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Abstract This work presents strategies for fractional order
model reference adaptive control (FOMRAC) and fractional
order proportional–integral–derivative control (FOPID) app-
lied to an automatic voltage regulator (AVR). The paper
focuses on tuning the gains and orders of the FOPID
controller and the gains and orders adaptive laws of the
FOMRAC controller, with the goal of minimizing non-linear
and high dimensionality objective functions, using sequential
quadratic programming (SQP), particle swarm optimization
(PSO), and genetic algorithms (GA). Two models used for
AVR have been studied and reported in the literature and are
the bases of the three case studies reported in this paper. To
analyze the advantages and disadvantages of the proposed
MRAC, comparisons are made with the previous results, i.e.
with the results obtained by a PID controller and an MRAC
controller optimized by GA. We demonstrate through some
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performance criteria that fractional order controllers opti-
mized by the PSO algorithm improve the behavior of the
controlled system, specifically the robustness with respect to
model uncertainties, and improvements with respect to the
speed convergence of the signals.

Keywords Fractional order adaptive control · Model
reference adaptive control · Automatic voltage regulator ·
Particle swarm optimization · Genetic algorithms ·
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1 Introduction

Power systems not only require devices that maintain and
ensure their stability, but also require increasingly quick
response times. The most important feature of a control
scheme is that, it tunes its parameters in response to the uncer-
tainties caused by changes in the operating conditions of the
system. Model reference adaptive control (MRAC) is one of
such techniques, which has the aim of finding a suitable con-
trol signal so that the output of the controlled system follows
the output of the reference model, while at the same time, the
stability of the closed loop system is preserved. Optimiza-
tion algorithms, such as SQP, heuristic methods like GA,
and algorithms based on groups like PSO, which optimize
parameters minimizing an objective function (OF) consider-
ing several variables, are used to meet quick response times.
The application of fractional calculus, which generalizes the
classical differential calculus of integer order dx(t)

dt to the cal-

culus of fractional order dαx(t)
dtα is included in our study. This

generalization is reflected by the extent of the search range
which is used by algorithms to improve the minimization of
cost functions.
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Gaing [11], showed improvements on tuning PID con-
troller parameters by minimizing an objective function
optimized by PSO. Later, in [8], the authors used the same
simplified linear model (SLM) of the generator that was used
in [11], and introduced improvements in the optimization
process based on a modification of PSO algorithm. Tang
et al. [32], introduced chaotic characteristics (chaotic ant
swarm) in the tuning process of the PID controller param-
eters, showing significant improvements over all previous
methods, including GA. These authors considered variations
of �Vr (t) = 1 (pu) for comparing optimization strategies in
terms of theminimumof a given cost function, where�Vr (t)
denotes the variation of the reference voltage with respect to
a nominal value. In [21], the previous SLM is used, but the
authors use �Vr (t) = 0.01 (pu), minimizing a cost func-
tion using the PSO method. Later, in [7] the same features as
those in [21] are applied; however, another change to PSO
was proposed, which showed improvements in minimizing
the cost function.

Another control scheme introduced in the context of AVR
systems with SLM, is fuzzy logic [30]. And, there have
been proposals made of using the linear model (LM) of the
generator proposed by Kundur [16], which also considers
the mechanical characteristics of the synchronous machine.
These features are used in optimization problems in [37],
where the parameters of the PID controller are selected by the
PSO algorithm. The latter introduces concepts of fractional
calculus. In [1], the FOMRAC is proposed. It is considered as
an optimization problem and solved by GA, under the same
operating conditions that were reported in [37] and showed
better results, in terms of robustness and the minimization of
the cost function, than those reported in [37].

In our work, the FOMRAC technique is regarded as an
optimization problem, in which gains and orders of adap-
tive laws defined by fractional-order differential equations
are adjusted. These are based on objective functions subject
to constraints provided by the LM and the SLM of the gen-
erator. They are detailed in the following paragraphs. This
FOMRAC shows improvements in response characteristics
and in robustness with respect to model uncertainties, reduc-
ing the value of the cost function up to 64% and yielding
improvements up to 69% in terms of ts compared with those
found in the literature. Three case studies are proposed and
will be analyzed in this paper. To our knowledge, these three
cases have not been previously reported and constitute the
main aim of the paper together with the comparative anal-
ysis with numerous cases already studied in the technical
literature.

The paper is organized as follows: Sect. 2 introduces gen-
eral concepts of direct FOMRAC. It also introduces the
concepts of optimization algorithms and models used in
each case study. Section 3 establishes the conditions, the
characteristics of the controller, and the objective functions.

Section 4 presents experimental results, comparing the dif-
ferent control techniques and optimization strategies with
results previously reported in the literature. Finally, Sect. 5
presents the conclusions.

2 General concepts

The main theoretical principles used in this work are pre-
sented in this section.

2.1 Fractional calculus

Fractional calculus is a generalization of the traditional calcu-
lus and is related to differential operators of type Dα

t , where
α is a real or complex number. According to Kilbas [15], the
Riemann–Liouville (RL) fractional order integral is defined
as

RDα
0 f (t) = 1

Γ (n − α)

(
d

dτ

)n ∫ t

0

f (τ )

(t − τ)α−n+1 dτ (1)

with n = [�(α)]+1; t > α, where [�(α)] is the integer part
of �(α).

In most engineering applications, for α > 0, the Caputo
derivative definition found in (2) is used since it incorpo-
rates initial conditions for f (·) i.e., initial conditions that are
physically interpretable in the traditional way.

C Dα
0 f (t) = 1

Γ (n − α)

∫ t

0

f (n)(τ )

(t − τ)α−n+1 dτ (2)

with n − 1 < α < n and n ∈ Z
+.

Oustaloup’s method [25] allows to make approximations
of non-integer derivatives. It is oneof the available frequency-
domain methods that uses a recursive distribution of N poles
and N zeros of the form

sα ≈ k
N∏

n=1

1 + (s/ωz,n)

1 + (s/ωp,n)
(3)

with α > 0. Moreover, the frequencies of the poles and
zeros (ωz,n and ωp,n) are given by [37]. Zeros and poles are
placed inside a frequency interval [ωl;ωh], and the gain k
is adjusted so that the gain on both sides of (3) is 1 rad/s.
The number of poles and zeros N is chosen in advance,
and the desired performance of the approximation strongly
depends on: low values cause simpler approximations, but
may cause ripples in both gain and phase behaviors. Such
ripples can be removed functionally by increasing the N ,
but the approximation will become heavier computationally.
This approximation is available in the Ninteger toolbox for
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Matlab [34], and is the one used in the work reported in this
paper.

2.2 Fractional order model reference adaptive control

Some pioneering works in the context of the FOMRAC are
due to Vinagre et al. [35] and Ladaci et al. [17,18]. For the
classic direct MRAC, the controller parameters are adjusted
using integer order differential equations (adaptive laws).
However, this paper focuses on thedirect FOMRAC, inwhich
the parameters are adjusted adaptively using fractional-order
differential equations (fractional adaptive law) keeping the
same structure of direct MRAC [23]. Thus, this section
begins by giving a brief introduction to classical MRAC.
For real-life applications, some uncertainties are the result
of the parameters being unknown. On the other hand, there
are existing systems that can be only partially modeled due
to external disturbances. In these cases, conventional con-
trol theory has not achieved satisfactory performance, while
in the direct MRAC, the parameters of the controller are
directly adjusted; that is to say, no identification of the
plant parameters is attempted [23]. Given a known reference
model Gm(s), a reference signal r(t) is applied to obtain
the measurable output ym(t). This output is compared with
the AVR output voltage yp(t) to compute the control error
defined as e1(t) = yp(t) − ym(t). In this paper, we will use
yp(t) = �VT (t), ym(t) = �VM (t) and u(t) = �u(t) for
Table 1 (see Fig. 1). Since the relative degree of the system
to be analyzed here is n∗ ≥ 2, the control scheme is shown
in Fig. 1.

The details of the scheme of Fig. 1 can be found in [1].
However, when n∗ ≥ 2, there are some concepts that should
be noted; an augmented error ε(t) is synthesized that permits
stable adaptive laws to be implemented, and the auxiliary
error signal e2(t) is generated. The most important details of
this controller are shown in Table 1, in which n is the system
order, so, n− p = n∗ and q = n∗, with q themodel reference
order. The size of the matrices (Λ, l), and the number of
parameters to optimize will be defined in Sect. 3.

2.3 Optimization algorithms

Basic concepts associated with optimization algorithms used
in this work are presented in this section.

2.3.1 Particle swarm optimization

PSO is a heuristic global optimization technique which
belongs to the category of evolutionary search algorithms
[14]. It solves optimization problems based on the behaviour
of existing virtual social groups in nature (flocks of birds,
swarms, etc.) as reported by Ordóñez [24]. Furthermore, the
method has shown improvements in minimizing cost func-

Table 1 General fractional order MRAC

Plant Gp = bps p+bp−1s p−1+···+b1s+b0
ansn+an−1sn−1+···+a1s+a0

Reference model Gm = km
mq sq+mq−1sq−1+···+m1s+m0

Control law u(t) = θ(t)Tω(t)

θ(t)T = [k(t) θT1 (t) θ0(t) θT2 (t)]
ω(t) = [r(t) ωT

1 (t) yp(t) ωT
2 (t)]

Auxiliary signals ω̇1(t) = Λω1(t) + lu(t)

ω̇2(t) = Λω2(t) + lyp(t))

λ =

⎡
⎢⎢⎢⎢⎣

Λ1 0 0 0

0
. . . 0 0

0 0
. . . 0

0 0 0 λn−1

⎤
⎥⎥⎥⎥⎦

l = [
�1 . . . . . . �n−1

]T
Output error e1(t) = yp(t) − ym(t)

Auxiliary error e2(t) = θT (t)ω̄(t) − ū(t)

Augmented error ε(t) = e1(t) + k1(t)e2(t)

Other signals ū(t) = Gm(s)I2nu(t)

ω̄(t) = Gm(s)I2nω(t)

Adaptive laws Dαθ(t) = −γ
ε(t)ω̄(t)

1 + ω̄(t)ω̄T (t)

Dαk1(t) = −γ
ε(t)e2(t)

1 + ω̄(t)ω̄T (t)

Fig. 1 Block diagram for the implementation of the FOMRAC for the
AVR [1]

tions, particularly when they have non-linear characteristics,
multiple optimal values, and high dimensionality [37]. The
individuals defined as potential solutions are particles that
evolve iteratively according to different strategies to find the
best possible global solution from a set of equations that
update the velocity (4) and the position (5) of each particle
in the search space [11].

123



270 Electr Eng (2018) 100:267–283

v
(t+1)
id = w(t)v

(t)
id + c1r

(t)
1 (p(t)

id − x (t)
id ) + c2r

(t)
2 (p(t)

g − x (t)
id )

(4)

x (t+1)
id = x (t)

id + v
(t+1)
id (5)

wherewiter represents the inertia factor that is directly related
to exploration (wmax) and exploitation (wmin) of the search
space. This decreases as the iterations progress according to
Eq. (6) [31].

witer = wmax − wmax − wmin

itermax
.iter (6)

where i termax represents the maximum number of iterations
allowed by the search algorithm. c1 and c2 correspond to the
cognitive and social constants for (4). These constants affect
the rate of convergence of each particle. The variables r1, r2
with uniformdistribution contribute to the stochastic environ-
ment, i.e. r1, r2 ∼ U [0, 1]. At the same time, these variables
prevent particles from stagnating in a local optimum. For
further details of the evolution of the PSO algorithm, see
reference [37].

2.3.2 Genetic algorithms

GA is a method used to solve constrained or unconstrained
optimization problems. These are based on natural selec-
tion processes which, in turn, are the basis of the biological
evolution. The GAmodifies a population of possible individ-
ual solutions iteratively. At each step, the genetic algorithm
selects individuals at random from the current population.
This population evolves over generations to produce better
solutions to the problem. These algorithms can be applied
to solve a variety of optimization problems that are not
well suited for standard optimization algorithms, including
problems in which the objective function is discontinuous,
non-differentiable, stochastic, or highly non-linear. GA uses
three main types of rules at each step to create the next gen-
eration of the population.

• Selection rules Select the individuals, called parents, that
contribute to the population at the next generation.

• Crossover rules Combine two parents to form children
for the next generation.

• Mutation rules Apply random changes to individual par-
ents to form children.

For more details about the specific steps taken by the algo-
rithm, see reference [20].

2.3.3 Sequential quadratic programming

Recently, considerable progress in the development of
general-purpose optimization techniques for SQP has been

reported in the literature [4,10]. Thesemethods consider non-
linear optimization, which is efficient and can be applied to
large problems including linear and non-linear constraints.
These methods require very few evaluations of the objective
function and converge to a solution depending on the initial
conditions of the problem. In general, the problem of opti-
mizing a non-linear function subject to constraints can be
written as:

minimize
x∈Rn

OF(x)

subject to bl ≤
{
Ax
c(x)

}
≤ bu

(7)

where c is a vector defining the non-linear constraints, A is a
constant that defines the parameters of the linear constraints,
and bl and bu are vectors defining the upper and lower bounds
of each constraint, respectively. OF(x) is a generic objec-
tive function (OF) of certain vector variable x . In this study,
two OFs are used and they are defined in Eqs. (12) and (13)
denoted as OF1 and OF2, respectively.The basic idea of SQP
is to solve the objective function from a given approximate
solution xk through the formulation of a quadratic program-
ming sub-problem. Then, it uses this sub-problem to build
the best approximation of xk+1. This process is iterated so
that the expected solution converges to an optimal solution
x∗ [5].

According to Boggs [5], the correct choice of the sub-
problem reduces SQP to Newton’s method, with fast con-
vergence. However, the presence of constraints causes both
analyses to be significantly different. Two additional proper-
ties of this method are worth mentioning:

• SQP is not a feasible point method. The initial condition
or some subsequent point generated by the algorithmwill
not necessarily be within the feasible solution space. A
feasible point is one that satisfies all the constraints asso-
ciated with the objective functions.

• The success of the SQPmethod depends on the existence
of a fast and accurate algorithm for solving quadratic
programs.

According to [19], Matlab uses the “fmincon” function
which is configured to use this method.

2.4 Automatic voltage regulators

Generators often work at constant voltage through an AVR
system which controls the terminal voltage through the exci-
tation system. It makes the terminal voltage equal to the
reference voltage [6]. Among the many events that cause
voltage drop, reactive power transmitted through a line has
a great impact on the voltage profile. It can also cause large
voltage drops, and, therefore, should be avoided. Currently,
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there are alternatives to maintaining the generated voltage
within a specified range [2]. However, our work focuses on
the design of an AVR system, which is the most effective
way to control the voltage in most power systems. The AVR
system is composed of subsystems, which are the amplifier,
exciter, generator, and sensor.

2.4.1 Generator models

Synchronous machines are the main source of power genera-
tion systems, and their stability depends mostly on maintain-
ing synchronous operation [36]. Therefore, the understand-
ing of the characteristics and the modeling of the dynamic
behavior is of critical importance for the study of the stabil-
ity of electric power systems. Thus, this paper presents two
common dynamic models for the generator.
Model1 Figure 2 shows the block diagram of an LM
associated with the generator model that considers whole
mechanical and electrical phenomenology. This model con-
siders the amplifier, exciter and sensor block diagrams (same
as in Model2), but the transfer function of the generator from
�VE to�VT considers the electrical and mechanical param-
eters and it is of third order (whereas in Model2 is of first
order only). K1, K2, . . . , K6 are electrical and mechanical
machine parameters describing the generator [16]

This representation is far more general than the Model2
described below and it was taken from [16].
Model2 In this case, the transfer function considers a simpli-
fied relationship between thefield voltage�VE andgenerator
terminal voltage �VT . This relationship can be expressed in
terms of the gain KG and a time constant τG , and is given by
Gaing et al.[11], Mukherjee et al. [22] and Tang et al.[32].
Its transfer function is given by

Gg(s) = KG

1 + τGs
= �VT

�VE
, (8)

while the block diagram for analyzing this case is presented
in Fig. 3, whose values were taken from [7].

2.4.2 Amplifier model

The amplifier model [11] is presented by the gain KA and a
time constant τA, whose transfer function is

Ga(s) = KA

1 + τAs
= �VA

�u
. (9)

2.4.3 Exciter model

Themain functionof the excitation system is to supply energy
in the form of direct voltage and current to the generator field,
creating a magnetic field. Its transfer function is given by

Ge(s) = KE

1 + τEs
= �VE

�VA
, (10)

while the gain KE and time constant τE will be defined in
Sect. 3.2

2.4.4 Measurement model

The voltage measurement block, including a rectifier and
filter, is often modeled with a single time constant

Gs(s) = KS

1 + τSs
= �VS

�VT
, (11)

while the gain KS and time constant τA will be defined in
Sect. 3.2

Fig. 2 Block diagram of the
first generator model
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Fig. 3 Block diagram of the
second generator model

3 AVR design using MRAC and optimization
algorithms

This section introduces the values for the AVR parameters,
and presents the design procedure of the FOMRAC and opti-
mization algorithms.

3.1 Performance criteria

There are several performance criteria for designing con-
trollers. This paper, however, includes only two objective
functions, which have been used by other authors.
OF1 To achieve system performance according to control
specifications, the first performance criterion used in the opti-
mization process is defined according to [1,37] as

OF1 = w1Os + w2ts + w3Ess

+w4

∫ t f

0
|ec(t)|dt + w5

∫ t

0
u2(t)dt (12)

When a FOMRAC strategy is used, Eq. (12) depends on
vector [αT γ T ] ∈ �22, a vector representing the derivative
orders (vector α ∈ �11) and the adaptive gains (vector γ ∈
�11) for the adaptive laws of the controller parameters. (See
last rowofTable 1). Thus, the optimization procedure for (12)
is performed in a 22-dimensional space. To reduce the search
space, each component of vectors α and γ is constrained to
0 < αi ≤ 2, 0 < γ j ≤ 100, and the final time is t = 100. If
the IOMRAC strategy is employed, functionOF1 depends on
11 parameters only since the derivative order of the adaptive
laws is fixed to 1 and only the adaptive gain can be varied.

This performance criterion includes the overshoot Os ,
settling time ts , steady-state error Ess , integral of absolute
error IAE with ec(t) = r(t) − �VT (t) as the control error,
and r(t) = �Vr (t). The control signal generated by the
FOMRAC is �u(t). Several trials were performed for the
optimization process, using values for the weighting factors
close to the values used in Aguila-Camacho et al. [1]. The
smallest value of OF1 was obtained for w1 = w2 = w4 =
1, w3 = 1000 and w5 = 7.
OF2: Chatterjee et al. [7] defined the objective function as
Equation (13) [21,22] which corresponds to minimum over-
shootOs ,minimumsettling time ts , andmax−dv (Maximum
point of the voltage signal derivative). The values for the
weighting factors are w1 = 10000, w2 = 1 and w3 = 0.001
from [7].

OF2 = (w1Os)
2 + w2t

2
s + w3

(max − dv)2
(13)

Equation (13) contains to [αT γ T ] ∈ �10 subject to 0 <

α ≤ 2 and 0 < γ ≤ 9 × 108.
According to Panda et al. [28], it should be noted that

additional performance criteria are proposed for determining
the efficiencyof each control technique.These are the integral
of the absolute error (IAE), the integral of the time-weighted
absolute error (ITAE), the integral of the squared error (ISE),
and the integral of the time-weighted squared error (ITSE).

3.2 Design of the MRAC

Two case studies, depending on the model of the generator
used, were analyzed as described below.

3.2.1 Case 1

As mentioned in Sect. 2.4, the first model used in this case
study corresponds to Model1 shown in Fig. 2 in which the
parameters are KA = 10, τA = 0.1 (s), KE = 1, τE =
0.5 (s), K1 = 1.591, K2 = 1.5, K3 = 0.333, K4 = 1.8,
K5 = −0.12, K6 = 0.3, τ3 = 1.91 (s), H = 3, KD =
0, ω0 = 377 (rad/s), KS = 1, and τS = 0.06 (s). These
parameters were taken from [1,16].

For fractional adaptive controller design purposes, the
plant to be controlled has a sixth-order transfer function.
However, since the dynamic of the sensor is very fast, its
influence in the transfer function can be ignored. The plant
transfer function Gp(s) is then considered as one of the fifth
order and with relative degree n∗ = 3. According to Naren-
dra et al. [23], the reference model Gm1(s) has to be chosen
with a relative degree greater or equal to the plant relative
degree, as is shown in (14) and as used in Aguila-Camacho
et al. [1].

Parameters of the auxiliary signal and the referencemodel
(14) for this Case 1 are p = 2, b2 = 5.994, b1 = 0, b0 =
825.2, a5 = 0.573, a4 = 7.176, a3 = 72.36, a2 = 706.6,
a1 = 1302, a0 = 260.8, Diag(Λ) = [−1 − 2 − 3 − 4], and
l = [−1 1 3 4]T . This first application included the optimiza-
tion of 11 parameters for the case of the IOMRAC (Integer
Order MRAC) controller and 22 parameters for the FOM-
RAC controller.

Gm1 = 1.2

s3 + 5.2s2 + 7s + 1.2
(14)
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It is interesting to note here that an FO model reference
could also be chosen in the scheme, as long as some freedom
on this choice is allowed in the controller design, and more
importantly, the stability of the resulting overall adaptive sys-
tem is preserved. This topic is currently being investigated
[12].

To compare different control techniques and optimization
strategies, MRAC controller parameters are adjusted, con-
sidering a unit step �Vr (t) = 1 (pu) as input.

3.2.2 Case 2

The model used in this case is shown in Fig. 3. According to
Chatterjee et al. [7], the values of the constants are: KA = 10,
KE = 1, KG = 0.7, KS = 1, τA = 0.1, τE = 0.4, τG = 1
and τS = 0.01. The open loop transfer function of the AVR
system is a 4th order model, i.e., that the IOMRAC controller
has nine parameters to adjust. As in Case 1, if the dynamic
of the sensor can be ignored, then the system is a third-order
model. However, the dynamic of the system can be consid-
ered as one of the 2nd order, because its step response is
similar to the third-order system. Then, the controller will
adjust just 5 parameters for the IOMRAC controller and 10
parameters for the FOMRAC controller. Beyond this, selec-
tion of the reference model is the responsibility of the control
designer, and will be chosen according to the requirements
to be met by the control scheme. In this case, given the char-
acteristics of the power generation process, a smooth step
response is desired. Also, a small overshoot and settling time,
andminimal steady-state error. To satisfy these requirements,
the reference model was selected as in (15) and the param-
eters of the auxiliary signals are Diag(Λ) = [−20], l = [1]
from Table 1.

Gm2 = 630

21s3 + 159.8s2 + 524.8s + 630
(15)

To compare with previous results, the parameters are
adjusted taking as reference voltage �Vr (t) = 0.01 (pu).
This is used in Chatterjee et al. [7].

3.3 Design of optimization algorithms

In this section, the parameters of the three optimization algo-
rithms used in each proposed study case are defined.

3.3.1 Case 1

Limited by practical requirements, the lower bounds of the
controller parameters (α and γ ) are LBγ = 0.1 and LBα =
0.01, respectively. The upper bounds are UBγ = 100 and
UBα = 2, respectively, which belong to the gains and orders
of adaptive laws. For the FOMRAC controller, ωl and ωh in

(3) are set to 0.001 and 1000(rad/s), respectively, and the
order of approximation in (3) is set to N = 10. For the PSO
algorithm, the parameters used by [7] are defined as follows:

• The initial population cannot be chosen as in the litera-
ture, because this work is optimizing triple the number of
parameters, and since the number of initial individuals is
specific to each problem, 150 particles are defined.

• Inertia weight factor is set as (6), where wmax = 1.9 and
wmin = 0.4.

• Acceleration constants c1 = c2 = 2.
• Maximum iteration is set to itermax = 1000.
• Time for the optimization is t = 100 (s).

The default parameters of the function ga of MatLab, and
t = 100 (s) of (12) are used for the GA algorithm. For the
SQPmethod, the default parameters of the function f mincon
of MatLab are considered [19] and the initial conditions of
the parameters are uniformly distributed in the search space.

3.3.2 Case 2

In practical requirements, the lower bounds of the controller
parameters are LBγ = 0.1 y LBα = 0.01, also, and the
upper bounds UBγ = 9 × 108 and UBα = 2 which belong
to the gains and orders of adaptive laws. For the FOMRAC
controller, ωl and ωh in (3) are set to 0.001 and 1000 (rad/s),
respectively, and the order of approximation in (3) is set to
N = 10. For the PSO algorithm, the parameters used by [7]
are defined as follows:

• The initial population cannot be chosen as in the techni-
cal literature, because this work is optimizing triple the
number of parameters, and since the number of initial
individuals is specific to each problem, 150 particles are
defined.

• Inertia weight factor is set as (6) where wmax = 1.9 and
wmin = 0.4.

• Acceleration constants c1 = 2, c2 = 2.
• Maximum iteration is set to i termax = 1000.
• Time for the optimization is t = 10 (s).

With the GA method, the default parameters of the func-
tion ga of MatLab, and t = 10 (s) in (13) are considered.
For the SQP method, the default parameters of the function
f mincon of MatLab are used [19], and the initial conditions
for the parameters are uniformly distributed in the search
space.

As shown above, the values for the optimization parame-
ters for each case study are not equal. This is because of the
different time response of each generator model used.
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4 Simulation results

This section presents the results obtained for the AVR con-
trolled by the FOMRACdesigned in Sect. 3. These results are
compared with previous investigations. The fractional adap-
tive laws were implemented using the Ninteger Toolbox for
Matlab Version 8.1.0.604(R2013a) [33].

4.1 Case study 1

The results obtained at this stage with OF1 and the Model1
in Fig. 2 will be compared to Aguila-Camacho et al. [1] and
Zamani et al. [37].

4.1.1 Behavior of the MRAC

Several trials were performed for the optimization process to
find the best set of controller parameters based onminimizing
OF1. The SQP and PSO algorithms obtained the best results.
These are presented in Table 2, which will be compared with
the results obtained by GA [1].

Figure 4 shows the step response of the controlled system,
i.e., the voltage measured at the generator terminals. In this
figure, two types of control are compared, which were taken
from the literature. These are IOPIDGA and IOMRACGA ver-
sus IOMRACPSO,SQP, proposed in this case study. Also, the
IOMRAC controllers have Os = 0, while the IOMRACPSO
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Fig. 4 Step responses of the AVR controlled by three IOMRACs, and
IOPID

controller makes the system have a shorter settling time, ts ,
than the IOMRACSQP and IOMRACGA. The characteristics
of the responses can be seen in Table 3.

Figure 5 corresponds to the evolution of field voltage of the
synchronous machine. This exciter control action is respon-
sible for maintaining the voltage at the generator terminals
during a predefined operation. MRACPSO has the lowest rise
time tr in relation to those presented earlier. The exciter con-
trol effort is the associated cost and is shown in Fig. 5.

Table 3 shows the details of the performance criteria
associated with each method of optimization. Performance
criteria (IAE, ITAE, ISE, ITSE) analyze behaviour of the
error within time intervals [0 100]s.

In the case of fractional control (see Figs. 6 and 7),
FOMRACPSO shows significant improvements in terms of

Table 2 Gains and orders of adaptive laws, obtained by optimization algorithms Case Study 1

Differential orders α

1 2 3 4 5 6 7 8 9 10 11

IOMRAC

GA 1 1 1 1 1 1 1 1 1 1 1

SQP 1 1 1 1 1 1 1 1 1 1 1

PSO 1 1 1 1 1 1 1 1 1 1 1

FOMRAC

GA 0.1508 0.4152 0.6000 0.1844 0.7627 0.2944 0.8110 0.9998 0.7024 0.1446 0.9885

SQP 0.9304 0.0021 0.7522 0.9967 0.9973 0.0003 0.0051 0.0006 0.0001 0.0007 0.7470

PSO 0.5641 0.0627 0.2419 0.0970 0.4194 0.6026 0.9979 0.8240 0.2006 0.0640 0.9999

Adaptive gains γ OF1

1 2 3 4 5 6 7 8 9 10 11

IOMRAC

GA 1.814 10.179 11.449 9.969 4.522 3.844 1.254 5.130 0.391 1.823 20.399 127.35

SQP 4.671 6.147 3.455 7.709 7.417 4.857 5.816 2.784 4.872 4.784 37.426 127.12

PSO 3.936 13.920 31.494 33.367 50.000 24.575 33.367 32.226 9.398 16.733 7.564 123.83

FOMRAC

GA 3.435 1.810 0.442 1.912 1.824 0.782 0.058 2.367 0.176 0.798 2.906 144.73

SQP 0.641 0.701 0.200 0.962 0.150 4.367 0.103 4.619 1.287 1.198 0.104 119.14

PSO 0.497 4.975 7.113 7.833 1.949 5.820 8.000 7.351 7.105 7.983 7.999 112.30
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Table 3 Characteristics
performance of step responses
for Case Study 1

Os (%) Tr (s) Ts (s) Ess OF1 IAE ITAE ISE ITSE J

IOMRAC

GA 0 9.16 23.63 0.02 128.02 7.08 50.04 5.04 24.53 86.69

SQP 0 5.77 21.12 0.02 127.12 6.00 41.26 3.83 17.46 55.99

PSO 0 2.03 19.60 0.02 123.83 6.39 43.16 4.53 21.15 48.51

IOPID

PSO 3.24 17.36 45.43 0.02 128.30 12.90 120.97 8.65 49.08 191.60

FOMRAC

GA 0 13.84 34.55 0.02 144.77 8.70 80.90 5.03 17.33 111.96

SQP 0 4.48 16.51 0.02 119.14 8.42 53.00 6.82 25.00 72.69

PSO 0 4.87 10.65 0.02 112.30 7.82 34.39 6.64 23.57 72.42

FOPID

PSO 0 26.70 53.57 0.02 143.11 11.87 172.58 5.38 31.53 222.07

OF1 and ts in relation to the integer order control or IOM-
RAC, which was shown above. At the same time, it is better
than IOPID and FOPID presented by Aguila-Camacho et al.
[1] and Zamani et al. [37], respectively. These are shown in
Fig. 6 and their performance in Table 3.

Table 2 shows the values of the gains and the orders of
adaptive laws for the MRAC controller. The lesser value,
OF1 = 112.3, is obtained using the PSO algorithm for
the FOMRAC controller rather than IOMRAC, IOPID, and
FOPID controllers. As can be seen from Table 3, the settling
time ts is shorter for the FOMRACPSO, since it improves
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Fig. 5 Exciter control signals of the AVR controlled by the three IOM-
RAC’s, and IOPID
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Fig. 6 Step responses of the AVR controlled by three FOMRACs, and
FOPID

by 14.2 and 69.2% compared with the IOMRACGA and
the FOMRACGA controllers, respectively, reported in [1].
In terms of the sum of the performance indices, the J of
FOMRACPSO is 34%better than J of IOMRACGA.Although
a more demanding control signal is required as compared
with the cases of FOPID and FOMRACGA, it has the same
control effort as the IOMRACPSO. That is to say, the FOM-
RAC delivers a good balance between the transient response
and the control signal behavior.

4.1.2 Robustness of the FOMRAC

The generator parametersmay vary due to thewear ofmateri-
als and changes in load. Therefore, the same robustness tests
that were done in [1] will be performed here. Initially, the
system is working in normal operation with the parameters
set forth above; at t = 100 (s), parameter K1 = 1.59 changes
to K1 = 1 due to changes in load conditions (Fig. 8).

According to [1], the result obtained by controller
FOMRACGA is better than FOPID in [37] regarding robust-
ness tests. Figure 8 shows the best results obtained in this
Case Study 1, which correspond to FOMRACPSO. These
will be compared with the results obtained by MRACGA [1],
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Fig. 8 Step responses of the AVR controlled of integer and fractional
controllers, under a parameter variation in the generator at t = 100 (s)
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Fig. 9 Field voltage of the AVR controlled by integer and fractional
controllers, under a parameter variation in the generator at t = 100 (s)

and PID [37] of integer and fractional orders, and with the
IOMRACPSO controller of thiswork.Although the amplitude
of the signal at the generator terminal voltage is the same in
all four case MRAC controllers, the system controlled by
FOMRACPSO has less settling time than ts of the system
controlled by the FOMRACGA controller. These are 15.6 and
26.8(s), respectively. Simply stated, the FOMRACPSO con-
troller stabilizes the system 41% faster than the FOMRACGA

controller. Furthermore, the amplified control action or the
exciter system voltage is very similar to that of MRACGA

shown in Fig. 9.
In the second robustness test, another uncertainty in the

exciter model was assumed, where the transfer function in
(10) varies toGE1 = 1

0.5s+0.5 at t = 100 (s). For comparison,
this test was taken from [1]. Fig. 10 shows the step response
of the controlled system under variations occurring in the
load and the excitation system.

It can be seen in Fig. 10 that the FOMRACPSO con-
troller improved 57% compared with the ts obtained with the
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Fig. 10 Step responses of the AVR controlled of integer and fractional
controllers, under variations in the parameters of the generator and the
exciter transfer function at t = 100 (s)
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Fig. 11 Exciter control signals of the AVR controlled of integer and
fractional controllers, under variations in the parameters of the generator
and the exciter transfer function at t = 100 (s)

FOMRACGA controller.As far as control action is concerned,
the exciter control action of the controller FOMRACPSO does
not have the associated cost shown in Fig. 11.

4.2 Case study 2

The results shown in this case study are obtained using the
objective function OF2 written as in (13), associated with
Model2. The simulation results will be compared with [7]
and Mukherjee et al. [22] in which only an integer order PID
controller is implemented for the AVR System. The gains
for this control strategy were tuned by the PSO algorithm
based on the objective function OF2. The results obtained
and reported in this paper show improvement over previous
investigations, and will be developed in this section.

Referring to the special case of the AVR system analyzed
by Chatterjee et al. [7], the parameters obtained by the opti-
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Fig. 12 Block diagrams of
continuous-time ideal PID
controller

Fig. 13 Block diagrams of
continuous-time filtered PID
controller

mization algorithm are Kp = 0.6658, Ki = 0.4821 and
Kd = 0.1963. The closed-loop transfer function of the sys-
tem controlled by PID is shown in that paper with the block
diagram of Fig. 12. Unfortunately, we are unable to repro-
duce the figures shown by Chatterjee et al. [7]. It is due to
the derivative action in [7] is filtered (see Eq. (16)), where
N = 100 is the principal parameter for the filter. Therefore,
the authors in [7] have not used an ideal PID controller like
they highlight in their paper, but, a filtered PID controller
shown in Fig. 13.

C(s) = Kp + Ki

s
+ Kds

N

s + N
(16)

The ideal PID controller in the Laplace domain is C(s) =
Kp + Ki

s + Kds, which is an improper transfer function not
supported by Simulink software because of the causality rule.
Then MatLab adds a filter coefficient N to transfer function
C(s) in a continuous-time parallel PID controller as written
in (16),

Figure 14a shows the responses of the control features of
the PIDFILTERED when�Vr (t) = 0.01 are ts = 0.7 (s), Os =
0.3% andmax−dv = 0.02. Furthermore, ts = 3.9 (s), Os =
11.4% and max − dv = 0.02 are the corresponding features
of the PIDIDEAL. This aspect is important to emphasize since

comparisons are often made using the PIDIDEAL (Pan et al.
[26,27], Sahu et al. [29], Gozde et al. [13], dos Santos Coelho
et al. [9] and the latest in Anwar et al. [3]).

Comparisons in this paper will be made with the results
in [7], where the system is controlled by a filtered PID con-
troller, as shown in Fig. 13 (indicated by red dash lines).

4.2.1 Behavior of the MRAC

In the SLM in (8), the damping phenomena are neglected.
According to Kundur et al. [16], this is a small-signal model.
Table 4 shows the gains and orders of the adaptive laws of
the MRAC controllers obtained by the proposed optimiza-
tion algorithms. Figure 15 shows the terminal voltage of the
generator when the system is controlled by the IOMRAC
controllers and an IOPID controller (Table 5).

The ts of the best result obtained in this case study
for the integer-order controllers corresponds to those of
IOMRACPSO, which does not improve the results obtained
by the researchers in [7] and shown in Fig. 15. However,
comparisons can be made between the results obtained
by optimization algorithms in terms of the objective func-
tion OF2. The IOMRAC controller optimized by the PSO
improves 55.1% over that obtained by the SQP algorithm
and 96.4% to that of the GA algorithm.
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Fig. 14 a Step responses of the AVR controlled by the Ideal PID con-
troller and the Filtered PID controller. b Control signals of the AVR
controlled by the Ideal PID controller and the Filtered PID controller

The generator terminal voltage is controlled through the
voltage on the field of the rotor (�VE (t) shown in Fig. 16).
The best result found in previous investigations corresponds
to IOPIDPSO, where the cost associated is its exciter con-
trol signal, approximately 40% higher than IOMRACPSO.
Practice shows that the fractional-order controller shouldpro-
vide better results considering the minimum performance
criterion OF2. This is due to the expansions of the search
space, i.e., the order of α = 1 changes to α ∈ [0, 2].
Figure 17 presents the transient response of incremental
change in terminal voltage for 1% step in reference voltage
or �Vr = 0.01 (pu).
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Fig. 15 Transient response of terminal voltage for a 0.01 (pu) step
change in reference voltage, using integer-order controllers

Only the integer-order PID controller designed for AVR
appears in previous investigations. To emphasize the advan-
tages of fractional-order controllers, a FOPID controller was
also designed using the same method depicted in Fig. 14a.
The same evaluation function as in [32,38] was used, in
which the parameters obtained by the PSO algorithm are
the gains Kp = 1.5338 Ki = 0.6523, Kd = 0.9722,
α = 0.9722 is the fractional-order integral action, and
β = 1.2090, is the fractional-order derivative action.

Figures 17 and 18 show three FOMRAC controllers opti-
mized by SQP, GA and PSO, and a FOPIDPSO controller.
Although the FOPIDPSO performance is better than FOM-
RAC in terms of ts , it has a high cost for the voltage in the
excitation system as shown in Fig. 18. Furthermore, the per-
formance of FOPIDPSO proposed here is 85% lower than the
IOPIDPSO in terms of OF2. The MRAC has higher robust
stability than the IOPID, as is observed in the following sim-
ulations.

4.2.2 Robustness test

Robustness tests are performed to analyze the controlled
system behavior under parametric variations. The PSO opti-
mization algorithm associated with the FOPID controller
obtained the best results for the evaluation function OF2. The

Table 4 Gains and orders of adaptive laws, obtained by optimization algorithms Case Study 2

ALPHA GAMMA OF2

1 2 3 4 5 1 2 3 4 5

IOMRAC

GA 1 1 1 1 1 150,075,519.96 471,452,555.67 193,523,152.02 634,051,780.56 882047330.78 2.25E+09

SQP 1 1 1 1 1 136,455,975.70 639,308,187.82 690,803,328.56 872,560,567.79 876822473.11 1.82E+08

PSO 1 1 1 1 1 125,930,508.02 373,843,038.68 462,069,378.71 739,689,316.27 899918348.78 8.18E+07

FOMRAC

GA 0.87 1.22 0.04 0.02 1.11 353,004,378.43 581,681,745.29 492,494,022.36 825,474,306.66 701,250,529.76 2.37E+08

SQP 0.36 0.42 0.31 0.42 0.80 186,968,063.72 271,121,697.62 423,831,013.55 207,439,344.25 759,877,913.31 1.16E+09

PSO 1.10 0.37 0.18 0.96 1.38 8,333,153.52 752,265,696.35 527,845,557.08 619,790,700.47 616,252,640.16 22.27
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Table 5 Performance criteria Case Study 2

FOMRAC FOPID IOMRAC IOPID

SQP GA PSO PSO SQP GA PSO VURPSO

tr (s) 0.89 0.93 0.84 0.19 0.66 1.68 0.62 0.43

ts (s) 3.54 1.38 3.26 0.58 1.83 3.84 2.01 0.68

Os (%) 3.41 1.54 0 0 1.35 4.74 0.90 0.34

max − dv 0.0133 0.0166 0.0130 0.0533 0.0168 0.0194 0.0116 0.0036

J 0.0165 0.0128 0.0205 0.0063 0.0119 0.0162 0.0166 0.0250

OF2 1.16E+09 2.37E+08 22.27 0.68 1.82E+08 2.25E+09 8.18E+07 1.18E+07
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Fig. 16 Exciter control signals of the AVR controlled by the
IOMRACSQP, IOMRACGA, IOMRACPSO and PID controllers
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Fig. 17 Transient response of incremental change in terminal voltage
for a 0.01 (pu) step change in reference voltage, using fractional-order
controllers

robustness tests will show the real benefits of the controllers
IOMRACPSO and FOMRACPSO.

Tuned parameters for the PID controller are constant over
time, but the parameters obtained by the MRAC vary with
the tracking error. This is the main feature that stands out for
the controllers presented in this paper.

The first robustness test conducted in this Case Study 2
corresponds to variations in the parameters of the generator.
At t = 10 (s), KG = 0.7 and τG = 1 change to KG = 0.87
and τG = 2.5, respectively. Later, at t = 30 (s), the parame-
ters retake the parameters of the initial operating conditions.
These are depicted in Fig. 19 to examine the robustness of
the fractional controllers numerically. It can be seen that the
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Fig. 18 Exciter control signals of the AVR controlled by the
FOMRACSQP, FOMRACGA, FOMRACPSO and FOPID controllers
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Fig. 19 Step responses of the AVR controlled by the MRACPSO and
PIDPSO of integer and fractional orders, under variations in the param-
eters of the generator at different times

ts of the FOPIDPSO controller is 11.1% less rather than the ts
of the PIDPSO controller. Furthermore, the evaluation func-
tion OF2 of the FOMRACPSO controller is 4.2% less than
the OF2 of the PIDPSO (Chatterjee et al. [7]).

Based on the additional performance index (J ), it is shown
that the best results in terms of error dynamics are those
with the FOPIDPSO controller. It improves performance by
28% compared to the IOPIDPSO controller reported in [7].
We can see that the adaptive strategies controls depicted in
Fig. 20 are tripled compared with the exciter action control
�VE (t). However, this value is within the operating range of
the excitation system.
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Fig. 20 Exciter control signals of the AVR controlled by the
MRACPSO and PIDPSO of integer and fractional orders, under varia-
tions in the parameters of the generator at different times
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Fig. 21 Step responses of the AVR controlled by the MRACPSO and
PIDPSO of integer and fractional orders, under variations in the param-
eters of the generator and the exciter transfer function

In the second robustness test, another uncertainty of the
exciter model was assumed, in which the transfer function
varies from GE (s) = 1

0.5s+1 to GE1 = 2
5s+1 at t = 10 (s).

The behavior is shown in Fig. 21.
The analyses of the different control schemes show the

advantages and disadvantages of fractional order control. The
IOPIDPSO controller fails to stabilize the system within the
defined time interval, compared to FOPIDPSO, which stabi-
lizes the system in ts = 18 (s). Then, the fractional-order
controller demonstrates its robustness under parametric vari-
ations.

In this context, the MRACPSO controller proposed in this
paper satisfies the aim of the control in 43.9 (s) after the
parameter variations. However, the FOMRACPSO controller
offers an 8.2% improvement in settling time compared with
the IOMRACPSO controller. The performance criteria arith-
metic sum offers a valuable tool for evaluating controlled
systems. In this case, the J of the FOMRACPSO controller
are 37.9% less than the J of the IOMRACPSO controller.

Finally, the results obtained by the FOPIDPSO controller
aremore efficient than those of the IOPIDPSO. Themagnitude
of the exciter control action is depicted in Fig. 22. However,
the FOMRACPSO controller is still a good alternative for the
AVR systems.
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Fig. 22 Exciter control signals of the AVR controlled by the
MRACPSO and PIDPSO of integer and fractional orders, under varia-
tions in the parameters of the generator and the exciter transfer function
at different times
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Fig. 23 Terminal voltage signals of theAVRcontrolledby theMRACs,
and PIDs
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Fig. 24 Exciter control signals of the AVR controlled by the MRACs,
and PIDs

4.3 Case study 3

This case is used to confirm the results obtained in the two
previous cases. It will test the advantages of the fractional-
order controllers in relation to the integer order ones. The
results shown in this case study are performed using the
objective function OF2 written as (13), associated with
Model2. The difference with Case Study 2 is that the change
of the reference voltage is chosen as �Vr = 1 (pu) and the
gain of the generator KG = 1. As there is no standard cost
function, we use OF2 in the simulations test. To start with,
the parameters of the integer- and fractional-order PID con-
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Table 6 Gains and orders of adaptive laws, obtained by optimization algorithms Case Study 3

ALPHA GAMMA OF2
1 2 3 4 5 1 2 3 4 5

IOMRAC 1 1 1 1 1 8,228,347.7 500,000,000.0 303,459,790.9 196,829,082.1 317,820,160.0 2.66E+08

FOMRAC 0.86 1.367 1.53 1.339 1.218 300,000,000.7 54,938,608. 0 600,000,000. 3 600,000,000. 3 600,000,000.3 4.63E+07

troller are tuned, and then, the MRAC controllers are chosen
using the PSO optimization technique. Finally, performance
indices that assess the advantages and disadvantages of each
type of control are assumed.

Before proceeding with the numerical analysis of these
results, it is necessary to introduce the parameters obtained
for the PID controller. These are Kp = 0.54455, Ki =
0.36898, Kd = 0.17382 for the IOPIDPSO, and α = 0.8448,
β = 1.1123, Kp = 0.7697, Ki = 0.5171, Kd = 0.2302 for
the FOPIDPSO.

4.3.1 Behaviour of the MRAC

The parameters obtained for the integer- and fractional-order
MRACPSO controllers are shown in Table 6. Note that the
PSO optimization algorithm is used because it shows sig-
nificant advantages compared with the other optimization
techniques for the AVR systems. The results are shown in
Fig. 23.

According to Table 7, the settling time ts of the
FOMRACPSO, is 8.5% less than ts of the IOMRACPSO. On
the other hand, the ts of the FOPIDPSO is 31.1% less than ts
of the IOPIDPSO.

The integer- and fractional-order PIDPSO controllers use
triple the exciting voltage compared with the adaptive strate-
gies control MRACPSO. The exciter voltage control �VE (t)
is shown in Fig. 24. The magnitude of the exciter control
signal exceeds the operating ranges, which is due to �Vr
changes of 100% of the rated voltage of the AVR system.

4.3.2 Robustness test

At this stage, the benefits of each strategy of the fractional-
order controller are emphasized. As in the previous case

Table 7 Performance criteria, obtained by the controllers with opti-
mized parameters Case Study 3

IOMRAC FOMRAC IOPID FOPID

tr (s) 0.931 0.505 0.346 0.236

ts (s) 2.221 2.033 0.547 0.377

Os (%) 0.151 0.680 0 0

max − dv 1.103 2.093 2.975 4.314

J 2.071 1.811 0.513 0.873

OF2 2.27E+06 4.63E+07 0.30 0.14

studies, changes can occur in the system parameters for
different reasons. The parameters change from KG = 1,
τG = 1 to 0.87 and 2.5, respectively. Another uncertainty
in the exciter model was assumed in the robustness test,
where the transfer function varies from GE (s) = 1

0.4s+1 to

GE (s) = 2
6s+1 at t = 10 (s). These changes represent the

state of maximum stress of the AVR system.
As can be seen in Fig. 25, the time interval starts at

t = 10 (s) and goes to t = 100 (s), to emphasize the
advantage of the FOPIDPSO controller in comparison with
the IOPIDPSO controller. The FOPIDPSO controller does not
have an associated cost, since �VE is like the �VE of the
IOPIDPSO controller.

For the MRAC controllers, the advantages of the
FOMRACPSO controller in relation to the controller
IOMRACPSO are noted one more time. The OF2 of the
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Fig. 25 a Step responses of the AVR controlled by the integer- and
fractional-order PIDPSO controllers, under variations in the parameters
of the generator and the exciter transfer function at t = 10 (s). b Exciter
control signals of theAVRcontrolledby the integer- and fractional-order
PIDPSO controllers under variations in the parameters of the generator
and the exciter transfer function at t = 10 (s)
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Fig. 26 a Step responses of the AVR controlled by the integer and
fractional order MRACPSO controllers, under variations in the param-
eters of the generator and the exciter transfer function at t = 10 (s).
b Exciter control signals of the AVR controlled by the integer- and
fractional-order MRACPSO controllers under variations in the parame-
ters of the generator and the exciter transfer function at t = 10 (s)

FOMRACPSO is 76.6%less than theOF2 of the IOMRACPSO,
due to the value of Os , and shown in Fig. 26a. Further-
more, the voltage of the excitation system shows that despite
the improvement, there is not an associated cost, (it is even
smaller as is shown in Fig. 26b). Another important feature
is the ts , since the FOMRACPSO controller exhibits a shorter
settling time of about 42.3 (s) compared to the 45.3 (s) of
the IOMRACPSO controller.

Defining t = 100 (s) and the error like ec(t) =
r(t) − yp(t), the IOPIDPSO controller exhibits lesser J of
about 340.1 compared to 76.9 for the FOPIDPSO controller,
90.7% improvement . On the other hand, the controller
FOMRACPSO exhibits lower J of about 3670.9 compared
to 36867.7 for the IOMRACPSO controller, a 90% improve-
ment.

5 Conclusions

This paper presents the application of FOMRAC and FOPID
to an AVR system. The gains and fractional orders are
selected through optimization algorithms. Different opti-
mization procedures in regard to the minimization of two
evaluation functions associated with two models used for the
AVR system are considered.

In Case Study 1, the FOMRACPSO controller improves
the ts by 47.2% over that reported in [1]. Furthermore,
simulation studies show an improvement in characteristics
of the response of the controlled system and in robust-
ness with respect to model uncertainties when using the
FOMRACPSO controller. The FOMRACPSO proposed in this
paper improves the fitness function OF1 by 58.8% compared
with that reported for FOPIDPSO by Zamani et al. [37].

In Case Study 2, the simplification of the MRAC con-
troller is done since the simplified linear model of an AVR
system is used. The evaluation of each control structure is
performed, finding an improvement in characteristics of the
response of the controlled system and in robustness with
respect to model uncertainties when using the fractional-
order controller, since there is an improvement of 97.9%with
the FOPIDPSO compared to OF2 of the IOPIDPSO reported in
[7]. Moreover, the controller FOMMRACPSO improves per-
formance by 37.9% compared to IOMRACPSO based on the
sum performance indices (J ) used to evaluate the behavior
of the controllers.

To verify the advantages discussed, Case Study 3 is per-
formed. The advantages of the fractional-order controllers in
relation to the integer-order controllers is confirmed. This is
based on the sum performance indices, when there are uncer-
tainties in the plant.

For all optimization procedures, generalization to fracti-
onal-order controllers (FOPID and FOMRAC) present better
results in terms of settling times. Also, OF1 and OF2 are
improved at the minimum for each performance criterion
evaluated in this work. Furthermore, it can be concluded
from the above simulations that fractional order control is
robust against variations in the internal parameters of the
plant model. Many performance measures which assess the
advantages and disadvantages of fractional control,were ana-
lyzed in this work, demonstrating the evident benefits of its
application.
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