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A B S T R A C T

The small RhoGTPase Rac1 is implicated in a variety of events related to actin cytoskeleton rearrangement.
Remarkably, another event that is completely different from those related to actin regulation has the same
relevance; the Rac1-mediated production of reactive oxygen species (ROS) through NADPH oxidases (NOX).
Each outcome involves different Rac1 downstream effectors; on one hand, events related to the actin cytoske-
leton require Rac1 to bind to WAVEs proteins and PAKs that ultimately promote actin branching and turnover,
on the other, NOX-derived ROS production demands active Rac1 to be bound to a cytosolic activator of NOX.
How Rac1-mediated signaling ends up promoting actin-related events, NOX-derived ROS, or both is poorly
understood. Rac1 regulators, including scaffold proteins, are known to exert tight control over its functions.
Hence, evidence of Rac1 regulatory events leading to both actin remodeling and NOX-mediated ROS generation
are discussed. Moreover, cellular functions linked to physiological and pathological conditions that exhibit
crosstalk between Rac1 outcomes are analyzed, while plausible roles in neuronal functions (and dysfunctions)
are highlighted. Together, discussed evidence shed light on cellular mechanisms which requires Rac1 to direct
either actin- and/or ROS-related events, helping to understand crucial roles of Rac1 dual functionality.

1. Introduction

Small RhoGTPases are single-domain nucleotide-dependent binary
switches that act as highly-tuned regulators in signal transduction [1].
The cycling between active GTP-bound and inactive GDP-bound forms
allows RhoGTPases to bind to or to dissociate from downstream effec-
tors, respectively [2]. Guanine nucleotide exchange factors (GEFs) that
catalyze the exchange of GDP for GTP, and GTPase-activating proteins
(GAPs) that increase intrinsic GTP hydrolysis are respectively re-
sponsible for RhoGTPases switching between their active and inactive
form [3]. Furthermore, switching between GDP and GTP may involve
cytosol-membrane translocation, as farnesyl or geranylgeranyl-carrying
RhoGTPases can form soluble complexes with guanine dissociation in-
hibitors (GDIs), thus preventing RhoGTPases from membrane-targeting
and GEFs-mediated activation [4]. A remarkable feature of RhoGT-
Pases-based signaling networks is that specific interacting patterns be-
tween GEFs and RhoGTPases, coupled with post-translational mod-
ifications and scaffolding molecules lead to spatiotemporal promotion
of determined outcomes [5]. Ras-related C3 botulinum toxin substrate 1
(Rac1), a member of the RhoGTPases family, has a pivotal role in the
regulation of actin polymerization during cytoskeletal rearrangement
events [6]. Rac1-mediated actin regulation takes place through binding

of Rac1 to the scaffolding molecule known as insulin receptor tyrosine
kinase substrate p53 (IRSp53), thus leading to Rac1 binding to WASP-
family verprolin-homologous (WAVE) proteins [7]. As a result, WAVEs
bind to and activate the actin-nucleating protein, actin-related protein
2/3 (Arp2/3) complex, which initiates growth of new branched fila-
ments [8]. Another way in which Rac1 can regulate the actin cytos-
keleton is by binding to p21-activated kinases (PAKs) which in turn
conducts cytoskeletal rearrangement via phosphorylating Lim kinases
(LIMKs) [9]. LIMKs phosphorylate cofilin subsequently, thereby re-
leasing it from actin filaments and thus suppressing actin-severing ac-
tivity [10]. In this way, the Rac1/Pak1/LIMK1/cofilin axis may mod-
ulate the turnover of actin filaments at the lamellipodium [11]. Rac1-
mediated actin regulation has important roles in cell-cell adhesion [12],
cell-extracellular matrix (ECM) early interaction [13], cell polarization
[14] and cell mobility [15]. These events are widely regarded as actin-
related outcomes of the Rac1 signaling axis. Additionally, Rac1 is in-
dispensable for the assembly of the membrane-located superoxide-
producing NADPH oxidase (NOX) complexes, where it is required for
the electron transfer from NADPH to oxygen [16]. NOX isoforms I and II
(NOX1 and NOX2) are activated via Rac1 having relevant roles in
physiology and in several human diseases including neurodegenerative
pathologies [17]. Besides Rac1, the assembly of the NOX complex

https://doi.org/10.1016/j.freeradbiomed.2018.01.008
Received 2 August 2017; Received in revised form 3 January 2018; Accepted 5 January 2018

⁎ Correspondence to: Laboratory of Cell and Neuronal Dynamics, Faculty of Sciences, Universidad de Chile, Las Palmeras 3425, 7800024 Santiago, Chile.
E-mail addresses: a.acevedo.aracena@gmail.com (A. Acevedo), chrgonza@uchile.cl (C. González-Billault).

Free Radical Biology and Medicine 116 (2018) 101–113

Available online 10 January 2018
0891-5849/ © 2018 Elsevier Inc. All rights reserved.

T

http://www.sciencedirect.com/science/journal/08915849
https://www.elsevier.com/locate/freeradbiomed
https://doi.org/10.1016/j.freeradbiomed.2018.01.008
https://doi.org/10.1016/j.freeradbiomed.2018.01.008
mailto:a.acevedo.aracena@gmail.com
mailto:chrgonza@uchile.cl
https://doi.org/10.1016/j.freeradbiomed.2018.01.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.freeradbiomed.2018.01.008&domain=pdf


requires the binding of at least two cytoplasmic subunits (an activator
and an organizer) to the membrane-located catalytic subunit, which in
turn must be bound to a membrane-located anchorage subunit [18].
The cytoplasmic activators p67phox and NOXA1 are the NOX2 and
NOX1 components serving as targets for Rac1, respectively [19]. In the
cytosol, prenylated Rac1 is inactive and bound to RhoGDIs [20].
Through various receptor-mediated signaling cascades that involve
Rac1 GEFs, the Rac1-RhoGDI complex is translocated to the membrane
[21,22]. NOXs enzymes play significant roles in endothelial functions
[23], cellular proliferation [24], cancer [25], establishment of neuronal
polarity [26] and neurodegeneration [27]. Taken together, it is evident
that Rac1 presents two different downstream outcomes; actin- and
NOX-related events (Fig. 1). How Rac1 can promote each outcome in a
coordinated manner is intriguing. An example of Rac1-mediated sig-
naling bifurcation is seen in the context of MAP kinases function. In this
way, Wu et al. [28] showed that downstream from Tat (Human im-
munodeficiency virus type 1 transactivator of transcription) signaling,
two independent Rac1-mediated outcomes take place; activation of
RhoA-Nox4-dependent Ras/ERK which favors proliferation, and acti-
vation of PAK1-Nox2-dependent JNK that promotes cytoskeletal re-
arrangement It has been suggested that RhoA may favor Nox4 activity
via up-regulating its expression levels during fibroblast differentiation
[29]. However, the correlation between RhoA and Nox4 is not resolved
and appears to be context-dependent as recent evident shows that loss
of Nox4 increases levels of RhoA in Huh7 and PLC/PRF/5 cells, while
overexpression of Nox4 in SNU449 cells increased RhoA levels [30]. In
the present review, we are interested in Rac1-mediated signaling bi-
furcation regarding ROS production and actin regulation outcomes,
which have been studied mostly as separate events. Here, we bring
together evidence of co-occurrence and crosstalk between both func-
tions. One layer of modulation for such outcomes is provided by Rac1
regulators, namely GEFs, GAPs and GDIs. Then Rac1 regulators driving
both actin- and NOX-related outcomes are discussed. Moreover, cross-
talk events between Rac1 axes involving redox signaling are also ad-
dressed along with their physiological and pathological roles high-
lighting possible roles in neuronal functions.

2. Linking H2O2-dependent redox signaling to Rac1activity

2.1. H2O2-induced protein modifications and redox signaling

Once produced, the anion superoxide is dismutated into hydrogen
peroxide either by superoxide dismutases or spontaneously [31]. Hy-
drogen peroxide in turn can pass through membranes and oxidize
protein thiol groups [32]. Though NOX-mediated ROS production

occurs on the outer side of the plasma membrane, significant amounts
of NOX-derived ROS diffuse into the cytoplasm triggering locally re-
stricted redox events [33]. Particularly, H2O2 generates reversible
oxidation of cysteine residues [34] yielding either disulfide bonds (RS-
SR'), glutathione disulfide (GSSG) or S-glutathionylated proteins (R-
SSG) [35], as well as S-nitrosylation if nitric oxide, nitroxyl or perox-
ynitrite are involved [36]. Such events modulate signaling networks
thus making hydrogen peroxide a relevant second messenger [37,38].

2.2. H2O2-mediated signaling confinement by antioxidant systems

As for case of other second messengers, H2O2-mediated signaling is
spatiotemporally constrained. In this sense, compartmentalized events
such as H2O2 microdomains and gradients have been implicated in
several cellular functions [39,40]. How H2O2 locally exerts its role is
still a matter of debate; nonetheless, the action of the antioxidant sys-
tems provide hints on how this might occur. Breakdown of H2O2 is
conducted by peroxidases such as catalase, glutathione peroxidase and
peroxiredoxins. Importantly, cysteine oxidations can be reversed via the
activity of the latter antioxidant anzymes [41]. An excellent review by
Ren et al. [42] highlights that thioredoxin (Trx) and glutathione (GSH)
systems regulate redox signaling involved in various biological events
in the CNS. Peroxiredoxins has been widely regarded as H2O2 sca-
vengers that partially impede H2O2-mediated thiol oxidation [43].
However, given some contexts peroxiredoxins have been postulated as
enablers of protein thiol oxidation [44]. Which of these mechanisms
prevails, or has the most significant impact on redox-signaling, is still
an open question [45]. Intriguingly, Kwon et al. [46] found that per-
oxiredoxin6 (Prdx6) binds to NOXA1 and assembles with the Nox1
complex, supporting Nox1-mediated migration of colon epithelial cells.
Over the last years, peroxiredoxins have been increasingly suggested as
key players in H2O2-mediated signaling [45,47]. As for the case of H2O2

signaling confinement via antioxidant systems, Rac1 activity undergoes
tight spatiotemporal regulation too; it has been shown that active Rac1
can exhibit a marked differential spatial distribution in several cellular
processes, such as axonal elongation and dendritic spine formation
[26,48]. Interestingly, and as pointed out below, spatial regulation of
Rac1 activity may be directly linked to H2O2-dependend redox control.

2.3. Redox regulation of Rac1 via H2O2-induced fast-cycling activity

Alongside GEFs, GAPs and GDIs, it is widely regarded that Rac1
undergoes post-translational modifications that allow fine-tuned reg-
ulation of its activity and localization [5]. In fact, mutations in Rac1's
regulators are prevalent in some type of cancers such as melanoma
[49]. In addition, up-regulation of Rac1 activity by increased nucleotide
cycling induced via oncogenic mutations are well-known [50,51]; these
sort of modifications promote GEF-independent guanine nucleotide
exchange activity. Another way of obtaining high GEF-independent
guanine nucleotide exchange activity is by cysteine oxidation; hence
Rac1 may be considered as a redox target. The latter is supported by
evidence showing that ROS and RNS directly affect Rac1 activity. In this
sense, Heo and Campbell, 2005 [52] show that peroxide increases Rac1
guanine nucleotide exchange by 10-fold. Later, Hobbs et al. [53]
showed that Rac1-Cys18 may be glutathiolated, which is a reversible
oxidative modification, upon ROS induction in primary chondrocytes
from human joints. Importantly, human articular chondrocytes are
known for expressing Nox2 and suffering elevated levels of ROS during
osteoarthritis [54]. Moreover, isolated glutathiolated Rac1 showed a
200-fold increase in nucleotide exchange rate in comparison to non-
oxidized Rac1 [53]. Also, a mimicking form of this redox fast-cycling
Rac1 generated enhanced lamellipodia formation in Swiss 3T3 cells,
while expression of a redox-insensitive Rac1 variant did not show
changes in the lamellipodia, whilst increased activity of the mimicking
form of Rac1 redox fast-cycling was confirmed via pull-down activity
assays [53]. More recently, it has been reported that glutathionylation

Fig. 1. Dual functions of Rac1. Upstream events involving several signal transduction
cascades induce GEFs activity, thus promoting GTP-bound Rac1 formation. Active Rac1
mediates two downstream outcomes: Actin-related and NOX-related events. At the same
time, GAPs may favor the GDP-bound state while GDIs hijack inactive Rac1 in the cy-
toplasm. RTK, receptor tyrosine kinases. GPCR, G protein-coupled receptor. VEGFR2,
vascular endothelial growth factor 2.
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of Rac1 on cysteine 81 and 157, residues near the nucleotide binding
site, inactivate Rac1 in endothelial cells under conditions of diabetes
and hyperlipidemia [55]. Taken together, redox-dependent modulation
of nucleotide cycling in Rac1 seems to be a relevant layer of regulation,
though it could function either as a promoter or inhibitor of Rac1 ac-
tivity. Even though redox signaling and NOX-derived ROS have been
shown to play key roles in several neuronal processes [56], Rac1 redox
regulation via glutathionylation has yet to be explored in neurons.

2.4. Structural aspects involved in Rac1-mediated ROS- and actin-related
events

Spatiotemporal regulation of Rac1 activity may cooperate with
other systems that control redox events, such as peroxidases, in such a
way that multilayered-regulation would be articulated. Structurally, it
is not clear how those mechanisms work in concert over Rac1 domains.
In this sense, it is well-established that Rac1 interacts with p67phox.
Such an interaction requires residues belonging to the N-terminal (S22,
T25, N26, F28, G30 and E31 residues) which are near or inside the
switch I region, as well as residues from the C-terminal (A159, L160,
and Q162 residues) [57]. Mutations that lead to constitutively active
forms of Rac1 (Rac1-G12V and Rac1-Q61L) do not affect its function
regarding NOX activation and effectively promote NOX activity
[58,59]. Other Rac1 domains such as the insert region have been re-
garded as not crucial for NOX assembly and activation [60]. Several
Cdc42- and Rac-interactive binding (CRIB) effectors of Rac1 such as
PAK, WAVE and the scaffold IRSp53, as well as non-CRIB scaffolding
proteins including IQGAP and Sra/CYFIP have been found to interact
with the Rac1 N-terminal domain, as does p67phox [61].

3. Rac1-dependent ROS and actin regulation in neuronal
functions

NOX-mediated ROS have an important role as physiological mes-
sengers. One remarkable example regarding such a function is during
axonal formation. In this line, increased p40phox/NOX2 levels and co-
localization at growth cone contact sites with apCAM beads and in-
teracting growth cones have been observed. Thus apCAM-clustering
promotes actin rearrangement and NADPH oxidase activation during
neurite outgrowth [62]. Based on the latter, Munnamalai et al. [62]
proposed that cytosolic NADPH oxidase subunits such as p40 are as-
sociated with actin structures in unstimulated growth cones. Here,
NOX2 subunits p47phox, p67phox, p40phox, and Rac1 translocate to
the plasma membrane (with or without F-actin) and activate NOX2
upon growth cone stimulation by external cues. In addition, it has been
shown that in order to sustain axonal development, Rac1 is activated
via RyR-mediated Ca2+ release from the ER [63]. In this mechanism,
ER Ca2+ release promotes Rac1-activation, which in turn activates
NOX2 leading to ROS production. Since RyR activity is promoted by
ROS and Ca2+ [64], a feed-forward loop in which activated Rac1
maintains axonal growth and NOX-mediated ROS production was es-
tablished [63]. Notably, this loop could be abrogated by applying
NSC23766, which blocks the interaction of Rac1 with its GEFs Tiam1
and TRIO. Thus ROS production would be sustained in neurons via
RyR-mediated Ca2+ release/GEFs/Rac1/NOX pathway.

4. Involvement of Rac1 regulators in redox and actin events

4.1. Rac1-GEFs involved in NOX-mediated ROS and actin cytoskeleton
events

Coordination between upstream and downstream effectors may
enable localized activation of Rac1, thus establishing and maintaining
actin-related events [15] and/or focalized NOX-mediated production of
ROS [65]. As the latter relies on GEFs [66], the most-characterized
Rac1-GEFs that modulate actin-related functions and NOX-dependent

ROS production are discussed below.

4.1.1. βPIX
The GEF for Rac1 and Cdc42 known as βPIX (β form of the PAK-

interacting exchange factor; also referred as Cool-1 or ARHGEF7) was
first identified in a search for components directly upstream or down-
stream of Cdc42 and Rac1, being found enriched in focal complexes and
necessary for PAK recruitment [67]. The subcellular localization of
βPIX is associated with focal adhesions sites, while tyrosine phos-
phorylation of βPIX appears to determine its spatial regulation [68]. In
neurons, βPIX can be found in dendritic spines [69], where it may be
recruited to synapses by its interaction with the scaffold Shank [70].
βPIX has been linked with activity-dependent synaptogenesis [71], as
well as to dendritic and neurite outgrowth [72,73]. βPIX participates in
several pathways downstream of receptor tyrosine kinase (RTK), G
protein-coupled receptor (GPCR), integrins and T-cell receptor (TCR)
[74]. A relevant feature of βPIX is that it contains a binding domain for
GIT1 (G-protein-coupled receptor kinase-interacting target; [75]), a
GAP for the small GTPase known as Arf (ADP-ribosylation factor) [76].
Together, GIT1 and βPIX function as a module that can be targeted to
scaffold and coordinate Rac1-mediated actin regulation [77,78]. Focal
adhesion establishment is among the best-studied GIT1/βPIX/Rac1-
mediated events. Targeting the GIT1/βPIX complex to focal complexes
depends on direct binding of GIT1 to paxillin [79], an integrin-recruited
adaptor protein [80]. Since βPIX also binds to PAK, which is one of the
main downstream effectors for Rac1, adhesion and protrusion-related
processes can be elicited as Rac1 is locally activated via GIT1/βPIX axis
[68,81]. In neurons, the GIT1/βPIX/Rac1 axis leads to PAK-dependent
phosphorylation of the myosin II light chain (MLC), thereby promoting
dendritic spine and synapse formation [69]. Furthermore, it has been
shown that maintenance and clustering of surface GABAA receptors are
achieved via the GIT1/βPIX/Rac1/PAK axis, thus keeping the integrity
and strength of inhibitory synapses [82]. On the other hand, βPIX has
been related to NOX-mediated ROS production as the PI3K products
PtdIns(3,4,5)P3 and PtdIns(3,4)P2 enhance βPix activation to promote
Rac1 activity and NOX1 activation [83]. The stimulation of ROS pro-
duction mediated by βPix has been confirmed by Kaito et al., (2014)
[84], who reported that phosphorylation of βPix positively regulates
NOX1 activity. More recently it has been shown that the polarity pro-
tein SCRIB may interact with p22phox/βPIX/Rac1 to promote ROS
production [85].

4.1.2. Dock180
This is a specific Rac1 GEF (180-kDa protein downstream of CRK)

that was initially identified as a binding protein for CRK, a homolog of
the oncogene product v-Crk from the CT10 retrovirus able to transform
3T3 fibroblasts [86]. Usually, GEFs interact with Rho-GTPases through
their Dbl homology-pleckstrin homology (DH-PH) domain. This is not
the case for DOCK180, which does not contain the DH-PH domain;
instead it interacts with Rac1 by its Docker domain [87]. In order to
achieve an efficient activation and localization of Rac1, DOCK180
forms a complex with the scaffold protein, ELMO1 (engulfment and
mobility) [88,89]. Elevated PtdIns(3,4,5)P3 levels that are locally-gen-
erated at the leading edge, promote membrane localization of
Dock180/ELMO and polarized activation of Rac1 during elongation and
migration in LR73 cells (a variant of the CHO cell line) [90]. Although it
has been observed that Dock180 may promote epithelial cell migration
[88,91] or even metastasis [92], this GEF is known to localize at both
integrin- and cadherin-based adhesions sites [93]. Similarly to βPIX,
Dock180 has been localized in dendritic spines along with its inter-
acting partners RhoG and ELMO1, where Dock180 promotes spine
morphogenesis [94]. Furthermore, roles of Dock180 in axonal guidance
and pruning have been reported [95,96]. Interestingly, there is some
evidence indicating that ELMO1/Dock180 can promote NOX-mediated
ROS production. It has been reported that the brain-specific angio-
genesis inhibitor 1 (BAI1) directly interacts with ELMO1/Dock180, and
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together they activate Rac1 [97,98]. In this sense, Billings et al. [65]
reported that BAI1 promotes NOX2 activation via ELMO1/Dock180–-
mediated Rac1 activation in macrophages.

4.1.3. Vav
Named after the sixth letter of the Hebrew alphabet, Vav was first

characterized as an oncogene responsible for tumorigenesis in nude
mice injected with NIH3T3 cells transfected with DNA from human
esophageal carcinomas [99]. Vav is a GEF of Rac1, RhoA and Cdc42,
and functions downstream of GPCR and phosphorylation via Src and
Syk tyrosine kinases that release Vav from its auto-inhibitory con-
formation [100]. It has been shown that Vav3 localizes to membrane
rafts in immune cells [101], while Vav1 locally promotes cytoskeletal
rearrangements that take place in the peripheral area of immunological
synapses [102]. Also, Vav1 is localized at lamellipodia of pancreatic
tumor cells where it promotes Rac1-mediated invasive migration [103].
Vav2 and Vav3 are known to regulate neurite outgrowth and
branching, axon guidance and the collapse of the growth cone
[104,105]. Moreover, Vav2 and Vav3 are essential for theta-induced
LTP and spine enlargement [106]. It has been proposed that targeting of
Vav to different downstream pathways may rely on the regulation of
multiple phosphorylation steps [107]. Vav2 functions as a mediator of
growth factors and mechano-transduction, with well-known roles in
cell-cell adhesion, migration and angiogenesis [108,109]. On the other
hand, Vav1 is particularly expressed in hematopoietic tissues, and plays
key roles in lymphocyte development and function [110]. Vav1 is es-
sential for T-cell receptor (TCR)-mediated cytoskeletal reorganization
[110,111]. Importantly, Vav1 and PI3K are linked, as PtdIns(3,4,5)P3
enhances phosphorylation and activation of Vav1 by Lck [112] and
promotes its recruitment to the plasma membrane [113]. Regarding
NOX-related events, Price et al. [114] showed in COSphox cells that
stimulation of endogenous Rac1 by expressing of a constitutively active
form of Vav1 highly activates NOX2. In the same study, increased levels
of Rac1-GTP and ROS were observed when expressing constitutively
active forms of Vav2 or Tiam1; however Vav1 induced the highest ROS
production. Also, by using COSphox and human neutrophils treated with
fMLP, Ming et al. [115] showed that there is a direct interaction be-
tween p67phox and Vav1. This interaction activates Rac2 to a greater
extent than Rac1, which in turn enhances the interaction between
p67phox and Vav1. Interestingly, this study also shows that the inter-
actions between p67phox, Vav1, and Rac and subsequent Rac activation
are not associated with increased tyrosine phosphorylation of Vav1. In
such a way, a phosphorylation-independent mechanism could be con-
sidered as a mediator to the different downstream targets of the Vav1/
Rac axis. In addition, a positive regulation of NADPH oxidase activity
through p47Phox phosphorylation exerted by PAK1 via Vav1-dependent
Rac1 activation has been found in microglia upon fMLP stimulation
[116]. Also, based on molecular modeling and some experimental
evidence, Armstrong et al. [117] proposed that Vav1 along with
p67phox, p40phox and Rac1 forms a quaternary complex to activate
NADPH oxidase-mediated ROS production.

4.1.4. Tiam1
The Rac1-GEF known as Tiam1 (T-lymphoma invasion and metas-

tasis 1) was originally identified as an invasion-inducing gene in the
context of proviral insertional mutagenesis assays [118]. Tiam1 has
been linked to the formation of cell-cell adhesions mediated by cad-
herin and cell migration suppression, while disassembly of cell-cell
adhesions mediated by downregulation of Tiam1 may promote cell
migration [119,120]. Membrane translocation of Tiam1 is crucial for its
capacity to induce Rac1-mediated effects such as actin-related events
and NOX-derived ROS generation [121,122]. Tiam1 has been related to
several events located at membrane ruffles and others (Tiam1 sub-
cellular locations have been reviewed by Boissier et al. [123]). In
neurons, Tiam1 is involved in the formation of dendritic spines, being
highly enriched at the post-synaptic density [124]. Also, as Rac1-

mediated actin events are crucial to ensure proper function of dendritic
spines [125], the Tiam1/Rac1 axis has key roles in synaptic plasticity
[126]. Importantly, Tiam1/Rac1-mediated actin dynamics at dendritic
spines may be modulated via calcium-dependent phosphorylation of
Tiam1 [127]. Tiam1-mediated activation of Rac1 has been linked with
lowered cell scattering upon induction with hepatocyte growth factor
(HGF) and EGF [128]. It has been show that expression of wild-type
Tiam1 promotes E-cadherin localization at cell-cell contacts, in a pro-
cess that is likely to be mediated by the interaction of Tiam1 and Rac1
with the Ras GTPase-activating-like protein 1 (IQGAP1) [128,129]. In
contrast, upon integrin-induced signaling, Tiam1, probably in associa-
tion with PAR3 and PKCζ, may promote Rac activation, cell migration
and tumor invasion [130,131]. Besides, Tiam1 has also been linked to
NOX-mediated ROS production. In this sense, Price et al.114] showed
that activation of endogenous Rac1 by expression of a constitutively-
active form of Tiam1 activates NADPH oxidase in COSphox cells. Ad-
ditionally, at the initial stages of diabetes the Tiam1-Rac1-NOX2 axis
leads to increased intracellular ROS [122]. Remarkably, a significant
interaction between Vav2 and Tiam1 has been reported in endothelial
cells undergoing shear stress. In this study, Liu et al. [132] showed that
Vav2 conducts Rac1 loading of GTP while Tiam1 acts as a scaffold
linking Rac1 to the flow-sensitive polarity complex Par3/VE-cadherin
and to the NADPH oxidase, thus favoring flow-dependent ROS pro-
duction.

4.1.5. P-Rex
The PtdIns(3,4,5)P3-dependent Rac exchanger 1 or P-Rex was first

purified from neutrophil cytosol and identified as a factor able to ac-
tivate Rac via PIP3 stimulation; it was thus originally linked to ROS
production [133]. This GEF locates at membranes at GPCR and PI3K-
mediated signaling microdomains; the sub-cellular localization of P-
Rex1 has been recently reviewed by Welch et al. [134]. In neurons, P-
Rex1 localizes at neurite shafts, distal tips and at the growth cone
[135,136]. The P-Rex family are Rac1-GEFs activated by PtdIns(3,4,5)
P3 and by the Gβγ subunit of the heterotrimeric G protein complex
linked to G protein-coupled receptors (GPCR). Accordingly, it has been
suggested that P-Rex acts as a “coincidence detector” for both signals
[137]. The gelsolin protein superfamily member, flightless-1 homolog
(FLII) has been recently identified as an interacting partner for Rac1
and P-Rex [128]. FLII is pivotal for actin cytoskeleton events, regulating
capping in actin barbed-ends and severing [138,139]. Marei et al. [128]
reported that FLII binds to active Rac1, thus serving as a scaffolding
protein for P-Rex1 which in turn enhances the interaction of Rac1 with
FLII. Together, this promotes P-Rex1/Rac1-driven cell migration [140].
As can be appreciated, Rac1 activation by Tiam1 or P-Rex1 may yield
opposing actin-related outcomes; suppression or promotion of migra-
tion, respectively. This has been proposed by Marei et al. [128] who
reported that activation of Rac1 by Tiam1 or P-Rex1 results in distinct
actin rearrangements, each one leading to different phenotypes. Fur-
ther, there is considerable evidence showing that P-Rex regulates NOX-
mediated ROS. For instance, a differentiated human pro-myeloytic cell
line treated with P-Rex1 antisense oligonucleotide has reduced C5a-
stimulated ROS production [133]. Also, in a study on neutrophils from
P-Rex1 knockout mice, it was found that disruption of P-Rex1 impairs
Rac2 activation and ROS production upon fMLP exposure [141]. In a
similar study done in mouse neutrophils, it was found that P-Rex1 co-
operates with Vav1 during fMLF-stimulated ROS production; in fact,
mice lacking both P-Rex1 and Vav1 showed severe reduction in Rac1
and Rac2 activities [142]. Moreover, Nie et al. [143] reported that P-
Rex1 expression mediates fMLP-stimulated ROS generation in COSphox.
They also observed that superoxide generation is further enhanced by
expression of PKCδ and by overexpression of Akt. Consistently, it has
been proposed that the assembly of the phagocyte NADPH oxidase
complex via GPCR/PtdIns(3,4,5)P3/P-Rex also involves PtdIns(3,4,5)
P3-mediated phosphorylation of p40phox and p47phox through Akt and
PKCδ activity [144].
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Table 1 highlights the main findings regarding the GEFs-controlled
dual function of Rac1.

4.2. Redox control of GEF-dependent Rac1 regulation

In a further line of evidence, Src family kinases are well-known
regulators of actin cytoskeleton re-arrangements upon cell adhesion
and migration [145], and ROS-dependent activation of Src is crucial for
cell adhesion [146]. In fact, Src activation and hence actin-related
events such as adhesion may be suppressed via antioxidant-mediated
ROS removal [147]. Rac1 activity may be regulated by Src-dependent
tyrosine phosphorylation of Vav2 and Tiam1 [148]. In this sense,
Gianni et al. [149] demonstrated in human HT29 colonic adenocarci-
noma cells that c-Src promotes Rac1-mediated ROS (in NOX1) by in-
creasing the levels of active Rac1 through the activation of Vav2 by
tyrosine phosphorylation; this mechanism did not depend on Tiam1.
Interestingly, transfection with a constitutively active form of Src pro-
motes NOX1-dependent ROS production in HT29 cells [149].

4.3. RhoGDIs involved in Rac1-mediated ROS production and actin events

Rac1 dissociation from the RhoGDI-Rac1 complex has been in-
vestigated during FcγR-mediated phagocytosis. Here, Rac1 is translo-
cated to the phagosomes as a RhoGDI1 (or RhoGDI2)-Rac1 complex,
concomitant with ROS production [22]. Regarding dissociating me-
chanisms, Griner et al., (2013) [150] reported inactivation of RhoGDI2
via PKCα phosphorylation of Ser 31 in a region that contacts Rac1 in
response to phorbol 12-myristate 13-acetate stimulation in HEK 293 T
cells, thus promoting translocation of active Rac1 and suggesting that
PKCα may be pro-tumorigenic. It has been shown that increases in in-
tracellular Ca2+ and subsequent activation of PKCα generates serine
phosphorylation in RhoGDIα, thus inducing membrane translocation
and Tiam1-induced activation of Rac1. This leads to cytoskeletal re-
arrangement in NIH/3T3 Fibroblasts and PC3 (human prostate cancer
line) cells [151]. On the other hand, PKCα phosphorylation on
RhoGDIα at Serine 96 releases Rac1 to mediate apical amylase secre-
tion upon cholecystokinin-stimulated pancreatic acini cells [152]. The
effect of other post-translational modifications over RhoGDI such as
lysine acetylation [153] on Rac1 activity and possible interactions be-
tween RhoGDI with unprenylated Rac1 have yet to be determined. Also,
it is well-established in macrophages that Rac1-dependent ROS pro-
duction is regulated via RhoGDIα. In this line, the dissociation of the
cytoplasmic complex RhoGDIα-Rac1-GDP and subsequent membrane
localization of GTP-Rac1 is crucial to activate NOX2 [19]. In neurons, it
has been observed that RhoGDIα is necessary for the maintenance of
mature-mushroom-shaped spines in rat hippocampal neurons; however,
the precise RhoGDIα-mediated mechanisms were not investigated [48].

4.4. GAPs involved in Rac1-mediated ROS production and actin events

GAPs have also been linked to NOX-derived ROS production. In this
sense, neutrophils from mice deficient in the breakpoint cluster region
protein (BRC), a GAP acting on Rac1, showed high increased O2

- pro-
duction upon stimulation by PMA and Fmlf [154]. Of note, BCR has
been found to be involved in spine formation limitation and to interact
with PSD-95 [155,156]. Among well-studied GAPs having roles in
neuronal functions is srGAP3 that interacts with Slit/Robo and is re-
quired for Rac1-mediated neurite outgrowth, spine formation and
plasticity [157,158]. Some evidence suggests that srGAP3 might be
related to NOX activity since Ozer et al. [159] found that cDNA srGAP3
is down-regulated by 1.5 fold during NOX-derived ROS mediated oxi-
dative stress in apoptotic cell death induced by inhibitors of TYMS, a
crucial enzyme regarding cancer-related cell proliferation.

4.5. NOX-dependent regulation of protein tyrosine phosphatases, RhoGDI
and p190Rho-GAP

Protein tyrosine phosphatases (PTPs) have key roles in actin-related
events such as cell adhesion and migration and their activity may be
controlled via localized redox inactivation [160]. Redox-dependent
regulation of PTPs, particularly in low-molecular-weight protein tyr-
osine phosphatase (LMW-PTP), brings together Rac1 and Rho regula-
tion through a redox-mediated axis. In this sense, Nimmual et al. [161]
demonstrated that Rac-dependent ROS production leads to the inhibi-
tion of the LMW-PTP and a subsequent increase in tyrosine phosphor-
ylation and activation of p190Rho-GAP, thus decreasing Rho activity.
The latter event was required for cell-spreading mediated by integrins,
and formation of membrane ruffles [161]. Furthermore, PTPs with
proline-glutamine-serine-threonine-rich motifs (PTP-PEST) show loca-
lized ROS-induced inactivation via recruitment of the NADPH oxidase
(NOX) subunit p47phox to focal complexes during endothelial cell
migration [162]. Oxidative inactivation of PTP-PEST has also been
linked to NOX1-derived ROS in the context of mucosal wound repair
[163]. More recently, Lee et al. [164] demonstrated that integrin-bound
PTP-PEST dephosphorylates RhoGDI1 promoting its release from the
membrane and the subsequent formation of RhoGDI1-Rac1 complexes
in the cytoplasm. Conversely, the same study showed that translocation
of Src-phosphorylated RhoGDI1 to the leading edge promotes local
activation of Rac1 [164]. Taken together, NOX-mediated ROS might
promote RhoGDI1-Rac1 dissociation via PTP-PEST inactivation, thus
augmenting Rac1 activity locally.

Table 1
Featured Rac-mediated actin and ROS-related events.

GEFs Rac1-mediated actin events Rac1-mediated ROS events

βPIX Focal adhesion establishment [79], dendritic spine, synapse formation
[69] and neurite outgrowth [72,73].

NOX-mediated ROS production enhanced by PtdIns(3,4,5)P3 and PtdIns(3,4)P2 [83].
ROS production induced via SCRIB/p22phox/βPIX/Rac1 or binding to NOXO1
instead of p22phox [85].

Dock180 Epithelial cell migration [88,91], cell adhesion [93]. spine
morphogenesis [94] and axon guidance [96,224].

BAI1/Elmo1/Dock180–mediated Rac1 activation and subsequent Rac1-mediated
ROS production [65].

Vav Cytoskeletal rearrangements in the peripheral area of immunological
synapses [102]. Invasive migration, cell-cell adhesion, migration and
angiogenesis [103,108,109]. Neurite outgrowth and branching, axon
guidance, growth cone collapse, theta-induced LTP and spine
enlargement [104,106]

Direct interaction with p67phox [115]. Phosphorylation–independent Vav-mediated
NADPH oxidase activation [115]. Phosphorylation of p47phox by PAK1 via Rac1
activation mediated by Vav1 [116].

Tiam1 Cell-cell adhesion and events located at membrane ruffles [123]. Cell
migration and tumor invasion [130,131]. Formation and function of
dendritic spines [125] and roles in synaptic plasticity [126].

Interplay with Vav2 and PAR3/VE-cadherin to promote Rac1-mediated ROS
production [132].

P-Rex GPCR and PI3K-mediated signaling events [134]. Actin events at
neurite shafts, distal tips and at the growth cone [135,136].

NOX-mediated ROS production stimulated by C5a or fMLP in several phagocytic cells
[133,142]
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5. Crosstalk between actin and ROS-related events mediated by
Rac1

In the following section, evidence concerning Rac1-mediated cross-
talking phenomena is addressed, focusing on cellular functions and
dysfunctions where the dual function of Rac1 might play a key role.

5.1. Crosstalk events regulated by the HACE1/Rac1 axis

Crosstalk between events related to the actin cytoskeleton and Rac1-
mediated ROS production can be found in studies focusing on Rac1
degradation by the ubiquitin-proteasome system (UPS) [165,166]. In
this sense, by using MDCKII cells and hepatocyte growth factor treat-
ment, Castillo-Lluva et al. [167] found that HACE1 (HECT domain and
Ankyrin repeat containing E3 ubiquitin-protein ligase 1) antagonizes
migration via poly-ubiquitylation of active Rac1 and subsequent UPS
degradation. Indeed, HACE1 selectively targets membrane-associated
Rac1, thus decreasing migration. Conversely, marked accumulation of
actin and Rac1 at the leading edge, as well as increased duration of
migration are observed when the HACE1-mediated degradation of ac-
tive Rac1 is disrupted [167]. In another study, Goka and Lippman [168]
showed that HACE1 deficiency results in the accumulation of activated
Rac1 enhancing migration and invasion as well as anchorage-in-
dependent growth in the human mammary epithelial cell line MCF12A.
Furthermore, the same study reported that strong tumorigenic trans-
formation is observed when knocking-down HACE1 and overexpressing
HER2/neu, a well-established activator of several Rac1 GEFs in breast
cancer [66,169]. Therefore, Rac1 degradation via HACE1 is linked to
actin-related events, such as cell mobility. Besides actin-related events,
there is strong evidence showing that the HACE1-Rac1 axis also parti-
cipates in NOX-mediated ROS production. In this respect, Daugaard
et al. [170] showed in-vitro and in-vivo that HACE1 activity correlates
with NOX-mediated ROS levels, while the underlying mechanism is
direct targeting of active Rac1 bound to the subunit NOXA1. Thereby,
they demonstrated that the ubiquitylation and degradation of Rac1
mediated by HACE1 is directly-related to NOX-mediated ROS produc-
tion. Although NOX2 may also be involved, this aspect was not in-
vestigated further [170]. Supporting the latter, Centibas et al. [171]
discovered that Hace-/- MEF cells undergo ROS-induced cell death upon
glutamine starvation. In fact, the ROS-induced cell death of Hace-/-

MEFs was mediated by Rac1 and NOX activation [171]. In summary,
these studies clearly show that Rac1 displays a dual function mediated
by the HACE1-Rac1 axis. On the other hand, there is some evidence
suggesting that the HACE1/Rac1 axis might be involved in neuronal
development and degeneration. In this way, Hollstein et al. [172]
identified loss of function mutations in HACE1 leading to autosomal
recessive neurodevelopmental disorders associated to intellectual dis-
ability, spasticity, and abnormal gait. Also, there is evidence of in-
creased oxidative stress in striatal regions of the brain of Hace1 KO
mice, whereas HACE1 ectopic expression correlates with neuroprotec-
tion against oxidative stress in striatal neuronal progenitor cells [173].
The same study also reports decreased HACE1 levels in the striatum of
postmortem patients with Huntington's disease. Though the authors of
the latter study highlight the role of the transcription factor Nuclear
Factor Erythroid 2-related Factor (NRF2), the role of Rac1 may be re-
levant. Another line of evidence allows relating actin cytoskeleton and
Rac1-mediated ROS through RHO inhibition-induced migration.
Rounded-amoeboid melanoma cells, which are characterized by high
RHO-ROCK-actomyosin activity, present mechanisms for rapid migra-
tion via inhibiting Rac1-mediated cell adhesion [174]. Notably, Herraiz
et al. [175] observed that increased Rac1 activity along with ROS levels
inversely correlate with RHO-ROCK actomyosin activity in melanoma
cells. Moreover, they obtained a highly invasive phenotype by applying
antioxidant treatments that increased actomyosin contractility.

5.2. Crosstalk events related to cell adhesion and polarity

In endothelial cells (ECs), mechanosensing-induced activation of
Rac1 at cell-cell junctions is essential for aligning actin stress fibers in
response to fluid shear stress [176]. The mechanosensory complex in-
volved in this process consists of the platelet endothelial cell adhesion
molecule-1 (PECAM-1), vascular endothelial cadherin (VE-cadherin),
and vascular endothelial growth factor receptor 2 (VEGFR2) [177]. An
interesting feature of this complex is that PECAM-1 transduces me-
chanical signals via Src-mediated phosphorylation of Vav2, Rac1 acti-
vation and localized NOX-activation, where the latter is mediated by a
complex composed of Tiam1, VE-cadherin, p67phox and Par3 [132].
Hence, Rac1-mediated ROS production downstream of Vav2 is linked
with cell-adhesion and polarity. A similar mechanism can be found in
neurons where the interaction of L1 adhesion molecule and b1 integrins
generates Src-dependent tyrosine phosphorylation of Vav2, and sub-
sequent activation of Rac1, Pak1, MEK, and the MAP kinases ERK
[178]. This is essential for neuronal migration, axonal growth and
guidance, as well as for process branching during development
[105,179]. It remains to be investigated whether or not this process
involves Rac1-mediated ROS production. Further evidence showing
that Rac1 is key during axonal formation comes from a feedback loop
with PI3K. In this mechanism, Rac1 is activated by the specific Rac1-
GEFs, Tiam1 and STEF/Tiam2 [180,181]. In turn, these GEFs are in-
duced by their interaction with the polarity protein Par3 associated
with Par6 and the atypical Protein Kinase C (aPKC), while this inter-
action is promoted via PI3K-induced Cdc42 activation [182,183]. As
activated Rac1 can bind PI3K [184], and PIP3 can recruit Vav2 to ac-
tivate Rac1 [185], a positive-feedback loop promoting Rac1-mediated
actin filament reorganization may be established during neuronal po-
larization [186,187]. In this context, the Rac1-PI3K feedback loop could
signal via the Sra-1/WAVE1 complex [188] and PAK-mediated phos-
phorylation of Shootin1 [189]. It has been observed in epithelial cells
that the apical polarity complex Crumbs (Crb) breaks a similar Rac1-
PI3K positive-feedback loop, thereby repressing the activation of Rac1
as well as PI3K signaling at the apical membrane, whereas the Rac1-
PI3K loop restricts Crb function [190]. Notably, Crb can also repress
NADPH oxidase-dependent superoxide production in epithelia via Crb-
dependent inhibition of Rac1 [191]. Conversely, the same study re-
ported that loss of the inhibitory function of Crb results in NOX-medi-
ated ROS overproduction. Taken together, studies on Rac1-PI3K posi-
tive-feedback in neuronal polarity and its Crb-dependent inhibition in
epithelia suggest that Rac1 can display both ROS- and actin-related
functions in tight association with polarity-related effectors. All cross-
talk events described so far in this section are summarized in Fig. 2.
Furthermore, scaffolding events conducted by the polarity protein Scrib
also suggest crosstalk between ROS- and actin-related Rac1 outcomes.
The GIT1/βPIX/Rac1 axis is involved in several polarity events due to
the interaction between βPIX and Scrib [192]. In this line, it has been
shown that Scrib is crucial to activate and localize Rac1 at the leading
edge upon directed epithelial migration in MCF10A mammary cells
[193]. Also, Nola et al. [194] reported that Rac1-mediated PAK acti-
vation at the leading edge of migrating MEF cells depends on the
Scribble/βPIX/GIT1 axis. On the other hand, Zhan et al. [195] observed
that in order to maintain mammary epithelial polarity, Scrib locally
promotes Rac1 activation at cell-cell junctions, suggesting that the
GIT1/βPIX complex and Scribble may be interacting in such an event.
Additionally, Boczonadi et al. [196] showed that Scrib assembles with
βPIX and Rac1 to regulate junctional complexes in cardiomyocytes.
Remarkably, Zheng et al. [85] recently reported a direct interaction
between Scrib and the NADPH oxidase subunit p22phox, whereby Scrib
acts as a scaffold recruiting βPix to induce Rac1-mediated ROS pro-
duction in macrophages. Interestingly, they found that Scrib also binds
to NOXO1 (subunit of NOX1), thereby showing an extended role for the
Scrib/βPix/Rac1 axis regarding NOX-mediated ROS production. In
neurons, Scrib may promote Rac1/PAK-regulated actin polymerization
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during dendritic spine formation by interacting with the neuronal nitric
oxide synthase adaptor protein (NOS1AP) and βPIX/GIT1 [197]. Also,
it has been suggested that Scrib directs cytoskeleton elongation during
neurite outgrowth mediated by nerve growth factor in PC12 cells; here,
membrane-located Scrib forms a complex with βPIX, Rac1, HRas and
ERK1/2 [198]. Interestingly, Scrib and Rac1 are crucial in the process
known as active forgetting in the mushroom body neurons of Drosophila
[199]. In this study, a direct interaction between Scrib, Rac1, PAK3 and
cofilin was found to promote active forgetting downstream of dopa-
minergic signaling. More recently, Liu et al. [200] confirmed in mice
that Rac1 activity favors active forgetting while Rac1 inactivation
promotes memory retention. These and other studies strongly suggest
that active forgetting heavily relies on Rac1-mediated actin regulation
[201,202]. A possible scaffolding role for Scrib regarding Rac1-medi-
ated ROS production in neuronal functions has yet to be investigated.

6. Crosstalk between redox and scaffolding events in Rac1-
dependent actin regulation

6.1. Key scaffolding events in Rac1-mediated actin cytoskeleton regulation

There is strong evidence showing that Rac1-mediated actin events
are tightly-regulated by scaffolding interactions. This fact contrasts
with what it is known about Rac1-mediated ROS production, which
does not appear to rely on scaffolding proteins. As scaffolding interac-
tions would be the way by which Rac1 outcomes might be selected,
such events are discussed in the following sections. Of note, and as
discussed later, redox protein modification of scaffolds indicates
crosstalk between the two Rac1-mediated outcomes. Rac1-mediated
actin regulation requires scaffolding events to take place, as shown by
the fact that interaction between Tiam1 and the Arp2/3 complex links
activation of Rac1 to actin polymerization [203], and Sra-1 and Nap1
link Rac1 to actin assembly thus driving lamellipodia formation [204].
Another well-studied scaffolding protein that spatially restricts Rac1
activity is QGAP1, that binds and crosslinks actin filaments, while ac-
tive Rac1 promotes the oligomerization of IQGAP1 [205,206]. More-
over, IQGAP1 can enhance actin polymerization by interacting with
(Arp) 2/3 [207]. Another case of fine modulation of Rac1 activity is
provided by the Tiam1 interacting proteins spinophilin and insulin re-
ceptor substrate protein 53 kDa (IRSp53) [208]. In this study, Raja-
gopal et al., [208] showed in fibroblasts that Tiam1-dependent Rac1
activation may be mediated by IRSp53 or spinophilin, depending on the
sort of upstream signaling; in fact each scaffold may lead to totally
different independent events such as IRSp53/Tiam1/Rac1-dependent
adhesion or spinophillin/Tiam1/Rac1-dependent migration. Rajagopal
et al. [208] suggested that the interaction between Tiam1 and distinct
scaffolding proteins allows the selection of specific Rac1-dependent
outcomes.

6.2. Actin cytoskeleton scaffolding involves redox regulation

It is well-documented that actin itself and some of its regulators
undergo reversible cysteine oxidation (specific modifications have been
recently reviewed by Xu et al. [209]). Several lines of evidence suggest
that actin polymerization is increased or decreased depending on the
specific cysteine residue that is oxidized, cell type and experimental
settings [209]. Also, it has been proposed that thiol oxidation, and
hence H2O2-mediated signaling, plays a pivotal role in actin events
related to cell migration [210], neuronal development [56,63,211,212]
and synaptic plasticity [213,214]. Considering that Rac1 is directly
involved in ROS production, it is interesting to note that some of the
Rac1-related effectors that modulate the actin cytoskeleton undergo
hydrogen peroxide-inducible redox modifications, namely cysteine
oxidation. Remarkable evidence of crosstalk between Rac1-mediated
ROS- and actin-related events stems from the redox control of IQGAP. It
has been reported that cysteine oxidation of IQGAP residues co-loca-
lizes with p47phox and F-actin at the leading edge during migration in
endothelial cells [215].

7. Deregulated Rac1 activation in neurodegeneration

It has been reported that fibrillar amyloid-beta peptide, which is
observed in AD, promotes increased Rac1 activity via Tiam1 activation
by a Ca2+-dependent mechanism, this phenomenon also involves en-
hanced actin polymerization [216]. Here, amyloid beta mediates Rac1
activation through phosphorylation and translocation of Tiam1; in fact,
Fibrillar A1-42 induced a significant increase (1.5-fold) in the level of
Thr phosphorylation of Tiam1. Calcium-dependent PKC activity was
responsible for Tiam1 phosphorylation. Therefore, upon amyloid beta
exposure, Rac1 is over-activated by Ca2+ signaling (conventional PKC
activity) that promotes Tiam1 activation and its translocation to the
membrane [217]. A link between actin dynamics and ROS production
upon amyloid beta exposure has been proposed by Tsoy et al. [218],
whom by using immortalized cerebral endothelial cells (bEnd3) ob-
served that Aβ42 promoted ROS production by up to 83% after 60 min
of treatment. They also demonstrated that Aβ42 favored actin poly-
merization, while pretreatment with the antioxidant N-acetylcysteine
(NAC) suppressed Aβ-induced actin polymerization and cytoskeletal
rearrangement [218]. Manterola et al. [219] also found a positive
correlation between Aβ42 exposure and Rac1 activation in SN4741
cells (a line originated from substantia nigra dopaminergic cells derived
from transgenic mouse embryos), primary embryonic cortical neurons
from rats and in neuronal organotypic cultures of the hippocampus and
the entorhinal cortex. They observed that Aβ1–42 peptide stimulates
the Rac1 pathway through Tiam-1 phosphorylation by novel PKCs.
These kinases are not calcium dependent. Similarly, in a mice model of
the Fragile X syndrome, characterized by thin, long and immature high

Fig. 2. Signaling pathways involving actin-related and NOX-re-
lated outcomes. Upstream signals mediated by GEFs converge at
Rac1, while GTP-bound Rac1 binds to effectors leading to ROS
production (p67phox and NOXA1) and actin dynamics regulation
(PAKs and WAVEs). Upstream from Rac1, negative-regulation is
exerted by the Crumbs complex (Crb), whereas downstream ne-
gative-regulation is conducted by HACE1. GPCR, G protein cou-
pled receptor. PI3K, phosphoinositide 3-kinase. PIP3, PtdIns
(3,4,5)P3. PREX1, PtdIns(3,4,5)P3)-dependent Rac exchanger 1.
Cdc42, Cell division control protein 42 homolog. GTP, Guanosine-
5'-triphosphate. GDP, Guanosine-5′-diphosphate. Par, Par3-Par6-
aPKC polarity complex. Src, non-receptor tyrosine kinase. Vav2,
isoform 2 of the GEF Vav. Tiam1, GEF T-lymphoma invasion and
metastasis 1. PECAM-1, cell adhesion molecule-1.
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density dendritic spines, Bongmba et al. [220] found that Rac1 is over-
activated in the mouse brain. It has been observed that NOX2-derived
ROS is locally produced at synapses and that NOX2 has a post-synaptic
localization [214,221,222]. Remarkably, Abdel-Rahman et al. [223]
showed that NOX2 rather than the mitochondria is the major source of
synaptic ROS in forebrain synaptosomes from mice. Therefore, it might
be possible that neurodegenerative hyper-activation of Rac1 could be
inducing deregulated NOX activation.

8. Concluding remarks

Rac1 offers a remarkable example on convergence between sig-
naling pathways leading to actin modification and ROS production.
These two seemingly independent cellular events should not be un-
derstood as separate entities since their co-occurrence and crosstalk are
present in several cellular functions. This is evidenced by the redox
susceptibility of some actin regulators and Rac1 itself, where redox-
modified fast-cycling form of Rac1 has proved to affect actin dynamics.
In the case of neuronal functions, over the past years it has become
evident that Rac1 outcomes co-occur in order to conduct processes such
as neuronal polarization. It can be considered that crosstalk between
actin- and NOX-related events is facilitated by the fact that both have a
common regulator; Rac1. Sharing such a common axis allows integra-
tion of several upstream signaling pathways. Also, since ROS-produc-
tion and redox modifications are involved, rapid, short-lived and re-
versible events can take place. Furthermore, as Rho-GTPase regulators
and scaffold proteins play key roles, fine-tuned coordination is
achieved. Future research should focus on how redox cycles, binary
switches and scaffolds work in concert to give rise to such an agile,
integrated and coordinated network. In this sense, it would be helpful
to clarify to what extent Rac1-mediated ROS affects the functions of
Rho-GTPase, actin regulators and their crosstalk, thus evaluating the
net effect of redox events. Furthermore, comparing the effect of redox-
driven modulation of Rac1 against other post-translational modifica-
tions is also needed. Novel regulatory loops might be discovered once
those phenomena were better characterized. It is worth noting that
scaffolding events are observed both in actin- and NADPH oxidase-re-
lated downstream outcomes. In addition, some cellular functions and
dysfunctions that show crosstalk between actin regulation and ROS
production are related to direct regulation of Rac1 levels, for example,
HACE1-mediated Rac1 degradation. Taken together, dual function of
Rac1 relies substantially on interacting patterns and multi-layered
regulation. Such features need to be explored to understand complex
cellular functions that require coordinated dynamic interplay between
actin cytoskeleton rearrangements and ROS production.
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