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Performance assessment of sequential
Bayesian processors based on probably
approximately correct computation and
information theory

I. Jaras✉ and M.E. Orchard
A novel method to characterise the efficacy and efficiency of different
sequential Bayesian processor implementations is proposed. This
method is based on concepts of probably approximately correct com-
putation and information theory measures. The proposed approach is
used to compare the performance of three different Bayesian estimation
algorithms (particle filter, unscented Kalman filter (UKF), and UKF
with outer feedback correction loops) in the context of lithium-ion
battery state-of-charge monitoring.
Introduction: State estimation is a critical task for the characterisation
of uncertainty sources in failure prognostic algorithms. The Prognostic
and Health Management community has typically used sequential
Monte Carlo (SMC) methods [1] to perform this task in cases, where
the system is nonlinear or when it undergoes non-Gaussian uncertainty
sources [2]. Nevertheless, the computational cost associated with the
implementation of SMC methods in embedded systems forces to use
simplified versions of these algorithms to ensure real-time operation
(in detriment of the quality of obtained results). The use of simplified
Bayesian processors justifies the development of a framework to
assess and compare the performance of these methods; incorporating
the inherent probabilistic nature of different implementations within
the analysis. In this regard, we hereby propose a flexible scheme that
allows probabilistic assessment of worst-case scenarios in terms of the
performance exhibited by a given algorithm implementation. This
scheme also helps to analyse the performance of the algorithm as we
get arbitrarily close to this worst-case scenario [3]. Information
measures are used to quantify the discrepancy, performance wise,
between simplified versions of a given Bayesian processor; also
helping to compare against full-fledged versions that can be
implemented on powerful computers.

Probably approximately correct computation (PACC) analysis: PACC
[4] is a methodology born from the statistical learning theory [5] and the
study of randomised algorithms [6] that allows estimating the perform-
ance loss in algorithms with arbitrary levels of precision and confidence.
PACC Analysis denotes a reference algorithm by f (z), z [ Z (Z is the
input space), whereas its simplified version is denoted by fD(z). To
characterise the computational accuracy of fD(z) with respect to f (z),
PACC Analysis uses a loss function u(z, D) = u[f (z), fD(z)]. PACC
ensures a g . 0 performance level, with probability h, when the follow-
ing condition holds:

Pr{u(z, D) ≤ g} ≥ h, ∀z [ Z. (1)

If we denote pg = Pr{u[f (z), fD(z)] , g}, then PACC analysis would
require to characterise pg on the whole space Z: a hard problem
in terms of computational complexity. To overcome this difficulty,
pg is approximated by p̂N (g) = (1/N )

∑
I[f (z), fD(z)], where

I[f (z), fD(z)] = 1 if u[f (z), fD(z)] , g, and 0 otherwise.
The convergence of pg to pN depends on the required level of pre-

cision e, such that |pg − p̂N | ≤ e. Since p̂N is a function of the
number of samples N, we require to introduce a confidence level of
(1− d). The Chernoff bound [7] characterises the minimum number
of samples that allow to guarantee

Pr{|pg − p̂N | , 1} . (1− d). (2)

PACC allows ‘to estimate the probability pg by means of p̂N with pre-
cision 1’ with probability (1− d). In this regard, we can approximate ḡ,
the maximum theoretical error (i.e. the minimum value of ḡ satisfying
Pr[u(z, D) ≤ ḡ] = 1 ∀z [ Z), by ĝ [maximum empirical error, obtained
from p̂N (ĝ)]. Thus, if ĝ is an indicator of the computational accuracy for
the simplified algorithm, D1 (simplified Algorithm 1) is related to per-
formance loss ĝ1, and D2 (simplified Algorithm 2) is related to perform-
ance loss ĝ2, we can safely state that: the computational accuracy of D1

is greater than D2 ⇔ ĝ1 , ĝ2.

Information theory measures integration for PACC analysis in
SMC-based algorithms: SMC-based algorithms [8] allow characteris-
ing the uncertainty associated with the latent variable x (also referred
to as the state vector) in hidden Markov models (HMMs), which are
typically represented by the target distribution p1:T (x1:T ) [with marginal
pn(xn) in instant n], using a posterior distribution that is conditional on
observations y1:T . Assuming an ideal representation of the state-space
p∗
1:T (x1:T ), and an approximation p̂1:T (x1:T ) that is generated by a simpli-

fied Bayesian processor, we can denote (in the context of PACC analy-
sis) f (z) = p∗

1:T (x1:T ) as the outcome of a reference (i.e.; ‘ground truth’)
algorithm and fD(z) = p̂1:T (x1:T ) as the outcome of a simplified algor-
ithm version. A measure of the performance loss associated with the
simplified algorithm implementation u[p∗

1:T (x1:T ), p̂1:T (x1:T )] can be
provided, based on Definitions 1 and 2.

Definition 1: (Average loss of information) D̄KL[p∗
1:T (x1:T )

||p̂1:T (x1:T )] = (1/T )
∑T

k=1 DKL[p∗
k (xk )||p̂k (xk )].

Definition 2: (Absolute difference in average uncertainty)
D{H̄[p∗

1:T (x1:T ), p̂1:T (x1:T )]} = |H̄[p∗
1:T (x1:T )]− H̄[p̂1:T (x1:T )]|, where

T is the number of available measurements. The average uncertainty-
H̄[p1:T (x1:T )] is defined as H̄[p1:T (x1:T )] = (1/T )

∑T
k=1 H[pk (xk )],

DKL is the Kullback–Lieber divergence, and H is the entropy [9].

At this point, we can integrate information theory measures for
SMC-based algorithms in the PACC analysis, estimating the perform-
ance loss associated with different (and simplified) filtering strategies
by approximating both the maximum average loss of information and
the maximum absolute difference in average uncertainty. To illustrate
this process, we will focus on a specific case study, where we seek to
implement real-time state-of-charge (SoC) lithium-ion battery monitor-
ing algorithms.

Case study (SoC lithium-ion battery monitoring): This case study is
focused on real-time estimation of the SoC in lithium-ion batteries,
which are a measure of the energy that is stored in the battery at any
time instant. In [10], Pola et al. presented a state-space model for the
lithium-ion battery cell that is compatible with the formulation of an
HMM. Thus, the system is characterised by state transition (3) and
(4), and the observation equation below:

x1(k + 1) = x1(k)+ w1(k) (3)

x2(k + 1) = x2(k)− v̂[x1(k), x2(k), u(k)] u(k) Ts
Ecrit

+ w2(k) (4)

y(k) = v̂[x1(k), x2(k), u(k)]+ h(k), (5)

where v̂[x1(k), x2(k), u(k)] is defined as

v̂[x1(k), x2(k), u(k)] = vL + (v0 − vL) e
g [x2(k)−1]

+ a vL [x2(k)− 1]− u(k) x1(k)

+ (1− a) vL [e
−b − e−b

����
x2(k)

√
]

(6)

w1(k)� N (0, s1) and w2(k)� N (0, s2) are Gaussian additive noises,
whereas h(k)� N (0, sobs) represents the uncertainty in the measure-
ments. The sampling time is Ts[sec], u(k) = i(k)[A] is the discharge
current (input variable to the system), y(k) = v(k)[V] is the battery
voltage. The state x1 represents the internal impedance of the battery,
whereas x2 is the SoC of the battery (we will denote it as xSoC). All
the other parameters of the battery can be determined according to the
procedure described in [10].

For this case study, we use voltage and current data from Federal
Urban Driving Schedule, appropriately scaled to the case of a single
lithium-ion cell [10], and use the proposed performance assessment
method to evaluate the performance loss of simplified algorithms: par-
ticle filter (PF), unscented Kalman filter (UKF) [11], and UKF with
outer feedback correction loops (OFCLs) [12]. A forward-filter–
backward-smoothing (FF-BS) [8] algorithm represents the reference
algorithm in this case (i.e.; ‘the ground truth’) since it allows to estimate
the marginal distribution at any particular time p∗

n(xn) given the
measurements that will be acquired up to some later time (via the
backward-smoothing subroutine).

It is important to note that the FF-BS algorithm, as well as all other
three filter implementations, considers (statistically) the same initial con-
ditions for the system state

† x1(0)� N (0.10, 0.05).
† x2(0)� N (0.85, 0.10).



According to the Chernoff bound, we require N = 1060 realisations of
any simplified Bayesian processor to estimate the probability associated
with the maximum theoretical error with precision 1 = 0.05 and confi-
dence (1− d) = 0.99, where a ‘realisation’ corresponds to an algorithm
execution that uses the same set of acquired measurements and initial
conditions sampled from identical distributions. Results from each
realisation of simplified Bayesian processors are compared with the
‘ground truth’ p∗

1:T (x1:T ), all to obtain the corresponding evaluation of
the loss function. After computing N realisations of this loss function,
we can approximate the probability pg by p̂N (ĝ), such that p̂N (ĝ) = 1,
∀g ≥ ĝ . The obtained parameter ĝ will correspond to the maximum
empirical error for the simplified algorithm.

If we use 90% of the battery data (during any given discharge cycle,
and starting with a fully charged cell), then models (1)–(6) allows the
implementation of Bayesian processors to generate a statistical character-
isation for the evolution of the SoC in time. Our proposed methodology
will help to assess the performance of the aforementioned Bayesian pro-
cessors (PF, UKF, and UKF with OFCL); estimating the maximum
average loss of information and the maximum absolute difference in
average uncertainty. Indeed, Fig. 1 shows the DKL and its rate at each
time instant, depicting the evolution of the information loss for each
one of the three simplified algorithms with respect to the ‘ground truth’.
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Fig. 1 Evolution of Kullback–Lieber divergence for one realisation of esti-
mation process, for each of algorithms included in this Letter

Table 1 shows the obtained results in the analysis for the three simpli-
fied Bayesian processors. In this regard, the main results are summarised
as follows:

† The loss function average information loss (D̄KL(p∗
1:T ||p̂1:T )) is a

measure that indicates the average information lost when representing
the target distribution p∗

1:T (x1:T ) using an approximate distribution
p̂1:T (x1:T ). In this regard, the distribution p̂1:T (xSoC1:T ) obtained by the
UKF, with OFCL, obtains the lowest value for the maximum theoretical
error. According to this measure

ĝUKFofcl
DKL

, ĝUKF
DKL

, ĝPF
DKL

Thus, it can be stated that the UKF algorithm with OFCL obtains the
highest computational accuracy, considering the amount of average
information that is lost.
† Considering the average information loss [D̄KL(p∗

1:T ||p̂1:T )]
and absolute difference in average uncertainty {D[H̄(p1:T , p̂1:T )]},
we can state that OFCL has a positive impact on the UKF algorithm.
This routine is able to reduce the uncertainty associated with the state
vector, without violating constraints imposed by the ‘ground truth’
algorithm. Thus, the inclusion of OFCLs has a positive effect on the
computational accuracy and effectiveness of the algorithm.
† Finally, when solely consider the absolute difference in average
uncertainty {D[H̄(p∗

1:T , p̂1:T )]}, which represents a measure regarding
the handling of the uncertainty by the algorithms, we have that

ĝUKFofcl

D(H̄)
, ĝPF

D(H̄ )
, ĝUKF

D(H̄)

This can lead to hasty conclusions about computational accuracy since
you may think that PF handles uncertainty more effectively than the
UKF. However, it must be noted that the maximum value for absolute
difference in average uncertainty in PF (see Table 1) is obtained
when the average entropy of the PF algorithm is lower than the one pro-
vided by the FF-BS (reference algorithm), whereas this never happens
View publication statsView publication stats
for UKF. The fact that the maximum value of absolute difference in
average uncertainty for PF is reached when its average entropy is
lower than that of the reference algorithm should be considered as a
loss of important information of the approximation since it is represent-
ing the state of the system with less uncertainty than the referential
algorithm. The measure average information loss is able to incorporate
this loss in information by penalising more strongly a representation
with lower entropy than the target distribution.

Table 1: Maximum empirical error for 90% of data (N = 1060)
Maximum empirical error (ĝ) 90%
 FF-BS
 PF
 UKF
 UKF OFCL
H̄ (p̂1:T )
[bits]

[seg]

1.42
 1.82
 4.74
 1.69
D̄KL(p∗
1:T ||p̂1:T )

[bits]

[seg]

0
 44.87
 2.86
 0.99
D{H̄[(p∗
1:T , p̂1:T )]}

[bits]

[seg]

0
 0.82 (*)
 3.32
 0.26
Conclusion: A novel approach for evaluating sequential Bayesian pro-
cessors is proposed. The methodology allows, on the one hand, generat-
ing an adequate framework that facilitates the calculation of the
maximum error in probability, and therefore allows to assess the per-
formance of simplified versions of Bayesian processors in terms of com-
putational accuracy. On the other hand, we surmise that it does not
suffice to compare the moments of the distribution to evaluate the per-
formance of a given Bayesian processor since it is also important to
quantify the performance in terms of information loss. In this regard,
the development of novel methods to incorporate information measures
for the assessment of estimation algorithms should be encouraged.
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