal-edge regions (regions

that share at least one frontier-edge).
• Use of local information (only from involved terminal-edge

regions).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 2. Illustration showcasing several steps of the algorithm. The longest-edge for the most recently added triangle is shown marked with a thick red line. The current
triangle set is shown in gray.

Fig. 3. Example of a barrier-edge (thick line). Red arrows indicate the direction of
the Lepp for each triangle towards a terminal-edge. The result is a single terminal-
edge region.

So, we have selected four criteria named Arc, Frontier, Second-
longest edge, and Frontier-edge. The Frontier-edge and Arc criteria

are based on existing methods (Platen et al. (2007) and Foster and
Nelson (2009), respectively) to join 3D cosmic subvoids, and we
have adapted them to join 2D artificial subvoids. The Frontier and
Second-longest edge criteria were designed by us and to the best of
our knowledge has not been used for the detection of cosmic voids.

• Arc criterion: Let Ci(ci, ri) be the circle whose center ci is the
centroid of the terminal-edge region Ri and whose radius ri
is such that area(Ci) = area(Ri). Let ai and aj be the arcs that
define Ci ∩ Cj. The same notation if valid for Cj(cj, rj) and Rj
(see Fig. 6(a)). If area(Ci) ≥ area(Cj) then, Ri and Rj are joined
if angle(ai) = αi ≥ θmin, and vice-versa.

• Frontier criterion: Let pi be the perimeter of the terminal-
edge region Ri and pj of Rj. Let lij be the sum of the frontier-
edge lengths shared by Ri and Rj as shown in Fig. 6(b). The
regions Ri and Rj are joined if the ratio lij/max(pi, pj) ≥ L

• Second longest-edge criterion: two terminal-edge regions are
joined if any of their shared frontier-edges is the second
longest-edge of at least one of the triangles that share it. In
Fig. 6(c), the edge L12 shared by the triangles t1 and t2 is the
second-longest edge of t1.



52 R. Alonso et al. / Astronomy and Computing 22 (2018) 48–62

(a) (b) (c)

Fig. 4. Terminal-edge regions inside the square window of Fig. 1. Each region is shown with a different color. (a) set of points, (b) Delaunay triangulation, (c) terminal-edge
regions. The gray region at the center is the one with largest area.

(a) Artificial non-convex polygonal void. (b) The void is recognized as seven terminal-edge
regions.

Fig. 5. Voids and subvoids. (a) The artificial void boundary is drawn on the triangulation. Neither its points, not its edges are part of the triangulation. (b) The seven found
terminal-edge regions are shown using different colors including the two white regions. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

• Frontier-edge criterion: two terminal-edge regions Ri and Rj
are joined if the length of any of their shared frontier-edges
is larger than a threshold value. Fig. 6(d) shows a frontier-
edge L12, the edge shared by triangles t1 and t2, as one of the
edges to be checked against the threshold value.

The robustness and effectiveness of these criteria are evaluated
in Section 5 by applying them to detect both convex and non-
convex artificial void structures.

4. The DELFIN algorithm

This section presents the algorithm that implements the
method described in Section 3. The algorithm was split into two
main steps:

1. Building subvoids: the algorithm builds terminal-edge re-
gions from the Delaunay triangulation of the input points.
Too small terminal-edge regions are discarded by using
either area (as) or terminal-edge length (emin) threshold
values. The remaining regions are considered as subvoids.
Both area (as) and terminal-edge length (emin) criteria are
known in the rest of the paper as discarding or filter criteria.

2. Joining subvoids: the remaining terminal-edge regions
(i.e. subvoids) are joined into candidate voids if they fulfill
the criterion specified by the user (Section 3.2). Candidate
voids are returned as voids if their area is larger than a
minimum valid void area (av).

4.1. Building subvoids

The Building subvoids algorithm is shown in Algorithm 1. First,
it builds the Delaunay triangulation of the input point set. Then,
it sorts the triangles by their longest-edge length and these edges
are processed in order from the triangle of largest longest-edge
to the shortest one. Each terminal-edge region is built as follows:
first, the largest non-used longest-edge (either a terminal-edge
or a boundary terminal-edge), whose terminal triangles (two or
one, respectively) are used to initialize triangle_set and represent
the seed terminal-edge region. Next, the triangles that share their
longest-edge with triangles of this terminal-edge region are added
to the current triangle_set and labeled as used. When no triangle
can be added to triangle_set, the terminal-edge region is complete.
If this terminal-edge region passes the discarding criterion, it is
stored as a valid subvoid in subvoid_list. As a result, multiple
disjoint sets are obtained, each one corresponding to a subvoid.

For the sake of clarity, Algorithm 1 considers only terminal-
edges shared by two triangles. However the whole algorithm also
includes the case when the longest-edge is a boundary terminal-
edge and only one triangle is assigned to triangle_set. The rest of
the algorithm remains the same. It is worth to mention that the
equilateral and isosceles triangles are handled in the same way as
other triangles. The sorting algorithm creates an ordered list of the
triangles according to their longest-edge, while for the isosceles
and equilateral triangles, they are included two or three times,
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(a) Arc criterion. (b) Frontier criterion.

(c) 2nd longest-edge criterion. (d) Frontier-edge criterion.

Fig. 6. Joining subvoid criteria. The green color is used to show the parameters of the terminal-edge region Ri and the red color, the ones for Rj . (a) Arc criterion: Circle Ci is
computed from the terminal-edge region Ri and Cj from terminal-edge region Rj . Ci ∩ Cj is bounded by ai and aj , where ai is part of the circumference of Ci and aj is part of Cj .
αi is defined by the size of arc ai and αj by the length of aj . One of these angles will be checked against a threshold value. (b) Frontier criterion: pi and pj are the perimeters
of regions Ri and Rj , respectively. lij is the shared perimeter. The ratio between lij and max(pi, pj) is compared to a threshold value. (c) Second longest-edge criterion: L12 ,
the edge shared by triangles t1 and t2 , is the second longest-edge of t1 . This is an example of two regions, R1 and R2 , that will be joined. (d) Frontier-edge criterion: L12 is an
example of a frontier-edge between R1 and R2 that will be checked against a threshold value. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Algorithm 1: Building subvoids

read the Delaunay triangulation;
read pre_threshold_value;
subvoid_list = ∅;
order triangles by longest-edge;
repeat

get the two unused triangles t1, t2 sharing the longest-edge;
triangle_set = [t1, t2];
label t1, t2 as used;
foreach t neighbor of triangle_set do

if t shares its longest-edge with a triangle of triangle_set
then

triangle_set = triangle_set ∪ t;
label t as used;

end
end
if discardingCriterion(triangle_set) ≥ pre_threshold_value
then

subvoid_list = subvoid_list ∪ polygon(triangle_set);
end

until there is no triangle left to process;

respectively, in the list. Then, the sorting algorithm gives a natural
order to process the edges of isosceles and equilateral triangles
which is consistent with Definition 2.1 and the procedure adopted
in Sections 2 and 3. Note however that when a longest-edge of an

equilateral triangle is used as terminal-edge, the other two edges
cannot be used for this same purpose because the triangle has
already been labeled as used. The first time it appears as a neighbor
triangle of one of the triangles belonging to triangle_set, will be
added to it and labeled as used. The isosceles triangles with two
longest-edges are managed in a similar same way.

As we have mentioned before, we have considered two dis-
carding criteria in this step: (i) the area of a triangle_set is less
than a threshold area as and (ii) the length of the terminal-edge
is less than a threshold length emin. These criteria are appropriate
while looking for astronomical voids because in order to identify
an underdense region as a void, its area and the distance between
points are expected to be larger than certain threshold values.
In particular, the second criterion allows us for an early halt of
the algorithm since terminal-edge regions with its terminal-edge
length lower than a threshold value could be discarded.

4.2. Joining subvoids

The Joining subvoids algorithm is shown in Algorithm 2 . As we
mentioned previously, this stepwas added because elongated non-
convex shapes are likely to be divided into smaller fragments as
shown in Fig. 5.

The algorithm works as follows: For each pair of unused sub-
voids u and v, the specified joining criterion is checked. If u and
v fulfill it, they are joined and stored in void. The frontier edges
shared by u and v are labeled now as internal-edges. For each
resulting void in void_list, a simple polygon is built by using the
frontier edges and these polygons are returned as voids if their area
is larger than av .
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Algorithm 2: Joining subvoids

repeat
label subvoid_list as unchanged;
void_list = ∅;
foreach unused subvoid v in subvoid_list do

void = v;
label v as used;
foreach unused subvoid u in subvoid_list do

if void and u meet the specified criterion then
void = void ∪ u;
label u as used;
label subvoid_list as changed;

end
end
void_list = void_list ∪ {void };

end
subvoid_list = void_list;

until subvoid_list is not changed;
remove voids from void_listwhose area is less than av;

The detected voids depend on the specified joining criterion to
join subvoids. Wewill discuss the effectiveness of each criterion in
recovering artificial void shapes in Section 6.

4.3. Boundary voids

The algorithm does not distinguish boundary voids from in-
ternal voids. In some applications, a boundary void should not be
considered as a void because it has an open boundary. Even if it is
real, there is no way to know it and it could not be described even
qualitatively because it is not complete.

We have implemented a very simple strategy having cosmic
voids inmind: Any void having one ormore edges in the perimeter
of the convex hull of the dataset is discarded. An example of a
boundary terminal-edge region is shown in Fig. 7. However, if
other application requires to keep them, boundary voids can be just
properly labeled instead of discarding them.

4.4. Implementation issues

In order to generate a Delaunay triangulation, DELFIN calls the
well-known qdelaunay (Barber et al., 1996) program to obtain it.
The computational cost of the Building subvoids step is O(n log n),
where n is the number of points, because of: (i) the construction of
the Delaunay triangulation and (ii) the longest-edge ordering.

We are aware that a further performance increase can be
achieved by building voids without the longest-edge ordering.
Each subvoid can be characterized by a treewhose nodes represent
triangles (O’Rourke, 1998). If we set the root of each tree to
be a terminal-edge triangle, then we can get the parent of each
triangle by determining its longest edge. It is worth noting that
this step can be done in any order, so if no pruning is done over
the trees, a union-find (disjoint-set) data structure may be used
to build voids (and compute for example their area) in quasi-
linear time (O(nα(n)), where α is the inverse of the Ackermann
function and n is the number of triangles). In order to include this
improvement, the handling of isosceles and equilateral triangles
would require to give an explicit order to their edges. One ad-
vantage of the current implementation is that the edge sorting
allows the Building subvoids algorithm to stop before processing all
triangles.

The Joining subvoids step takes time O(cs2), where c is the
cost of verifying fulfillment of the criterion and s is the number
of remaining subvoids. This is a naïve implementation, however.
While it was useful to show the effectiveness and robustness of

Fig. 7. Boundary terminal-edge region. The dotted points show the boundary.

the algorithm and its cost was not significant in our particular
scenarios (s ≤ 500), it might take a long time if the number
of subvoids to join s is far greater than 1000. A better solution
would be to maintain a data structure for each void and update
the neighboring relations between them. Then, only neighbors of
a subvoid would require verification of the criterion. Since the
average number of neighbors is capped by a constant, this will take
time O(cs) plus an amortized time of O(sα(s)), where α(y) = x is
the inverse of the Ackermann function α−1(x) = A(x, x). Further
implementation details are described in Alonso (2016).

5. Experimental evaluation

In this section, we evaluate the effectiveness and robustness
of the algorithm in terms of how good the artificially inserted
voids are recovered. First we describe the data sets we are us-
ing, secondly the measures to evaluate the effectiveness of the
proposed joining criteria, thirdly the obtained results and fi-
nally we discuss the tradeoffs of applying them to different void
shapes.

We define effectiveness as how well the algorithm retrieves the
artificial voids. To measure it, we calculate the usual parameters
recall and precision to compare predictions to expected results. We
also define robustness as the capacity of an algorithm to deal with
erroneous or noisy input. We measure it by the amount an input
parameter may change without altering the results.

5.1. Artificial data sets

We have designed artificial data sets to test the algorithm for
the search of underdense regions that have convex shapes or irreg-
ular shapes. The reason is to evaluate the capacity of the algorithm
for finding not only shapes similar to those of the 2D cosmic voids
which aremostly convex, but also to search for underdense regions
in data sets from other applications.

We have designed two templates, one for convex shapes repre-
sented as circles and the other for non-convex shapes represented
by non-convex polygons. We have chosen a simple square domain
of side a = 2000. The first template contains 30 circles generated
by randomly chosen centers over a uniform distribution inside an
a × a square space and randomly chosen radii over a uniform
distribution over the range [0.03a, 0.075a). The second template
contains 20manually-drawn non-convex polygons also in an a×a
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(a) Circular voids. (b) Non-convex voids.

Fig. 8. Artificial data sets of size n = 10 000 and ρB = 1/400. The artificial voids numbering is consistent with the void labels (Void ID) in the tables.

square space, with their centers and areas also randomly chosen in
similar ranges.

Randomly generated points (also over a uniform distribution)
were inserted over the square areaminus the generated voids. This
process was repeated for each template, in order to generate data
sets of size n = 5000, 10 000, 50 000 with background densities
ρB respectively equal to 1/800, 1/400 and 1/80 points per square.
As a result, our generated voids are completely devoid of points,
and their areas are in the range of [10 000, 60 000] (a background
point density of ρB = 1/400 is approximately what is expected
while looking for cosmic voids in galaxy distributions).

Fig. 8 illustrates two of the generated test examples, both for
n = 10 000 points. Each one shows the size, location and identifi-
cation number of each void. The identification number will be use-
ful later to identify which shapes are easily recovered and which
are not. In particular, Fig. 8(a) shows the 30 empty circular areas
and Fig. 8(b) shows the 20 empty non-convex polygonal areas,
where the former illustrate convex underdense regions and the
latter underdense regionswith irregular shapes. Note that the non-
convex polygons labeled as 4, 12 and 14 are shapes reminiscent of
cosmic voids, while those numbered 2, 17 and 19 could describe
interacting voids; the rest of polygons illustrate more complex
shapes that may be relevant to other applications.

The input of the algorithm consists on the set of randomly
generated points. The set does not include additional points cor-
responding to the polygons used to represent the artificial voids.

5.2. Threshold values

The algorithm needs either the threshold value as or emin to
discard very small terminal-edge regions at the end of the Building
subvoids step, and av to produce as output the list of voids with
significant area at the end of the Joining subvoids step.

The threshold values as, emin and av must be empirically ad-
justed according to characteristics of the empty spaces to be looked
for. In our case, the values were selected by taking into account the
size of voids, the number of points and the average point density.
Table 1 shows the threshold values given as input to the algorithm
for each n, where n is the number of points. A discussion about how
these values were obtained is given in Section 6.3. Note that we
kept the square area constant. Then, when increasing the number
of points n, the point density ρB increases too.

In a similar way, we have chosen the following threshold values
for the joining criteria. We have introduced the none criterion to

Table 1
Threshold values used for each dataset size n and point density ρB . as and emin are
the area and terminal-edge length threshold values, respectively, used to discard
the small terminal-edge regions after the Building subvoids step, and av is the area
threshold value used after the Joining subvoids step.

n ρB as emin av

5 000 1/800 6000 80 12 000
10 000 1/400 3000 65 8 000
50 000 1/80 600 35 4 000

represent the results of the original version of DELFIN (Hervías
et al., 2013), i.e., the DELFIN output without applying the Joining
subvoids step. Note that the av filter is applied.

• None criterion. The joining step is not applied.
• Arc criterion: the threshold angle is θmin = π/3.
• Frontier criterion: the threshold ratio is L =

1
16 .

• Second longest-edge criterion: threshold value is not re-
quired.

• Frontier-edge criterion: for cosmic voids, the minimum edge
length is defined by r3 (Foster and Nelson, 2009):

r3 = d3 + λσ3 (1)

where d3 is the average distance from each point to its third
nearest neighbor, λ is a parameter set equal to 2.0, and
σ3 is the standard deviation for the third nearest neighbor
distance.

The threshold values for the Frontier and Arc criteria were em-
pirically computed. The Frontier-edge threshold value is computed
from the input points and it is commonly used in the detection of
cosmic voids (Foster and Nelson, 2009).

5.3. Evaluation metrics

In order to show the effectiveness of DELFIN for void retrieval,
we have selected two metrics that are commonly used for this
purpose in the machine learning and information retrieval liter-
ature (Manning et al., 2008). The first one is rv , the recall rate
for void v, and the second is ev , the overdetection rate for void
v. rv corresponds to the detected fraction of the original void and
ev the non-void fraction of the detected void. More precisely, we
define the recall rate of an artificial void v as rv =

area(v∗
∩v)

area(v) where
v∗ is the void retrieved by the algorithm. Similarly, we define the
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Table 2
Number of subvoids remaining after applying the area filter as , the joining criteria for recovering each one of the artificial
non-convex shapes shown in Fig. 8(b) and the final filter av , to keep only the voids with significant area. The criterion
labels are: N: None, A: Arc, F: Frontier, S: Second-longest-edge, E: Frontier-edge. The first column shows the void identi-
fication, the next five columns show the fragmentation on low background point density ρB = 1/800 (n = 5000), the
second five on middle background point density ρB = 1/400 (n = 10 000) and the last five, on high background point
density ρB = 1/80 (n = 50 000).

Void Joining criterion

# N A F S E N A F S E N A F S E

0 1 1 1 1 1 3 2 1 1 1 2 2 2 1 1
1 4 3 1 2 2 5 4 2 2 1 7 4 2 1 1
2 2 1 1 2 1 3 1 1 1 1 2 1 1 1 1
3 2 2 1 1 1 1 1 1 1 1 2 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 1 2 2 2 1 0 1 3 2 1 1 2 1 1 1
6 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1
7 2 2 3 5 3 3 3 1 2 3 2 3 1 1 1
8 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 3 3 1 1 1 1 1 1

10 1 1 1 0 1 2 1 1 0 1 3 3 1 1 1
11 1 1 1 1 1 1 2 3 2 1 1 1 1 1 1
12 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 2 2 1 2 1 5 3 1 1 1
14 2 2 3 2 1 1 1 4 4 1 2 2 1 1 1
15 1 1 2 1 1 1 2 3 1 1 1 4 2 1 1
16 2 2 1 0 1 1 1 1 1 1 1 2 2 2 1
17 2 1 0 1 2 3 1 0 1 1 2 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
19 2 2 0 0 1 2 2 1 0 1 2 2 1 1 1

n = 5000 n = 10 000 n = 50 000

overdetection or error rate of an artificial void v as ev = 1 −
area(v∗

∩v)
area(v∗) where area(v∗

∩v)
area(v∗) is known as the precision rate. Note that

a recall rate equal to 1 means the void was completely recovered,
while a recall rate equal to 0means the voidwasnot found. An error
rate equal to 0means that thewhole retrieved void area is included
in the original void and an error rate close to 1means that themost
of the retrieved area falls out the original void.

The effectivity of different criteria for joining subvoids depends
on the shape of the non-convex polygonal voids. Thus we have
included a metric to quantify the fragmentation a joining criterion
produces over the final retrieved voids. We have expressed this
metric as the average number of void fragments (subvoids) that
can be associated to each artificial void after a joining criterionwas
applied.

5.4. Experimental results

We applied a postprocessing step to relate each artificial void
vi to one or more retrieved voids v∗

j . Let V
∗

i be the set of retrieved
voids v∗

j such that vi ∩ v∗

j ̸= ∅. If |V ∗

i | > 1 means that the void
vi is fragmented. In this case, the recall rate rv and the error rate
ev are calculated by using the retrieved void v∗

i (v∗

i ∈ V ∗

i ) whose
centroid is the closest one to the centroid of the given artificial
void vi.

Tables 2 and 3 summarize the fragmentation (number of sub-
voids) generated for each artificial non-convex shape shown in
Fig. 8(b). The first column shows the void identification and the
rest, the number of subvoids remaining after applying each joining
criterion and the final filter av , to keep only the subvoids with area
greater than or equal to av , the minimum valid void area. The first
five columns show the fragmentation on low background point
density, the following five on middle background point density
and the last five, on high background point density. N corresponds
to None criterion, A refers to the Arc criterion, F is the Frontier
criterion, S is the Second-longest-edge criterion and E, the Frontier-
edge criterion. Note that the None criterion represents the number
of subvoids generated by the Building subvoids step, filtered by
the av , the minimum area of a valid void. That is why, for void
ID 5 and n = 10 000, the number of subvoids is 0. However for

the same artificial void, in the case where the Arc or Frontier-edge
criteria were applied, some terminal-edge regions were joined,
and the area of only one of the subvoids was larger than av . The
union generated by applying the Frontier and Second-longest-edge
generated three and two subvoids larger than av , respectively.

From Tables 2 and 3, we obtain two new tables, Table 4(a) for
n = 10 000 and Table 4(b) for n = 50 000, to display the average
number of void fragments after applying each joining criterion to
all to the non-convex voids shown in Fig. 8(b). An average number
equal to 1 means that all voids were retrieved as a single polygon,
thus no void was fragmented. We have only considered detected
voids in order to avoid underestimating the number of fragments;
voids with 0 fragments were not considered for this table.

Table 5 summarizes the average recall and error rates including
their standard deviation when circular voids are recovered from
point sets of sizen = 5 000,n = 10 000 andn = 50 000 and Table 6
shows the same information for non-convex voids. The table also
specifies which discarding criterion was used to eliminate too
small terminal-edge regions by the end of the Building subvoids
step: the minimum terminal-edge emin or the minimum area as.

Fig. 9 displays the error rate for the convex shapes shown in
Fig. 8(a). Fig. 10 shows the recall and error rates for the non-convex
voids shown in Fig. 8(b), both for n = 10 000. The recall rate
for circular voids was not included as it was always either 1 or 0
depending on whether two different voids were joined into one or
not. The recall and error rates are shown for each void and joining
void criteria.

6. Analysis and discussion

In this section, we first analyze the recall and error rates for
convex and non-convex underdense regions, and determinewhich
joining criterion is more effective for the recovery of either type of
void shape. Secondly, we discuss how sensitive the results are to
changes in the threshold values to discard false subvoids. Finally,
we explore on what happens when the artificial voids are not
absolute (some points inside) and on the solutions we plan to
implement.
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Table 3
Number of subvoids remaining after applying the edge length filter emin , the joining criteria for recovering each one of
the artificial non-convex shapes shown in Fig. 8(b) and the final filter av , to keep only the voids with significant area. The
criterion labels are: N: None, A: Arc, F: Frontier, S: Second-longest-edge, E: Frontier-edge. The first column shows the void
identification, the next five columns show the fragmentation on low background point density ρB = 1/800 (n = 5000),
the second five on middle background point density ρB = 1/400 (n = 10 000) and the last five, on high background
point density ρB = 1/80 (n = 50 000).

Void Joining criterion

# N A F S E N A F S E N A F S E

0 1 1 1 1 1 3 2 1 1 1 5 4 2 1 1
1 6 5 2 2 2 8 5 2 2 1 9 5 2 1 1
2 3 2 2 3 2 3 1 1 1 1 2 1 1 1 1
3 4 3 1 1 1 2 2 1 1 1 3 2 2 1 1
4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 5 3 1 1 1 6 5 1 1 1
6 2 2 1 1 1 2 2 1 1 1 4 4 3 1 1
7 4 3 1 3 2 3 3 1 2 2 5 3 1 1 1
8 3 3 2 2 3 1 1 1 1 1 3 3 2 1 1
9 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1

10 2 2 1 1 1 3 2 1 1 1 4 4 1 1 1
11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
12 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1
13 1 1 1 1 1 2 2 1 2 1 5 3 1 1 1
14 4 4 2 2 3 1 1 1 1 1 2 2 1 1 1
15 5 2 1 2 1 4 4 2 2 3 15 11 4 1 1
16 2 2 1 0 1 2 1 1 1 1 4 3 1 1 1
17 2 1 0 1 2 3 1 0 0 1 4 3 1 2 1
18 1 1 1 1 1 2 2 1 1 1 1 1 1 1 1
19 2 2 1 1 1 2 2 1 0 1 2 2 1 1 1

n =

5000
n =

10 000
n =

50 000

Table 4
Average number of void fragments remaining after applying each joining criteria.
Filter represents the discarding criterion (as or emin) used after the first algorithm
step (Building subvoids) in order to eliminate too small subvoids before the joining
step is applied. A value equal to 1.0 indicates zero fragmentation.

(a) Fragmentation for n = 10 000

Joining criterion

None Arc Frontier 2nd longest-edge Frontier-edge

Filter as 1.84 1.60 1.63 1.55 1.10
emin 2.50 1.90 1.11 1.22 1.15

(b) Fragmentation for n = 50 000

Joining Criterion

None Arc Frontier 2nd longest-edge Frontier-edge

Filter as 1.95 1.85 1.25 1.05 1.00
emin 3.90 3.00 1.45 1.05 1.00

Independent on the void shape, the areas of well-retrieved
voids are usually larger than the ones defined for the simulated
voids. This behavior can be seen in Figs. 11(a) and 11(f). It is not
surprising that for smaller values of n (lower point density) the
error rate increases because on that condition, the width of voids
in some sections becomes comparable to the average distance
between points.

6.1. Retrieval of convex artificial voids

All the convex voids in the artificial data, in fact adopted cir-
cular, are successfully retrieved by DELFIN with no need to resort
to joining criteria (pure DELFIN). Thus, just the Finding subvoids
step is the choice when the voids are known a priori to be convex.
However, in general the geometrical nature of the voids in a point
set is not known. In this sectionwe address the following question.
If the void shapes in a point set are actually convex, and they are
blindly searched, which of the joining criteria will approach best
the result of the pure DELFIN algorithm.

The results of the application of the Joining subvoids step show
that the recall rate drops considerably when applying the Frontier

Fig. 9. Error rate after applying each joining criterion over circular voids with
n = 10 000 and subvoid filter emin . The horizontal-axis represents the void ID (see
Fig. 8(a)) and the vertical-axis the error rate. An error rate equal to 0means that the
whole retrieved void area is included in the original void and an error rate close to
1means that themost of the retrieved area falls out the original void. The green bar
represents the error rate for the voids recovered by the algorithmwithout applying
any joining criterion (None). Arc and Frontier-edge criteria (light blue and pink bars,
respectively) generate a similar error rate to the None criterion. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and Second-longest-edge criteria (see Table 5). A way to understand
this behavior is the following: if subvoids are surrounded by very
low point-density regions, these may be incorrectly identified
also as subvoids and the just mentioned criteria have a tendency
to overjoin neighboring voids. In case of the Second-longest-edge
criterion, the identification of false neighboring subvoids is also
possible but for higher background density distributions. This di-
agnostic is corroborated in Fig. 9 where the overdetection rate is
shown for each the circular voids drawn in Fig. 8(a). The voids
identified as 2, 6, 12, 15, 26 and 28 were missed by the second
longest-edge criterion (their error rate is 1). This is due to the fact
that subvoid regions matching these voids were joined to several
adjacent regions and discarded as a result.
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Table 5
Circular voids rates. Recall rate (a) and error rate (b) including their standard deviation. The n column corresponds to
the size of the point set: n = 5000, n = 10 000 and n = 50 000. The Filter column specifies which discarding criterion
(as or emin) was used to eliminate too small terminal-edge regions at the end of the Building subvoids step. The rest of
the columns summarizes the results of applying each one of the joining criteria. An average recall rate equal to 1 means
that all voids were recovered.

(a) Circular voids: recall rate

n Filter Joining criterion

None Arc Frontier 2nd l. edge Frn. edge

5000 as 1.00 ± 0.00 1.00 ± 0.00 0.63 ± 0.49 0.57 ± 0.50 0.97 ± 0.18
emin 1.00 ± 0.00 1.00 ± 0.00 0.67 ± 0.48 0.57 ± 0.50 0.97 ± 0.18

10 000 as 1.00 ± 0.00 1.00 ± 0.00 0.80 ± 0.41 0.73 ± 0.45 1.00 ± 0.00
emin 1.00 ± 0.00 1.00 ± 0.00 0.83 ± 0.38 0.80 ± 0.41 1.00 ± 0.00

50 000 as 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.87 ± 0.35 1.00 ± 0.00
emin 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.90 ± 0.31 1.00 ± 0.00

(b) Circular voids: error rate

n Filter Joining criterion

None Arc Frontier 2nd l. edge Frn. edge

5000 as 0.35 ± 0.08 0.35 ± 0.08 0.67 ± 0.28 0.73 ± 0.29 0.38 ± 0.15
emin 0.35 ± 0.08 0.35 ± 0.08 0.64 ± 0.29 0.71 ± 0.30 0.38 ± 0.15

10 000 as 0.28 ± 0.08 0.28 ± 0.08 0.49 ± 0.29 0.55 ± 0.30 0.28 ± 0.08
emin 0.28 ± 0.08 0.28 ± 0.08 0.44 ± 0.28 0.46 ± 0.30 0.28 ± 0.08

50 000 as 0.14 ± 0.03 0.14 ± 0.03 0.14 ± 0.04 0.31 ± 0.29 0.14 ± 0.03
emin 0.14 ± 0.03 0.14 ± 0.03 0.14 ± 0.03 0.25 ± 0.27 0.14 ± 0.03

Table 6
Non-convex void rates. Recall rate (a) and error rate (b) including their standard deviation. The n column shows the size
if the point set: n = 5000, n = 10 000 and n = 50 000. The Filter column specifies which discarding criterion (as or emin)
was used to eliminate too small terminal-edge regions at the end of the Building subvoids step. Each one of the remaining
columns show the average recall and error rates with their standard deviation after applying the Joining subvoids step
with the specified joining criterion.

(a) Non-convex voids: recall rate

n Filter Joining criterion

None Arc Frontier 2nd l. edge Frn. edge

5000 as 0.73 ± 0.26 0.82 ± 0.21 0.83 ± 0.32 0.69 ± 0.38 0.87 ± 0.21
emin 0.73 ± 0.26 0.81 ± 0.23 0.89 ± 0.26 0.79 ± 0.31 0.89 ± 0.20

10 000 as 0.66 ± 0.29 0.77 ± 0.27 0.88 ± 0.26 0.74 ± 0.37 0.90 ± 0.20
emin 0.67 ± 0.28 0.76 ± 0.27 0.88 ± 0.24 0.79 ± 0.31 0.91 ± 0.15

50 000 as 0.61 ± 0.30 0.69 ± 0.30 0.95 ± 0.07 0.96 ± 0.14 0.99 ± 0.03
emin 0.58 ± 0.34 0.67 ± 0.32 0.95 ± 0.07 0.97 ± 0.09 0.98 ± 0.04

(b) Non-convex voids: error rate

n Filter Joining criterion

None Arc Frontier 2nd l. edge Frn. edge

5000 as 0.41 ± 0.10 0.43 ± 0.11 0.58 ± 0.18 0.61 ± 0.20 0.44 ± 0.09
emin 0.41 ± 0.10 0.41 ± 0.10 0.50 ± 0.15 0.50 ± 0.15 0.44 ± 0.08

10 000 as 0.32 ± 0.17 0.35 ± 0.16 0.45 ± 0.18 0.55 ± 0.23 0.35 ± 0.08
emin 0.31 ± 0.10 0.32 ± 0.10 0.38 ± 0.17 0.44 ± 0.22 0.34 ± 0.08

50 000 as 0.17 ± 0.04 0.19 ± 0.05 0.20 ± 0.06 0.27 ± 0.07 0.21 ± 0.05
emin 0.17 ± 0.06 0.19 ± 0.06 0.20 ± 0.04 0.20 ± 0.05 0.20 ± 0.05

In contrast, the Frontier-edge and Arc criteria generate similar
overdetection rates than the pure DELFIN (see again Fig. 9). More
precisely, for higher point density distributions of the artificial data
all voids were recovered and the error rates comparable to those
obtained by the pure DELFIN.

6.2. Retrieval of non-convex artificial voids

The picture, however, is different in the case of non-convex
voids. Table 4 shows the average number of void fragments associ-
atedwith the polygonal voids shown in Fig. 8(b) for n = 10 000 and
n = 50 000. It can be observed that the use of no criterion always
retrieves fragmented voids independent of the background point
density, and in average, the Frontier-edge criterion seems to be the
most effective. This fact is corroborated in Table 6 since for the

Frontier-edge criterion, the average of the recall rates is higher than
for the other criteria. Additionally, the average of the overdetection
rates is generally lower than the ones obtained after applying other
criteria.

Depending on each void shape, the peculiarities of each void
joining criterion come to light. This fact can be observed in Fig. 10,
where the recall and error rates are shown for each non-convex
polygonal void drawn in Fig. 8(b), and in Fig. 11, in particular for
the polygonal void labeled as 1.

The Arc criterion is usually effective to join voids detected as
two subvoids, but it fails to connect the subvoids of elongated
figures as shown in Fig. 11(c). This criterion did not work in this
case and the void was recognized almost in the same way as if no
criterionwas used (Fig. 11(b)). It can also be observed in Fig. 10 that
the recall rate was small for the voids labeled as 1 and 5.
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Fig. 10. Retrieval and error rates after applying each joining criterion over non-
convex voids with n = 10 000 and subvoid filter emin . The top and bottom figures
respectively show the retrieval rate and the error rate for each void in the vertical-
axis. In both figures, the horizontal-axis represents the void ID (Fig. 8(b)). A retrieval
rate greater than 0, for example 0.7, means that 70% of the void area was recovered,
so a retrieval rate equal to 1means that it was completely recovered. This is the case
of void ID = 9. An error rate close to 1 means that the most of the recovered area
does not belong to the artificial void. For void ID = 9, at least 60% of the recovered
void corresponds to the expected void. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

The Frontier criterion has the void shape in consideration,
and thus usually obtains a recall rate higher than the Arc cri-
terion. However, it shares the inability to join together voids
with an elongated shape and its heavy dependence on the or-
der in which fragments are joined. This can be observed in
Fig. 11(d).

The Second longest-edge criterion joined several terminal-edge
regions and obtained quite high recall rates, but also relatively
high overdetection rates. It can also be observed that it is also
highly dependent on shape. In particular, it workedworse than the
Frontier criterion on the void shown in Fig. 11 and on bifurcations
such as the ones contained in the polygonal voids labeled as 17, 7
and 15 as shown in Fig. 10.

Frontier-edge was the unique criterion that allowed us to re-
cover all polygonal voids on medium and high background point
density distribution. This can be observed in Fig. 11(f) for a specific
polygonal void and in Table 6 for all data sets. It can be observed in
Fig. 10 that the lowest recall rates for this criterion were around
0.5, i.e., half of the void area was recovered. The worst results
were obtained for the polygonal voids labeled as 7 and 17. Both
were recognized as subvoids in the Building subvoids step and these
subvoids were not joined in the Joining subvoids step because they
share too small frontier-edges.

6.3. Discarding subvoid criteria

Our experiments showed that the use of a threshold value
associated to the terminal-edge (emin) of a subvoid to discard small

terminal-edge regions instead of a threshold value associated to
the area of the terminal-edge region (as) reduces: (i) the amount of
false voids specially in the lowest background point density data
sets and (ii) the risk of removing central subvoids of small areas
but large enough terminal-edges.

In order to illustrate the previous statement, we present two
figures that show each of the identified subvoids by the building
subvoids algorithm, one ordered by the length of its terminal-edge
(Fig. 12) and the other by the area of its terminal-edge region
(Fig. 13). Each X symbol represents an identified subvoid; they are
scattered according to their terminal-edge length in Fig. 12 and
the terminal-edge region area in Fig. 13, and whether they are
part of an artificial void (true) or not (false). These figures suggest
that terminal-edge length values is a better classifier for subvoids
than terminal-edge region areas, thus wewould recommend using
the former to filter the relevant subvoids obtained by DELFIN.
Moreover, the value emin may be changed without affecting the
results by moving it in ranges of [79.97, 80.08], [63.37, 67.48]
and [33.03, 35.98] respectively for n = 5000, 10000 and 50000
(Fig. 12). In addition, since terminal-edges are processed in order,
the algorithm has no need to compute all terminal-edge regions
before moving forward to the next step and also no need to calcu-
late any area.

6.4. Impact of isosceles and equilateral triangles

The proposed algorithm is based on the idea that the edges of
any triangle can be classified as the longest-, second-longest- and
shortest-edge. A priori, the three or two equal size edges of an
equilateral or isosceles triangle, respectively, can becomeany label.
This fact depends on the order the triangle edges are processed
by the Finding subvoids algorithm. For an equilateral triangle or an
isosceles triangle, where the two equal size edges are the largest
ones, there are two cases: (a) the triangle is one of the two terminal
triangles. Then its longest-edge will be the edge shared with the
neighbor terminal triangle. (b) The triangle is part of the set of
neighbor triangles of a terminal-edge region that is being built. The
edge shared with the terminal-edge region will be considered the
longest-edge and this triangle will be joined to the current region.
If there are two shared edges, any one will be chosen. Note that
in the case of an isosceles triangle, the triangle is joined to the
current region only when the shared edge is one of the largest
edges following the algorithm strategy.

Depending on the order equal size edges of a triangle are pro-
cessed, terminal-edge regions of different size can be generated.
Can this arbitrary choice or order of the input triangles and edges
fragment large empty regions into two small terminal-edge re-
gions that will later not pass to the Joining subvoids step due to the
threshold values of the discarding filters (as or emin)? Effectively,
this arbitrary choice can have an impact if as, the metric that filters
by subvoid area, is used to discard small-terminal edge regions.
However, if the emin discardingmeasure is used, there is no impact
in the results, because only the edge length is checked. Small
area terminal-edge region (that might contain some equilateral
triangles) are not discarded if the terminal-edge length is larger
than the chosen threshold value.

As we have discussed in Section 6.3 our experimental results
show that emin is more appropriate than as not only for a tri-
angulation with isosceles and equilateral triangles, but also for
any triangulation. Since the triangulation is Delaunay, each edge
has an empty circumcircle that passed through its endpoints,
then if the distance between the endpoints is significant, the
area of the empty circumcircle can be part of a larger empty
region.
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(a) Artificial non-convex polygonal
void.

(b) None criterion. (c) Arc criterion.

(d) Frontier criterion. (e) 2nd longest-edge criterion. (f) Frontier-edge criterion.

Fig. 11. The DELFIN criteria applied to recover the artificial non-convex shape ID = 1. (a) Triangulation under the non-convex shape. (b) Seven terminal-edge regions were
found associated to the non-convex shape ID = 1, all passed the as discarding filter, no joining criterion was applied and finally, only five of them passed the av filter, the
colored ones. (c) The Arc criterion built two larger empty regions by the union of two neighbor terminal-edge regions. The new regions are the yellow and the blue ones. The
colored regions passed the av filter, and the non-convex void is still fragmented in four parts. (d) The Frontier and (e) the 2nd longest-edge criteria generated a similar result:
the seven terminal-edge regions are joined into two larger regions, and both passed the av filter. The non-convex shape was fragmented in two parts. (f) The Frontier-edge
criterion put together the seven terminal-edge regions in one unique large region. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 12. False and true subvoid positives detected for n = 5000 (top graph), 10 000 (medium graph) and 50 000 (bottom graph) as a function of terminal-edge length. Each
X symbol represents a subvoid identified by the Finding subvoids step: the horizontal-axis indicates its terminal-edge length, while the vertical-axis indicates whether a
subvoid belongs to one of the generated artificial voids or not. Terminal edge length (emin) is a relatively good measure of subvoid significance, because it can be used to
clearly separate false and true subvoids as shown by the dashed red line in each scatterplot. For example, from the bottom graph, a good emin value could be around 30.
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Fig. 13. False and true subvoid positives detected for n= 5000 (top graph), 10 000 (medium graph) and 50 000 (bottom graph) as a function of area. Each X symbol represents
a subvoid identified by the Building subvoids step: the horizontal-axis indicates its area, while the vertical-axis indicateswhether that subvoid belongs to one of the generated
artificial voids or not. Subvoid area is a relatively goodmeasure of subvoid significance but may underrepresent highly fragmented voids, such as those with irregularities or
eccentricities, which are present on our experiment. There are many terminal-edge regions with small area that belong to a larger empty region. as is then not as effective
as emin to filter false subvoids.

Fig. 14. (a) The void found inside a set of points. (b) The same set of point as (a) but with a point placed inside the void. Two distinct adjacent voids are found. The crosses
are the void centroids. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

6.5. Non-empty voids

Cosmological voids are indeed not completely empty, so one
question is how the algorithm could handle this situation. In Fig. 14
we illustrate the effect of placing a point inside a void. What
actually happens is a fragmentation of the void into smaller adja-
cent subvoids, analogous to results encountered with non-convex
empty polygons. Voids are fragmented into smaller adjacent com-
ponents. One way to deal with this problem is the use of the third
neighbor criterion introduced by some void finding algorithms (El-
Ad and Piran, 1997; Hoyle and Vogeley, 2002; Foster and Nelson,
2009). It consists on the computation for each point of the distance

to its third nearest neighbor. Then the mean l3 and the standard
deviation σ3 of these distances are calculated. Every point whose
third neighbor distance is greater than l3 + λσ3 are not considered
as part of the initial point set to search for voids. For the void search,
λ is a constant that differs for every algorithm, typically 1.5 or 2.0.
In this approach, isolated points that lie in the interior of a void do
not interfere with the void search. In our preliminary 3D version,
we have already included this strategy.

7. Conclusions

We have presented a new algorithm called DELFIN to find
large empty spaces (voids) in planar point sets. The algorithm was
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divided in two steps: (i) The Building subvoids step generates a
Delaunay triangulation of the input points, sorts terminal-edges
from the largest to the smallest one and builds terminal-edge re-
gions around each of them. Each region is a subvoid candidate, and
(ii) the Joining subvoids step joins subvoids into larger voids accord-
ing to a specified subvoid joining criterion. Four joining criteria
were implemented and evaluated: Arc, Frontier, Second longest-
edge and Frontier-edge.

The effectiveness and robustness of DELFIN were evaluated on
artificial data sets including both convex and non-convex void
shapes. The experimental evaluation of the four joining criteria
allowed us to choose the Frontier-edge criterion as the most ef-
fective one: it attained higher recall rates and lower error rates
and recovered both convex and non-convex artificial voids. But
for applications with underdense regions with other shapes or a
subset of the shapes shown here, the user could use some other
criteria presented in this work.

The experimental evaluation also showed us that DELFIN is
more robust if the terminal-edge length instead of the terminal-
edge region area is used to discard small terminal-edge regions
or subvoid candidates before the Joining subvoids step. To our
knowledge there is no other algorithm which looks for this kind
of voids in planar point sets; that is why we do not present an
empirical comparison with other 2D algorithms.

Some improvements to DELFIN include (i) the use of the union-
find data structure to improve the time performance of both the
Building subvoids and Joining subvoids steps and (ii) pruning the
smallest triangles of terminal-edge regions in the Building subvoids
step. We did not include (ii) in this first implementation because
wewanted to keep the number of parameters the user has to fix as
low as possible.

Currently, we are testing and evaluating the performance, ef-
fectiveness and robustness of a 3D extension of DELFIN over
both artificial and real data sets (galaxy surveys). We are using
the Frontier-edge as joining subvoid criterion and terminal-edge
length as discarding criterion. In addition, since there are several
3D algorithms that have public catalogs of recovered voids, we are
able to compare how good our void list intersects these catalogs.
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