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A B S T R A C T

Centralized energy auctions for long-term contracts are commonly-used mechanisms to ensure supply adequacy,
to promote competition, and to protect retail customers from price spikes in Latin America. In Chile, the law
mandates that all distribution companies must hold long-term contracts—which are awarded on a competitive
centralized auction—to cover 100% of the projected demand from three to fifteen years into the future. These
contracts can be indexed to a series of financial parameters, including fossil fuel prices at reference locations.
Drawing from portfolio theory, we use a simple example to illustrate the difficulties of selecting, through the
current clearing mechanism that focuses on average costs and individual characteristics of the offers, a portfolio
of long-term energy contracts that could simultaneously minimize the expected future cost of energy and limit
the risk exposure of retail customers. In particular, we show that if the objective of the regulator is to limit the
risk to regulated consumers, it could be optimal to include contracts that would not be selected based on in-
dividual characteristics of the offers and a least-cost auction objective, but that could significantly reduce the
price variance of the overall portfolio due to diversification effects between indexing parameters.

1. Introduction

Chile was the first country to restructure its electricity market in the
1980's (Raineri, 2006). Today, all generation investments are made by
private firms, which can engage in long-term contracts with large
customers or distribution companies and sell their power in an audited
cost-based spot market managed by an independent system operator.
Further Latin-American countries followed a similar path such as Peru,
Brazil, and Argentina. As in many other restructured markets, both
transmission and distribution companies remain operating as regulated
monopolies; however, unlike markets in the US, Europe, New Zealand,
and Australia that present a competitive retail sector (Defeuilley, 2009),
small consumers in Chile (with less than .5 MW of power) have no retail
choice. In this context, the regulator mandates auctions where gen-
erators can make offers to obtain regulated long-term contracts to
supply future demand of small consumers (Moreno et al., 2010). Such
contracts are signed between awarded generators and distribution
companies, which then pass through the contract price to consumers. In
contrast, large consumers, such as mining companies, can negotiate
bilateral contracts or Power Purchase Agreements (PPA) directly with
generation companies.

In contrast, in electricity markets that allow for retail competition,
consumers have the freedom to engage in alternative deals with a
number of retailers. All the procured power is offered to customers as a
menu of products that can be differentiated by price and risk—and, in
theory, even by service quality levels—which are endogenously de-
termined through consumer preferences and competition among all
retailers available in a geographical region. Just as with internet cable
providers, in competitive retail markets consumers are free to choose
the retailer that offers the products and services that best suits their
needs. In the UK market, for example, large retailers have historically
offered hedged products while smaller retailers have offered more ex-
posed/volatile ones (Vaughan, 2017). In this context, risk-averse con-
sumers for whom electricity costs may represent a larger proportion of
their budgets are more likely to choose hedged products at higher
(fixed) prices than unhedged one. In contrast, there are consumers who
prefer more exposure, seeking a less costly electricity supply in the
longer term (note that hedged products include the cost of insurance)
(Smith, 1989; Strauss and Oren, 1993).1

Clearly, customers in electricity markets where there is no retail
choice—such as those in Chile—are captive. Hence, a customer that is
unsatisfied with the particular mean-risk ratio offered or any further
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aspects associated with the service provision by a franchised retailer has
very limited options (e.g., producing part of their own power con-
sumption through rooftop solar generation).

Despite the benefits of competitive retail markets, explained in de-
tail in Littlechild (2000), there is no conclusive evidence that retail
competition can actually benefit small customers in restructured elec-
tricity markets (Joskow, 2008). Furthermore, Green (2004) demon-
strates that if prices are sufficiently volatile from year to year, the
transition to retail competition in the electricity industry could lead to a
significant reduction in long-term contracting, and higher prices
overall. There is further empirical evidence that shows mixed levels of
success in implementations of competitive retail markets (Defeuilley,
2009). Finally, in small systems such as those of interest in this paper,
the exercise of market power and price manipulation are common
concerns where mandated auctions of electricity contracts can re-
present a reasonable alternative.

In the particular case of Chile, auctions for long-term contracts,
implemented for the first time in 2006, replaced the centralized retail
price calculation based on mathematical models. In fact, prior to 2006,
the regulated price was calculated by the authority every 6 months as
the average value of future marginal costs in every node obtained
through an SDDP-like model (Pereira and Pinto, 1991), plus the regu-
lated costs of distribution companies that provided both network and
retail services. In other words, generation and distribution companies
signed long-term contracts that were priced by the authority on a 6-
month basis; thus contract prices were passed through to the end con-
sumer, on top of the regulated cost of service of distribution companies.
Hence, retailed prices reflected the authority's (rather than the market)
expectation of system marginal costs in the near future (average over a
time horizon of 4 years), which also aimed at mitigating the potential
exercise of market power and therefore reduce the overall price to the
end consumer. Although this method worked reasonably well during
the 80s and 90s, it presented major problems since 2004 due to the
reduction of natural gas imports from Argentina that increased the
actual (but not necessarily the modeled or foreseen) system marginal
cost. This created a significant barrier for new (regulated) long-term
contracts and thus generation investments that, during 2005, led to
changes in the regulatory framework. It was then that the government
decided to implement a new mechanism of auctions for long-term
contracts that addressed the aforementioned problems by incorporating
real cost expectations from actual market participants in the retail
price, fostering the needed generation investments in the Chilean
market.

For more than 10 years since their implementation auctions have
been used to clear prices for regulated consumers through long-term
contracts. These have been iteratively improved by the regulatory au-
thority and, although auctions have presented several problems in the
past (Moreno et al., 2010), they have represented, overall, a reasonable
alternative to hedge retail prices, to promote generation investment and
therefore ensure adequate capacity, and to make the market more
contestable with substantial international attention from investors.
These improvements, coupled with reductions in the cost of renewable
energy technologies, have led to a significant decrease in the cleared
prices of electricity in the last few years. In fact, in the last auction
carried out in 2016, the average price was equal to 47 $/MWh with a
minimum offer price of 28 $/MWh, offered by new solar power plants.2

An additional benefit of the auction mechanism has attracted new
generation firms to join the Chilean electricity market, which has re-
duced its concentration.

Although the success of the auction mechanism has been material,
especially in the latest processes, there are various aspects that need to
be improved, including the selection of an efficient portfolio of indexed
long-term contracts while facing an uncertain future. In this vein, our

goal is to demonstrate that a centralized auction mechanism for indexed
long-term energy contracts, as implemented now in Chile, is not ne-
cessarily efficient when attempting to limit the risk exposure of retail
customers. Note that, as explained earlier, limiting risks is critical for
energy-intensive consumers, which are not necessarily large consumers,
and thereby is an expected output from competitive retail markets.
Therefore, we argue that not being able to properly balance expected
costs and price risk is a major drawback of the current auction me-
chanism that requires immediate action. The problem arises given that
the auctioneer determines the optimal portfolio based on individual
characteristics of offers (e.g., expected present cost of it) that are in-
dexed to a series of financial parameters. We quantify this effect using a
simple model that emulates the current selection methodology in the
Chilean long-term energy auctions. Our results indicate that ignoring
uncertainty and correlations among offers that have synergistic effects
in terms of diversification may significantly increase the risk exposure
of retail consumers.

To our best knowledge, this is the first study that quantifies the
limitations of selection mechanisms that solely focus on minimizing
expected costs and compares their performance to more sophisticated
approaches that explicitly consider price risk. Apart from Chile, auction
mechanisms for long-term contracts applied in Latin America and be-
yond (e.g., Peru, Brazil, Colombia, Panama, South Australia, Vietnam,
Philippines, Thailand, etc.) (Maurer and Barroso, 2011) present similar
problems and thus the concepts and models analyzed in this paper can
be of particular interest for regulators and policymakers who look for
risk-averse portfolio solutions in these markets. Table 1 illustrates that,
although the targeted markets present no retail competition, they can
differ in many other characteristics. Furthermore, regardless of the
market features and implementation details of auction mechanisms
across jurisdictions (see Table 1), this paper discusses fundamental as-
pects to support authorities (as public auctioneers) find the most con-
venient portfolio solution for a desirable level of risk exposure, rather
than selecting the one with the best “average” performance, but with
the potential to negatively affect end consumers under the realization of
adverse conditions.

We structure the rest of the paper as follows. In Section 2 we
summarize some of the existing literature on risk allocation in compe-
titive markets, contracts, and public-private partnerships. In Section 3
we provide a brief overview of the Chilean power system. In Section 4
we present different selection methods to construct a portfolio of in-
dexed contracts. In this section we also describe a simple stochastic
model of energy commodity prices that we later on use to compare the
performance of different selection methods. In Section 5 we specify the
data and framework used to test the methods, which is inspired in the
current Chilean auction. In Section 6 we compare the performance of
the selection methods both in terms of expected costs and price vola-
tility. Finally in Section 7 we conclude and provide some policy re-
commendations.

2. Risk allocation in competitive markets, contracts, and public-
private partnerships

Economic theory states that if a market is complete and agents are
risk averse, then the final allocation of risk is efficient (Arrow, 1964). A
market is complete if there exist insurance options (i.e., Arrow-Debreu
securities) for every possible state of nature, which means that all
market participants can adjust their risk exposure by trading these se-
curities. Consequently, the price of these securities and the final allo-
cation of risk is endogenous (i.e., a result of the interactions among all
market participants). However, if some securities do not exist due to
information asymmetries, transaction costs, or enforceability issues,
then a market is incomplete and the final allocation of risk is inefficient
(i.e., some agents might bear too much or too little risk compared to an
efficient allocation in a complete market) (Mas-Colell et al., 1995).

Naturally, market completeness is a rather strong assumption in the2 In this paper the currency is in US dollars.
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electricity industry. Although in many electricity markets there exist a
variety of financial securities, including financial transmission rights,
options, swaps, and day-ahead markets (Deng and Oren, 2006), elec-
tricity markets are inherently incomplete (Wilson, 2002). Willems and
Morbee (2010), for instance, use data from the German electricity
market to show that welfare increases when options become available
in addition to forward contracts (e.g., PPAs). Further analyses on
modeling equilibrium problems with risk-averse agents in electricity
markets are in Ehrenmann and Smeers (2011), Ralph and Smeers
(2015), and in Munoz et al. (2017b).

The discussion of optimal risk allocation for retail customers has
received much less attention in the literature. As we mentioned earlier,
retailers that offer a menu of contracts differentiated by service quality
levels—either in a deregulated or regulated context—allow consumers
to select their optimal exposure to price risk (Smith, 1989; Strauss and
Oren, 1993). Hypothetically, a diverse enough menu of products could
lead to an efficient (and endogenous) allocation of risk, as in a complete
market, but in practice there are very few markets that offer these types
of products to retail customers.

Risk allocation is also a concern in other infrastructure projects that
involve public-private partnerships (PPP), including water and waste-
water utilities, roads, airports, and ports (Crampes and Estache, 1998).
In these contexts, the principle is that risks should be allocated to those
parties that can manage them in the most cost-effective manner. When
these risks are not allocated properly, or when risks are not clearly
allocated in contracts, infrastructure projects in PPP arrangements can
be more costly than expected or even fail (Akintoye et al., 2008). For
instance, Guasch et al. (2007) found that nearly 75% water-concession
contracts were renegotiated after an average of 1.6 years of the initial
agreement, which can be seen as a transfer of risk from the private
partner to final customers.

Marques and Berg (2011) point out that there is an optimal allo-
cation of risk in PPP arrangements. Naturally, a contract that allocates
all risks to the public sector (i.e., consumers) does not incentivize the
private partner to invest or operate infrastructure efficiently. On the
other hand, allocating too much risk to the private partner could in-
crease the cost of capital and, ultimately, the cost of infrastructure. In
general, if the public partner controls an event that could lead to a
negative outcome, such as an unilateral change in legislation, then that
risk should be borne by the public partner. However, most of the re-
maining risks, including the construction, operation, and increase in
prices as a result of raw material price rise should be borne by the
private partner. Unfortunately, none of these studies make reference to
selection methodologies when private parties (i.e., generation compa-
nies) make offers differentiated by base prices and indexing parameters,
such as the ones used in the Chilean long-term energy auctions.

3. A brief overview of the Chilean power system

The Chilean power grid is composed of two main transmission in-
terconnected systems, the Northern Interconnected System (SING) and
the Central Interconnected System (SIC), in addition to further, iso-
lated, medium systems in the southern area (Aysén and Magallanes). To
date, the installed generation capacity in the country is approximately
20 GW, with 32% of hydro, 10% of biomass, solar, and wind, and 58%
of coal, natural gas, and diesel generation (CNE, 2016). The current
installed capacity is nearly twice of what it was available by the end of
2005.

Fig. 1 shows generation per technology in 2005 and 2015 in GWh.
The main changes in the generation mix in the last decade are a large
increase in the share of coal generation, a reduction in the share of
hydropower (as a fraction of total generation), and an increase in the
share of generation from biomass, wind, and solar. It is projected that
more than 70% of the generation in 2050 will come from renewable
energy resources (including large hydro), in line with the country's
energy roadmap (Munoz et al., 2017a).Ta
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As we mentioned in the introduction, in terms of market organiza-
tion, generation, transmission, and distribution services are unbundled.
The generation segment is deregulated, but both transmission and
distribution companies (including retail services) operate as regulated
monopolies. Although generation investments are deregulated, opera-
tions are based on audited costs and on a centrally-planned allocation of
water resources for large hydroelectric power plants (through an SDDP-
like model) in contrast to bid-based designs in most deregulated mar-
kets elsewhere. This design has been justified due to the high con-
centration of the generation market, which is dominated by 3 main
firms, and the potential incentives of large hydro units to exercise
market power through an strategic water allocation (Arellano, 2004;
Munoz et al., 2018).

4. Methodology

In this section we describe our methodology to compare the eco-
nomic performance of long-term contracts selected based on three dif-
ferent approaches: a) the current criterion used by the Chilean regulator
in centralized auctions, b) a more sophisticated approach that explicitly
accounts for price risk and correlations between indexing parameters
(mean-variance optimization), and c) a heuristic method that accounts
for risk of individual offers, but that disregards correlations between
indexing parameters (a modified Sharpe ratio). We divide this section
into three parts. In Section 4.1 we present an abstract model to describe
the structure of generation offers in the auction and explain the criteria
used by the Chilean regulator to select the subset of winning ones used
to supply power to distribution companies. In Section 4.2 we propose a
mean-variance portfolio optimization model to select offers explicitly
considering price risk. In Section 4.3 we define a third possible selection
criterion based on the Sharpe ratio from finance. Finally, in Section 4.4
we present a simple stochastic model of energy commodity prices that
we later use to generate scenarios and compare the performance of the
selection methods described in Sections 4.1, 4.2 and 4.3.

4.1. Design and selection criteria in energy auctions in Chile

We assume that there are M generation firms, indexed m, partici-
pating in the auction and that each firm m makes a single offer for a
defined amount of energy Qmt for each of the following T years, the
latter indexed t.3 The regulator in Chile allows generation firms to make
price offers based on a base price Pm

0 per unit of energy and indexation
parameters, the latter of which allow generation firms to adjust the base
price that will be charged to distribution companies—and ultimately to

retail consumers—based on changes in factors such as fossil fuel prices
and the Consumer Price Index (CPI). Assuming a set of J different
factors, indexed j, the price Pt

m (per unit of supplied energy) of contract
m at time t can be expressed as follows:

∑≔
=

P P α
I
It

m m

j

J

mt
jt

j
0

0 0 (1)

The parameter Ijt denotes the price of index j at time t (e.g., Henry
Hub natural gas price in 2020) and the parameter αmj is the weight that
generation firm m gives to index j. Firms are free to chose how much
weight to give to each index j in their offers, however, valid weights
must satisfy ∑ == α 1j

J
mj1 ∀ m.

For a better understanding of this formula, consider the following
example. A generator makes an offer with a base price of 50 $/MWh
and chooses to index 100% of the contract to the Henry Hub natural gas
price, which is currently =I 5$/MMBtuj0 . Let's assume that this con-
tract was selected in the auction and that, for simplicity, the first year of
delivery is the current one. If next year the Henry Hub natural gas price
went up to 10 $/MMBtu, the contract price of electricity for the dis-
tribution company would double to 100 $/MWh. In contrast, if next
year the Henry Hub natural gas price went down to 3 $/MMBtu, the
contract price would decrease from 50 $/MWh to 30 $/MWh. Since
distribution companies also operate as retailers under a regulated rate
of return, these potential increments or decrements in costs would be
directly passed on to retail customers.

One of the issues of selecting contracts from a pool of offers is that
different indexation strategies make it difficult to compare them on a
cost basis. The current approach used by the Chilean regulator is to rank
them based on their so called expected levelized costs per unit of energy,
denoted Cm . To compute Cm we first define the levelized cost of an
offer, denoted Cm, as follows:

≔
∑

∑
=

∑ ∑

∑
=
−

+

=
−

+

=
−

+ =

=
−

+

C P
α

m
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T Q P

δ

t
T Q

δ

m
t
T Q

δ j
J
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I
I

t
T Q

δ

0
1

(1 )

0
1

(1 )

0
0
1

(1 ) 1

0
1

(1 )

mt mt
t

mt
t

mt
t

jt

j

mt
t

0

(2)

The parameter δ is the annual discount rate. The Chilean regulator
defines the expected levelized cost of an offer as �=C C[ ]m m , where
� C[ ]m is the expected value of the levelized cost Cm considering different
scenarios for the price indexes Ijt .4 Note that the timing of the amount
offered matters in Cm , rewarding bigger amounts in the short term.

Let Q be the total demand for energy per year that must be satisfied
using long-term contracts. Currently, the regulator selects the offers by
sorting all offers from lowest to highest expected levelized cost Cm and
later selecting the cheapest ones that satisfy ∑ == x Q Qm

M
m mt1

∀ = −t T0 .. 1.

Fig. 1. Total energy generated per technology in 2005 and 2015
(CNE, 2016).

3 Note that in practice retail prices are indexed (according to contracts) on a monthly
basis, but end consumers only observe changes every 6 months, when the authority
publishes updated retail prices. Despite this, retail tariffs are set such that generators
receive, in average, the same revenues as if retail prices were allowed to change on a
monthly basis. For illustration purposes here we only consider annual changes in index
prices, but extending the stochastic model for energy commodity prices and selection
methodologies to incorporate monthly changes is straightforward.

4 In practice, the regulator does not compute the expected value of the present cost of
each candidate offer. Instead, it uses a Baseline or Reference scenario from projections of
indexes from international sources, such as the Annual Energy Outlook (AEO, 2017). Here
we make the implicit assumption that using a Baseline scenario is the equivalent to
computing the expected value of the levelized cost of an offer.
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4.2. A mean-variance optimization model

As we discussed it in the introduction, the current methodology does
not consider price risk when selecting the subset of winning offers. There
are two factors that can affect the level of risk in a portfolio of indexed
contracts. The first one is the volatility of the indexes referenced in the
winning contracts (e.g., interannual volatility of natural gas prices). The
second one is the correlations that might exist between indexing para-
meters J. The methodology described in the previous section does not
consider these factors and might, for instance, recommend selecting of-
fers with low levelized costs, but high volatility, thus increasing the price
risk for retail consumers of electricity. Here we develop a mean-variance
optimization model to select indexed contracts explicitly considering the
tradeoff between cost and price risk for end consumers.

The problem of selecting a group of contracts at minimum cost and
with a limited exposure to price risk recalls the famous portfolio selection
problem in finance, first introduced in Markowitz (1952). The goal of the
problem introduced by Markowitz was to find a portfolio of assets that
could reach a particular performance level or expected return with
minimum volatility. The selection of indexed contracts in a long-term
energy auction is similar to the portfolio selection problem, except that in
the energy auction our goal is to simultaneously minimize (i) the present
worth of supplying Q units of power for the next T years, i.e. the sum of
the expected costs of the chosen contracts, and (ii) the risk exposure of
retail consumers, which here we assume is proportional to the volatility
or variance of the aggregate costs of the chosen contracts.

Inspired on Markowitz (1952) we propose the following optimiza-
tion problem to select offers:

∑ ∑
= =

x Cov xmin
m

M

n

M

m mn n
1 1 (3)

∑ ≤
=

s t x μ C. . :
m

M

m m
max

1 (4)

∑ = ∀ = −
=

x Q Q t T0 .. 1
m

M

m mt
1 (5)

∈ ∀ =x m M{0, 1} 1 ..m (6)

Here xm is the variable that equals 1 when the contract m is chosen
and 0 otherwise. The expression ≔Cov Cov C C( , )mn m n denotes the
covariance matrix between the costs of contracts m and n and is
equivalent to the variance of the selected portfolio, since

∑ = ∑ ∑= = =Var x C x Cov x[ ]m
M

m m m
M

n
M

m mn n1 1 1 . The parameter �=μ C[ ]m m
is the mean value or expected cost of contract m, by definition equal to
the expected levelized cost of the contract. The parameter Cmax is the
maximum mean cost of the selected portfolio of contracts and can be
estimated based on the price ceiling established by the regulator.
However, in our experiments we solve the optimization problem for
different values of Cmax , which allow us to identify portfolios in the
efficient or Pareto frontier.5 This model, denoted MV heretofore, fol-
lows the same idea as the mean-variance portfolio problem for financial
assets. Thus we are implicitly assuming that portfolios with more ex-
pensive contracts have lower volatility on average. MV results in an
integer nonlinear optimization program that can be solved using com-
mercial packages.6

4.3. An alternative selection methodology: the modified sharpe ratio

A common approach in finance to compare the performance of in-
dividual assets is to compute the ratio between the expected value of
the excess of return with respect to a risk-free alternative to the stan-
dard deviation of it, known as the Sharpe ratio (Sharpe, 1994). The
advantage of this metric is that it normalizes the asset returns for their
underlying amount of risk (i.e., standard deviation). Here we consider
the Sharpe ratio as a third possible selection criterion that does not
require the use of a formal optimization program as the MV approach;
however, we adapt it to our problem since in energy auctions the ob-
jective is to minimize cost instead of maximizing returns. We define the
modified Sharpe ratio for a given contract m as the product between the
mean of an offer (μm) and the standard deviation of costs (σm), μ σm m.

4.4. A simple stochastic model of energy commodity prices

We now describe the stochastic model of energy commodity prices
that we utilize to compare the performance of the portfolios selected
using the methodologies described in the previous sections. For sim-
plicity, we assume that the prices of indexes Ijt evolve over time fol-
lowing a multivariate geometric Brownian motion (MGBM), which is a
continuous-time stochastic process (see (Karatzas and Shreve, 2012) for
more details). Well known assets and derivatives pricing models, such
as Black and Scholes (1973), are derived from a MGBM; however, other
assumptions can be made (Deng, 2000; Geman, 2009). Under the
MGBM, each index is driven by the following stochastic differential
equation:

= +dI g I dt σ I dWjt jt jt j jt jt (7)

Here the parameter gjt denotes the drift of Ijt , σj the local volatility of
the same, and Wjt is the Brownian motion associated with index j. Basic
MGBM usually have drift parameters that are constant over time (i.e., gj
instead of gjt). However, as we will see, empirical projections used for
the indexes have a different structure in the short and long term. Hence,
we assume that the drift can change over time.

One of the advantages of using this stochastic model is that we can
compute closed-form solutions for μm and Covmn, both of which are used
as parameters (i.e., inputs) in the optimization model described pre-
viously. For details on the close formulas of μm and Covmn please refer to
section A in the Appendix.

Finally, note that since we are using a continuous-time stochastic
process we adapt the original definition of Cm in Eq. (2) to the following
one:
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where r is the continuous discount rate, i.e. r is such that: =−
+

e rt
δ

1
(1 )t

5. Data

In this section we describe our data assumptions to recreate an
energy auction similar to the ones done in Chile. Inspired in the last
energy auction in 2016, we assume that the regulator allows generation
firms to index their contracts to the following five parameters taken
from the U.S. Energy Information Administration (EIA):

1. Residual Fuel Oil (Fuel)
2. Brent Spot (Oil)
3. Henry Hub Natural Gas Spot Price (Gas)
4. Distillate Fuel Oil (Diesel)
5. All Region Average Bituminous Coal Prices (Coal)

All indexes are in real terms (i.e., inflation adjusted). Contracts can
also be indexed to the U.S. Consumer Price Index (CPI), which results in

5 A portfolio of indexed contracts is said to be in the efficient or Pareto frontier if it is
not possible to reduce its variance (or expected cost) without increasing its expected cost
(or variance).

6 Note that MV is also valid if the regulator or auctioneer could select only fractions of
contracts. For that case we could relax (6) to ≤ ≤x0 1m . In that case MV becomes a
quadratic program, just like the standard mean-variance problem in finance.
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a total of six indexing parameters ( =J 6). We assume that the auction is
performed to supply a determined amount of power Q per year, for the
next 15 years ( =T 15).

Table 2 shows a summary of relevant parameters used in the
MGBM.7 Note that the prices of all the commodities considered are
highly correlated, particularly for oil, fuel, and diesel. This correlation
structure suggests that there are low diversification opportunities in the
Chilean auction, since the costs of all indexed contracts will tend to
move to the same direction, unless a contract is indexed 100% to the
CPI. However, we later introduce an additional index that is negatively
correlated with the indexes shown in Table 2. We use this additional
index to assess how robust is the performance of the current and other
heuristic selection criteria depending on the types of correlations be-
tween the indexing parameters.

Note that the volatility of all indexes is similar and higher in mag-
nitude to the drifts, which highlights the importance of considering risk
in the selection of contracts. Since all volatilities are similar, in our
simulations we consider a local volatility of 25% for all indexes other
than the CPI. In terms of the drifts, we consider two different values per
index, one for the short term and another one for the long term. We
estimate the drifts based on the projections of the indexes prices shown
in Table B.1 in the appendix. Fuel and oil are expected to have the
highest increase in the short term, but all indexes have a small drift in
the long term.

For illustration purposes, we create a pool of 15 different contracts
and assume that all offers are for the same amount of energy per year,
i.e. =Q Q/3mt . This means that the regulator must select 3 contracts
from the the centralized auction to supply all projected demand for
retail customers for the next 15 years. The MV model does not depend
on Q, since constraint (5) changes to∑ == x 3m

M
m1 . Thus, we exclude the

complexity in the selection process attributed to the energy quantities
offered by each contract and measure only the impact of considering
price risk.

Table 3 shows base prices and index weights for each of the 15
contracts. Fig. 2 shows that the first contracts have a lower base price
and thus are cheaper on average. However they have a high volatility
(i.e., standard deviation) of prices because they are referenced to more
volatile indexes. Note that these contracts were purposely defined to
cover different indexation structures and base prices Pm0. In other
words, none of the proposed contracts is dominated in terms of mean
and volatility, simultaneously, by another offer or otherwise they would
never be selected as part of a portfolio. For example, contract 15 has the
highest base price, but the lowest volatility since it is 100% indexed to
the CPI. Contract 14 has a lower base price, but a higher volatility since
only 90% of it is indexed to the CPI, the remaining 10% makes

reference to natural gas and coal prices. However, as we will see later,
under other correlation structures (i.e., if there are negative correla-
tions) it might be optimal to select contracts that are individually
dominated by other offers due to diversification effects.

6. Results and discussion

We now compare the performance of different selection criteria. The
most simple selection algorithm builds a portfolio using the contracts
with the lowest expected cost,8 as currently done in the Chilean energy
auction. The most sophisticated model, the mean-variance portfolio
approach (referred to as MV here), explicitly considers the tradeoff
between expected cost and volatility. In addition, we also consider a
third selection method based on individual characteristics of the offers,
the modified Sharpe ratio. We show that the current selection criteria
can leave retail customers locked up into a portfolio of generation
contracts with high price volatility (i.e., risk) compared to what it
would have been selected using a criteria that explicitly takes risk into
account, such as the MV . As we will see, there can be contracts with
high base prices that might not seem attractive when analyzed in-
dividually, but that provide a high value to a portfolio when combined
with other offers.

6.1. Example 1

We solve MV for different values of Cmax in order to identify port-
folios that are in the Pareto frontier, each one with a different expected
cost and volatility. We denote MVC S/max the solution to each run of MV
with a maximum expected cost Cmax . Thus, C S/max is the maximum
expected cost of a portfolio normalized by the number contracts

Table 2
Estimations for the drift g, local volatility (i.e., standard deviation) σ and correlations for
the 5 indexing parameters allowed in the Chilean auction other than the CPI. Short term
drift considers the first half of the projections shown in Table B.1 in the Appendix, while
long term drift considers the second half of the same data. Projections shown in Table B.1
are taken from the 2016 Energy Outlook (AEO, 2017). Local volatility is taken from EIA
database (EIA, 2017).

Fuel Oil Diesel Gas Coal

Short term g [%] 17 14 8 9 0
Long term g [%] 2 3 2 2 0
σ [%] 23 25 21 29 26

P Fuel Oil Diesel Gas Coal
Fuel .93 .93 .69 .42
Oil .95 .60 .52
Diesel .73 .58
Gas .44

Table 3
Base prices in $/MWh and index weights for each of the 15 contracts.

Contract Pm0 αFuel αOil αDiesel αGas αCoal αCPI

1 28 1 – – – – –
2 43 – – – 1 – –
3 38 .30 .30 .20 – – .20
4 65 – – – – 1 –
5 47 .17 – .50 – – .33
6 48 – .30 – .30 – .40
7 50 – .40 – – – .60
8 68 – – – – .60 .40
9 61 – – .20 .10 .20 .50
10 70 – – – – .40 .60
11 65 – – – .20 – .80
12 72 – – – .20 .80
13 70 – – .10 – – .90
14 72 – – – .05 .05 .90
15 75 – – – – – 1

Fig. 2. Mean and standard deviation values for Cm of the 15 contracts.

7 By definition, the index CPI has neither drift nor volatility, because it is in real terms.
Thus, the CPI has no correlation with the rest of the indexes.

8 Since the amount of energy offered per year is the same for all contracts, this is
equivalent to select the contracts with lowest levelized costs.
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selected S. Table 4 shows the results for an auction where the total
number of contracts needed to supply projected demand is =S 3. As
expected, increasing Cmax results in portfolios with lower price volati-
lity for retail customers.

We also identify the portfolio of contracts that would be selected in
the Chilean energy auction. As we mentioned earlier, the current cri-
terion is to select the S contracts with the lowest expected costs μm.
Given our 15 available contracts, this selection rule would result in the
same portfolio selected in MV62, which includes contracts 1, 2, and 3.
We also consider a third selection rule, a modified Sharpe ratio, that
explicitly considers the compromise between mean and volatility of a
selected contract by ranking them based on the product of these two
individual features, μ σm m. The idea is to rank contracts by this product
and choose the contracts with the S lowest values. From the example,
the contracts with the three lowest values are 13, 14 and 15, which
equals to MV74, i.e. the portfolio in the Pareto frontier with the lowest
volatility. Thus, the solutions given by these two criteria that only
consider the individual characteristics of each contract, the current
Chilean method and the modified Sharpe ratio, are in this case part of
the Pareto frontier. In general, the portfolio of contracts selected based
on the current method used in the Chilean auction is guaranteed to be
the in the Pareto frontier for MVC S*/ , where C* the expected total cost of
the portfolio formed by the S contracts available. However, the port-
folio selected using the modified Sharpe ratio will not always be in the
Pareto frontier as we will show in an example in Section 6.2.

To test each solution, we simulate 1000 outcomes (scenarios) for the
prices of the N indexes, following the MGBM model described pre-
viously. The results from the simulation are displayed in Table 5. As
expected, the current methodology used in the Chilean energy auction
results in the portfolio of contracts with the lowest expected or levelized
cost of all portfolios in the efficient frontier (MV62). However, this
portfolio is nearly 10 times more volatile (in terms of standard devia-
tion) than the one that would be selected using the MV approach (MV74)
with an expected cost of 74 $/MWh instead of 64 $/MWh. In other
words, selecting MV74 instead of MV62 reduces volatility by nearly 90%
and increases expected costs by only 13.4%.

However, measuring volatility only using the standard deviation of
prices of a portfolio is only one alternative. In Table 5 we also provide
other standard metrics for risk, including the Value at Risk (VaR) and
the Conditional Value at Risk (CVaR). The disadvantage of using the
standard deviation or variance as a risk metric instead of the VaR and
CVaR is that the former penalizes both upside and downside risks
equally, while the latter can focus only on downside risks (i.e., high-
price scenarios), which might be more relevant for the auctioneer. For

example, the CVaR90% shows that the average cost per contract of the
portfolio MV62 is 127 $/MWh in the 100 worst cases out of the 1000
simulated scenarios, which is nearly 4.4 times the expect cost of this
portfolio. In contrast, for portfolio MV74 the average cost per contract is
80 $/MWh in the 100 worst cases, which is only 8.1% higher than its
expected cost of 74 $/MWh per contract. Thus, selecting a portfolio
using an approach such as the MV can result in a much more stable
evolution of prices for retail consumers, regardless of how index prices
evolve.9

Finally, note that the efficient frontier offers several alternatives of
portfolios for different risk exposures, while the least-cost approach and
the methodology based on the modified Sharpe ratio only return the
portfolios that are in the two extremes of volatility (i.e., max and min
variance, respectively). We highlight this result to show that, in con-
trast to the MV approach, the modified Sharpe ratio gives no control to
the auctioneer to select a specific amount of risk exposure when con-
structing a portfolio of contracts.

6.2. Example 2: sensitivity in correlation structure

We now want to illustrate what occurs when we introduce new
contracts indexed to a commodity price that is negatively correlated to
the indexes defined previously. Up to this point we have assumed that
the structure of correlations and volatilities for indexes is unique for the
entire duration of the contracts (i.e., 15 years). However, empirical
research in finance suggests that volatility and correlation structures for
commodity prices can change over time. In fact, regime-switching
models aim at identifying how these structures evolve over time. These
models have been applied to commodities such as crude and natural gas
prices (Choi and Hammoudeh, 2010; Fong and See, 2002; Chen and
Forsyth, 2010), both of which are considered as indexes in energy
auctions in Chile. Hence, it is important to see how different correlation
structures can affect the performance of different selection methodol-
ogies. In our next example, we want to show that portfolios in the ef-
ficient frontier might include contracts that are not considered in-
dividually competitive in terms of expected costs or volatility, but that
reduce the volatility of a portfolio when paired with other contracts.

Let's assume now that there is a new index, called “new” heretofore,
that is negatively correlated with the rest of the indexes. For simplicity,
we assume this new index has the same volatility as the rest of the
indexes, i.e. 25%, and a drift equal to the oil index. Table 6 shows 4 new
contracts that are indexed to the new index. Fig. 3 shows the individual
expected and standard deviations of costs for of all 19 contracts. Note

Table 4
Optimal portfolios of contracts when solving MV for different values of C S/max , with

=S 3. Columns C1, C2, and C3 indicate the contract numbers that are part of the portfolio
for each solution of MV . The parameters μp and σp denote the mean and volatility
(standard deviation) of the selected portfolio, respectively. These measures are standar-
dized (divided) by S to express the performance in terms of average costs per contract in
$/MWh. Note that since we use binary variables to select offers in the MV approach, it is
possible that in the optimum < C S/

μp
S

max .

Solution C1 C2 C3 σp
S

μp
S

MV62 (min. levelized cost) 1 2 3 31 62
MV64 1 2 4 27 63
MV65 1 2 10 23 64
MV66 1 4 12 20 66
MV67 1 8 12 17 67
MV68 1 10 14 15 68
MV69 1 12 15 13 69
MV70 8 11 12 11 70
MV72 10 11 13 8 71
MV73 11 12 15 5 73
MV74 (min. modified Sharpe ratio) 13 14 15 3 74

Table 5
Simulation results of portfolios in the efficient frontier. All values are standardized (di-
vided) by S. TheVaR90% is the 90th percentile of the portfolio total cost (i.e, the 100th worst
value over the 1000 generated). The CVaR90% is the average of the 100 worst case values
generated.

Solution Std Dev. Mean VaR90% CVaR90%

MV62 29 62 102 127
MV64 26 62 98 119
MV65 22 64 94 112
MV66 19 66 90 108
MV67 16 67 87 103
MV68 14 68 87 100
MV69 12 69 84 96
MV70 10 70 84 94
MV72 8 71 82 88
MV73 5 73 79 83
MV74 3 74 78 80

9 This statement is based on the assumption that the auctioneer has knowledge of the
historical and future distribution of index prices.
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that the 4 new contracts, 16–19, are all simultaneously worse in terms
of volatility and expected costs when compared to several of the 15
contracts defined initially. For example, contract 19 is individually
dominated by contracts 12, 13, and 14. Thus, it is unlikely that 16–19
will be selected as part of a portfolio when using methodologies that
rank contracts based on individual characteristics.

In Table 7 we show the optimal portfolios of contracts identified
using the MV approach (i.e., the efficient frontier). Note that the
portfolio MV62 is still equivalent to the one that would be selected using
the current methodology in the Chilean auction (i.e., min. levelized
cost). However, all the other portfolios in the efficient frontier include
at least one of the new contracts. Furthermore, ranking individual offers
based on the modified Sharpe ratio μ σm m in this case yields the same
portfolio as in the previous example: contracts 13, 14, and 15. However,
this portfolio is no longer part of the efficient frontier since it yields an
expected cost of approximately 74 $/MWh and a standard deviation of
3 $/MWh. Therefore, this portfolio is now dominated by MV74, which
highlights the heuristic nature of the modified Sharpe ratio as a metric
to rank contracts.

Table 8 shows results for a Monte Carlo simulation for 1000 out-
comes. As expected, we find that introducing new contracts to the
original set of 15 offers results in diversification gains. For instance, for
a maximum expected cost of 74 $/MWh, the portfolio MV74 now results

in a standard deviation of 2 $/MWh, instead of 3 $/MWh as in the
previous example. The main difference is that now MV74 is composed of
contracts 14, 15, and 19, instead of 13, 14, and 15. Consequently, in
this example the modified Sharpe ratio fails at identifying a portfolio in
the efficient frontier. Although our results are not general, they illus-
trate the challenge of selecting a portfolio of indexed contracts with
limited risk exposure for retail consumers using the current least-cost
criterion or heuristics such as the modified Sharpe ratio.

6.3. Example 3: an application to the 2015/01 Chilean long-term energy
auction

In this final example we want to show how our methodology can
give new insights in an actual selection process using real data from the
2015/01 energy auction in Chile. All information, including the full list
of offers and awarded contracts, is publicly available in EE (2016).
Table 9 shows a sample of 10 of these offers. We want to highlight that
we do not intend to replicate the real auction process since there are
further auction rules that, for the sake of simplicity and clarification, we
ignore. Instead, our goal is to illustrate through a simple example (but
with realistic data) that the current methodology may overlook port-
folios that could feature more attractive results for a planner who aims
at striking a balance between minimizing expected costs and price risk.

We assume that in order to meet forecasted demand we must select
5 of these 10 offers. If we follow the current selection methodology,
which ranks offers based on their levelized costs, the optimal portfolio
includes 1, 2, 3, 4 and 6. As in the previous two examples, by solving

Table 6
Base prices in $/MWh and index weights for each of the new 4 contracts.

Contract Pm0 αFuel αOil αDiesel αGas αCoal αCPI αnew

16 30 – – – – – – 1
17 33.5 .5 .25 – – – – .25
18 56 – – – – – .75 .25
19 67 – – – – – .9 .1

Fig. 3. Mean and standard deviation values for Cm of the 19 contracts.

Table 7
Optimal portfolios of contracts when solving MV for different values of C S/max , with

=S 3, considering the new contracts 16-19.

Solution C1 C2 C3 σp
S

μp
S

MV62 (min. levelized cost) 1 2 3 31 62
MV64 1 4 16 14 63
MV65 1 8 16 13 64
MV66 2 10 16 12 66
MV67 6 8 16 11 67
MV68 6 12 16 10 68
MV70 7 8 18 9 69
MV71 8 11 18 7 70
MV72 11 12 18 5 72
MV73 12 13 19 3 73
MV74 14 15 19 2 74

Table 8
Simulation results of portfolios in the efficient frontier considering the 4 new contracts.
All values are standardized (divided) by S.

Solution Std Dev. Mean VaR90% CVaR90%

MV62 29 63 102 127
MV64 14 64 80 95
MV65 12 65 80 92
MV66 11 66 79 90
MV67 10 67 78 90
MV68 9 68 79 90
MV70 9 70 80 90
MV71 7 71 78 86
MV72 5 72 77 82
MV73 3 73 77 80
MV74 2 74 77 80

Table 9
Sample of 10 offers from the 2015/01 Chilean long-term energy auction. Base prices and
expected levelized costs are in $/MWh.

Offer number and firm
name

Pm0 αFuel αOil αDiesel αGas αCoal αCPI Cm

1. Global Power
Generation

46.1 – – – – .31 .69 46.1

2. Acciona Energía Chile
S.A.

54.9 – – – – – 1 54.9

3. AES Gener S.A. 59.0 – – .48 – – .52 72.2
4. Colbún 60.0 – – – – – 1 60.0
5. SPV P4 64.0 .31 – – – .16 .53 89.2
6. Engie Energía Chile

S.A.
69.3 – – – – .13 .87 69.3

7. Empresa Eléctrica
Puntilla S.A.

81.2 – – – – – 1 81.2

8. Parque Eólico los
Cuturros

85.0 – – – – – 1 85.0

9. Empresa Eléctrica
Rucutayo S.A.

91.8 – – – – – 1 91.8

10. Andes S.A. 96.8 .86 – – −.73 .16 .7 159.2
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the MV model with different values of C S/max we find different port-
folios in the Pareto frontier that we show in Table 10. Note that the
solution MV60, which minimizes the expected cost of meeting forecasted
demand using 5 offers, is equivalent to the portfolio selected using the
current methodology that ranks contracts based on expected levelized
costs.

Just as in the previous examples, we use the same 1000 simulated
outcomes for the prices of the N indexes following the MGBM model.
The results from the simulation are displayed in Table 11. These results
illustrate the same effects observed previously. For this set of candidate
energy contracts, the current methodology used in the Chilean energy
auction selects the portfolio with the lowest expected cost (MV60), but
with the highest volatility of prices for retail consumers. Using the MV
approach it is possible to identify other portfolios that could limit this
risk in exchange for an increase in expected levelized costs. All port-
folios in the Pareto frontier (Table 10) are indeed optimal for different
risk profiles, including the one that minimizes expected cost (MV60).
Consequently, applying the MV approach would require the regulator
to set a maximum tolerable amount of price risk for retail consumers
that would ultimately determine the optimal portfolio of long-term
energy contracts that minimizes expected costs subject to this con-
straint. Identifying the optimal amount if risk transfer in long-term
contracts is qualitatively discussed by Marques and Berg (2011) for
infrastructure projects that involve public-private partnerships. Yet,
more research is needed to quantitatively determine what is the optimal
level of risk transfer in long-term energy auctions with indexed con-
tracts for regulated retail customers.

7. Conclusions and policy implications

Centralized auctions for long-term energy contracts have been in
place for more than one decade in Latin America. In Chile and Brazil
they were originally implemented as mechanisms to incentivize suffi-
cient amounts of generation investments in the long term (i.e., resource
adequacy). An additional benefit of auctioned forward contracts is that
they can reduce market power in concentrated bid- (Allaz and Vila,
1993) and cost-based (Arellano and Serra, 2010) electricity markets.
Market power is a rather large concern in Latin America, where systems
are relatively small, concentrated, and with large hydroelectric power
plants.

In Chile, centralized energy auctions are used to procure power to
consumers that are served by distribution companies. These companies

operate as regulated monopolies that can pass through all costs of en-
ergy contracts to retail consumers. Auctions have been modified several
times since their initial implementation. For instance, the latest energy
auction considered separate auctions for daily and nightly hours in
order to reduce the risk exposure of renewable energy generation, such
as wind and solar (Marambio and Rudnick, 2017). It is worth high-
lighting that in this auction contracts were awarded at record low
prices, with an average of 47 $/MWh and a minimum offer price of 28
$/MWh for new solar power plants.

Although centralized energy auctions have been relatively suc-
cessful at promoting investments in new generation capacity in the
country, there is one concerning feature of their design that can have a
negative impact on retail consumers. As it is common in long-term
contracts (Kahn, 1991), offers can be indexed to fuel prices, the con-
sumer price index (CPI), or other features such as the system's marginal
operating cost10 in order to limit risks for generation firms that might
engage in up to 20-year commitments with distribution companies.
Unfortunately, the current criterion used to select the winning subset of
contracts in centralized energy auctions only considers a single pro-
jection of indexes for the future and ranks offers based on their in-
dividual (expected) present cost, also referred to as the expected leve-
lized cost of a contract.

In this paper we use three simple examples to illustrate how this
selection approach disregards price risk for retail consumers, which
have little or no alternatives to manage it. Inspired on the current de-
sign of the Chilean energy auction, we consider 15 competitive con-
tracts for equal amounts of energy, but that differ in their base prices
and indexation coefficients. We simulate the evolution of indexes using
a simple model for energy commodity prices calibrated using historical
and projected data and consider three selection methodologies to
supply a projected demand for energy that requires a portfolio of 3
contracts. The simplest one emulates the current selection criterion in
the Chilean auction and ranks contracts based on their individual ex-
pected levelized cost that depend solely on expected projections of fuel-
price indexes. The most sophisticated one is a mean-variance (MV)
portfolio optimization program that minimizes price risk, measured as
the price variance, subject to a maximum expected or levelized cost of a
selected portfolio. Thus, the MV gives a range of optimal results con-
sidering the tradeoff between price risk and expected costs (i.e., the
efficient frontier). The third selection methodology is a variation of the
Sharpe ratio, often used in finance to rank individual stocks based on
risk-adjusted returns (i.e., the ratio of expected returns to their standard
deviation).

As expected, we found that the current selection algorithm used in
the Chilean auction results in the portfolio with the highest price risk in
the efficient frontier under all risk metrics (i.e., standard deviation,
Value at Risk, and Conditional Value at Risk). Portfolios with less risk
exposure in the efficient frontier include contracts that would not be
selected under the current auction design. In particular, the portfolio
with minimum risk exposure is composed of the three available con-
tracts with highest leveraged costs. In our first example we show that
the portfolio that minimizes expected levelized costs is nearly 10 times
more volatile (in terms of standard deviation) than the one that mini-
mizes price risk; this reduction in price volatility comes at an increase of
only 19.4% in expected levelized costs. Additionally, in this same ex-
ample ranking offers based on the modified Sharpe ratio yields the
portfolio of minimum price risk in the efficient frontier selected using
the MV approach. However, we show that this latter result is not a
general property of the Sharpe ratio itself; instead, it is a consequence of
having positively correlated indexes.

As a sensitivity analysis, in our second example we introduce 4 new
contracts that are indexed to a new seventh index that is negatively

Table 10
Optimal portfolios when solving MV for different values of C S/max , with =S 5, con-
sidering the 10 offers taken from Table 9.

Solution C1 C2 C3 C4 C5 σp
S

μp
S

MV60 1 2 3 4 6 12 60
MV64 1 2 4 6 8 9 63
MV67 1 2 4 7 8 5 65
MV71 2 4 6 7 8 3 70
MV75 2 4 7 8 9 0 75

Table 11
Simulation results for portfolios in the efficient frontier considering the 10 offers taken
from Table 9. All values are standardized (divided) by S.

Solution Std Dev. Mean VaR90% CVaR90%

MV60 12 60 80 85
MV64 9 63 77 82
MV67 5 65 76 79
MV71 3 70 76 77
MV75 0 75 75 75

10 The marginal system cost in the Chilean power system is, in general, negatively
correlated with the availability of water for hydro generation.
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correlated to all fuel prices. Individually, these 4 new contracts are
dominated in terms of expected costs and volatility by some of the 15
initial offers (i.e., there are contracts other than the new 4 that present
both lower levelized or mean costs and standard deviation). We find
that the portfolio that minimizes levelized or expected costs remains
unaltered from the previous example. However, all of the other port-
folios in the efficient frontier include at least one of these 4 new con-
tracts. In this case, selecting contracts based on the modified Sharpe
ratio also yields the same portfolio as in the previous example. Yet,
when considering new contracts indexed to a variable that is negatively
correlated to fuel prices, this portfolio is no longer part of the efficient
frontier. This result illustrates the difficulties of constructing an effi-
cient portfolio considering only individual characteristics of indexed
contracts, disregarding the options to diversify a portfolio with offers
that might not seem attractive on an individual basis. We also in-
corporate a third example that uses a sample of 10 indexed contracts
from the 2015/01 long-term energy auction to illustrate that our ob-
servations from the first two examples remain unaltered.

Our main conclusion is that the current selection criterion dis-
regards the volatility of indexing parameters (e.g., fuel prices) and
might select contracts that are highly volatile in the long term, which
can lead to a possibly inefficient allocation of risk between generators
and retail consumers, with the potential to negatively affect end con-
sumers under the realization of adverse conditions. Other heuristic se-
lection methodologies, such as a modified Sharpe ratio, can, in some
cases, lead to portfolios that are in the efficient frontier. However,
unlike the MV approach, they have no adjustable parameter to control
the amount of tolerable risk in the selected portfolio (i.e., location in
the efficient frontier). Consequently, a regulator who is interested in
limiting the risk exposure to regulated retail customers could benefit
from using more sophisticated selection methodologies. Although this
issue has been qualitatively discussed in previous research (Marques
and Berg, 2011; Moreno et al., 2012), to our best knowledge this is the
first paper that uses a stochastic model for energy commodity prices to
quantify the economic performance of portfolios developed using
simple methodologies against portfolios constructed with more elabo-
rate models such as the MV approach.

We can think of two different alternatives to improve the final al-
location of risk for retail consumers. The first and most obvious ap-
proach is to modify the current selection methodology in order to ac-
count for price risks. One alternative is to select offers based on an
approach such as the MV that uses the variance as a metric to quantify
risk. However, this selection methodology can be applied using other
known risk measures, such as VaR or CVaR, in the case indexes’ prices
do not follow a multivariate geometric Brownian motion.
Computational efforts for determining the optimal solution with such
measures are similar to the MV approach. It is worth highlighting that
an auctioneer that selects an optimal portfolio using any of these ap-
proaches (e.g., MV or CVaR) would have to justify its choice based on
the solution of an optimization program and not on individual features
of generation offers. This is somewhat similar to the selection of optimal
dispatch schedules and pricing in day-ahead or real-time markets,
which has to be done considering all generation and transmission assets
simultaneously in the optimization (i.e., during certain hours it can be
optimal to dispatch units out of the merit order due to transmission
constraints or technical limits on generators).

A second alternative is the introduction of competition in the retail
sector in Chile. In theory, this would incentivize retailers to offer a
menu of different contract options for consumers with varying levels of

risk. The advantage of this scheme compared to using a centralized
energy auction is that the final allocation of risk among generation
firms, retailers, and consumers will be endogenous, with little or no
intervention from the regulator. However, the international experience
shows, as explained earlier, mixed levels of success in the im-
plementation of competitive retail markets (Defeuilley, 2009). This
problem is compounded by the need to (possibly) rely on an additional
mechanism (e.g., a capacity market) to ensure generation adequacy if
competition in the retail sector is introduced in Chile since, currently,
regulated auctions have supported both: (i) competitive energy prices
for end consumers, and (ii) sufficient generation investment to keep an
adequate level of generation capacity in the market. It can be argued
that, without regulated auctions for long-term contracts, the current
capacity payments in Chile might still provide the necessary price sig-
nals to incentivize adequate investments in new generation capacity.
Yet, it has been argued that such payments only represent a small
portion of the revenues needed to ensure supply adequacy and their
role has proved to be very limited in the presence of uncertain energy
prices, especially in hydro-dominated power systems (Moreno et al.,
2010). Thus, in these types of electricity markets, getting rid of regu-
lated auctions for long-term contracts could potentially leave the au-
thority with very limited control on generation adequacy levels, parti-
cularly if the mechanism used to compute capacity payments is not
designed carefully. However, more research is needed to support this
statement. Furthermore, it can be argued that not only generacion
adequacy, but also the overall composition of the generation mix may
be affected by the regulated auctions for long-term contracts. In effect,
if risks were accounted for in the selection criterion, the overall gen-
eration mix would include technologies that provide a hedge against
uncertain factors, such as fossil fuel prices as presented in Inzunza et al.
(2016), Matos et al. (2015), Cunha and Ferreira (2014), and Awerbuch
and Berger (2003).

An important subject that we did not address in this paper is how
different selection methodologies can affect indexation and price stra-
tegies for generators in centralized energy auctions. For instance, if
generation firms were aware that the auctioneer will select contracts
using the MV methodology, this might provide incentives for them to
select indexation strategies other than the ones used under the current
selection approach. One alternative to address this question is to utilize
an equilibrium model such as the one proposed in Arellano and Serra
(2010), but considering different clearing mechanisms for the selection
of long-term contracts. This type of analysis is, however, beyond the
scope of this paper and we leave this as a subject for future research.

Finally, we want to emphasize that the only risks analyzed in this
paper refer to those that result from indexed prices that evolve over
time. However, as pointed out by a referee, there are other important
sources of risk for retail customers, including supply risk, that we do not
address in our research, but that should be accounted for in the future.
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Proof:
Defining ∫≔g g dtjT

T
jt0 , the solution for the index model defined in (7) at t = 0 and t = T is:
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The stochastic behavior of index j price at time t is characterized by the Brownian motionWjt . An important property of a Brownian motion is that

it has a normal distribution with mean 0 and variance t, i.e. =W t zjt
D

, with z following a standard normal distribution. It is important to capture
possible dependence between indexes in the model, since most of them are based in commodities that are empirically correlated, such as gas, crude
oil, heating oil etc. The possible correlation between indexes is captured by the dependence between each Brownian motion. Let P be the correlation
matrix between each index shown in Table 2. Using the normality property shown previously, then:
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where Lj is the j-th row of matrix L, which is the Cholesky decomposition of P, i.e. LL' = P and z a vector of i.i.d. standard normal distributions. Now:

∏

∏

= = =

= = =

′

=

=

′

E e E e E e E e

e e e

( ) ( ) ( ) ( )σ W σ W σ t L z

k

J
σ t L z

k

J
σ L t σ tL L σ t

1

1

1
2

1
2

1
2

j jt j jt j j j jk k

j j j j j j
2 2 2 2

(A.5)

∑ ∑ ∑ ∑

∑ ∑

= =

=

=

−
−

= =

−
−

=

−

=

−

=

−

Dμ E P e Q α
I
I

P e Q α e E e

P α e Q

( ) ( )m m
t

T
rt

mt
j

J

mj
jt

j
m

t

T
rt

mt
j

J

mj
g σ t σ W

m
t

T

j

J

mj
g rt

mt

0
0

1

0 0
0

0

1

1

( 1
2 )

0
0

1

1

( )

jt j t jt

jt

2

(A.6)

The last equality is due to (A.5). For Covmn
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The covariance equals:
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Now, assuming since the Brownian motion has independent increments and −W Wjt js is equal in distribution to −Wjt s when >t s, then:
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The first five columns are the index projections used in the Chilean auction from the 2016 Energy Outlook done by the U.S. Energy Information and Administration (EIA, 2017). The last
five columns show the log returns of the projections. These returns show how each index change rate decrease in time and the reason to consider 2 drifts for each index in Table 2. The
short term drift is the mean of the log returns between 2017–2022, while the long term drift is the mean value from 2023 to 2031 period.

Y Fuel Oil Diesel Gas Coal Fuel Oil Diesel Gas Coal

2016 .72 36.84 2.58 1.80 50.37
2017 .98 48.08 3.09 2.04 49.95 .31 .27 .12 .18 −.01
2018 1.17 57.01 3.62 2.27 49.75 .18 .17 .11 .16 0
2019 1.49 70.11 4.01 2.58 50.06 .25 .21 .13 .1 .01
2020 1.68 76.57 4.43 2.71 50.39 .12 .09 .05 .1 .01
2021 1.84 81.16 4.33 2.81 50.34 .09 .06 .04 −.02 0
2022 1.97 84.65 4.35 2.88 50.74 .07 .04 .03 .01 .01
2023 2.02 87.11 4.74 2.94 50.96 .03 .03 .02 .09 0
2024 2.07 89.15 5.00 2.99 51.03 .02 .02 .02 .05 0
2025 2.13 91.59 5.12 3.05 51.30 .03 .03 .02 .03 .01
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2027 2.25 97.18 4.95 3.19 51.25 .02 .03 .02 −.01 0
2028 2.29 99.33 5.00 3.24 50.76 .02 .02 .02 .01 −.01
2029 2.35 102.23 5.05 3.31 50.29 .03 .03 .02 .01 −.01
2030 2.39 104.00 5.06 3.36 49.83 .02 .02 .01 0 −.01
2031 2.46 107.23 5.01 3.44 49.82 .03 .03 .02 −.01 0
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