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1 Introduction

It is known that theBrøndsted–Rockafellar Theorem is not valid outsideBanach spaces
(see [4]) for all lower semi-continuous (lsc) proper convex functions. This observation
motivates the work to provide a suitable family of lsc proper convex functions defined
on locally convex spaces, which satisfies the Brøonsted–Rockafellar Theorem.

Themain features of this work are (1) to show that epi-pointed lsc convex functions,
defined on any locally convex space, satisfy the Brøndsted–Rockafellar theorem (2)
to provide a different proof of Brøndsted–Rockafellar’s theorem for this class of epi-
pointed functions, in the sense that it is based on a very simple variational principle,
which is valid in locally convex spaces, without requiring such tools as Ekeland’s
or Bishop-Phelps’ variational principles (3) Since every convex function in Banach
spaces can be adequately perturbed to obtain an epi-pointed function, we recover
in the Banach setting the usual Brøndsted–Rockafellar theorem (4) we also obtain
other important results in the same spirit, as the maximal monotonicity of the Fenchel
subdifferential operator of proper lsc convex functions, and the subdifferential limiting
calculus rules for convex functions.

The class of epi-pointed functions has been successfully utilized recently with the
purpose of extending results, which were known exclusively for Banach spaces or
convex functions, to locally convex spaces and nonconvex functions. For some of
these results we refer to [1,5–10,14] among others.

2 Notation and preliminary results

In the following, X and X∗ will be two (separated) locally convex spaces (lcs) in
duality by the bilinear form 〈·, ·〉 : X∗ × X → R. In X and X∗ the weak topology
is denoted by w(X, X∗) and w(X∗, X) respectively (w and w∗ for short) and the
Mackey topology is denoted by τ(X, X∗) and τ(X∗, X) respectively, the space X will
be endowed with a compatible initial topology τ (i.e w(X, X∗) ⊂ τ ⊂ τ(X, X∗)).
Only in Sect. 5, when X is a Banach space, will X∗∗ refer to the bidual of X , that is,
X∗∗ := (X∗, ‖ · ‖∗)∗. We will write R := R ∪ {−∞,∞}.

For a given function f : X → R, the (effective) domain and the epigraph of f
are dom f := {x ∈ X | f (x) < +∞} and epi f := {(x, λ) ∈ X × R | f (x) ≤ λ},
respectively. We say that f is proper if dom f �= ∅ and f > −∞, and inf-compact if
for every λ ∈ R the set [ f ≤ λ] := {x ∈ X | f (x) ≤ λ} is compact. We denote �0(X)

the class of proper lower semicontinuous (lsc) convex functions on X . The conjugate
of f is the function f ∗ : X∗ → R defined by

f ∗(x∗) := sup
x∈X

{〈x∗, x〉 − f (x)},

and the biconjugate of f is f ∗∗ := ( f ∗)∗ : X∗∗ → R. For ε ≥ 0, the ε-subdifferential
of f at a point x ∈ X , where it is finite, is the set

∂ε f (x) := {x∗ ∈ X∗ | 〈x∗, y − x〉 ≤ f (y) − f (x) + ε, ∀y ∈ X};
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On Brøndsted–Rockafellar’s Theorem… 633

if f (x) is not finite, we set ∂ f (x) := ∅. The special case ε = 0 is the Fenchel Subdif-
ferential and it is denoted by ∂ f (x). The domain and the image of the subdifferential
mapping are defined by dom ∂ f := {x ∈ X | ∂ f (x) �= ∅} and Im ∂ f := ⋃

x∈X ∂ f (x)
respectively.

The indicator and the support functions of a set A (⊂ X, X∗) are, respectively,

IA(x) :=
{
0 x ∈ A

+∞ x /∈ A,
σA := I ∗

A.

The inf-convolution of f, g : X → R is the function f �g := inf z∈X { f (z)+g(·− z)}.
We denote by Int(A), A, conv(A) and conv(A), the interior, the closure, the convex

hull and the convex closed hull of A, respectively. The polar of A is the set Ao :=
{x∗ ∈ X∗ | 〈x∗, x〉 ≤ 1,∀x ∈ A}. Given a seminorm ρ : X → R, x ∈ X and r ≥ 0
we denote Bρ(x, r) := {y ∈ X : ρ(x − z) ≤ r}.

In the followingpropositionswe recallwell-known results in convex analysis,which
are used in the proof of our main results (Theorems 4.2, 4.4, 4.6 and 4.7).

Proposition 2.1 (a) ([13], Theorem 6.6.7) Given two proper convex lsc functions
g, h : X → R such that g is continuous at some point of dom h, for all x ∈ X

∂(g + h)(x) = ∂g(x) + ∂h(x)

(b) ([13], Theorem 6.3.9) A proper lsc convex function g : X∗ → R is τ(X∗, X)-
continuous at x∗ ∈ dom g if and only if g∗ − x∗ is w(X, X∗)-inf-compact.

(c) ([13], Theorem 6.5.8) Given two proper convex lsc functions g, h : X → R such
that g is continuous at some point of dom h we have (g + h)∗ = g∗�h∗.

(d) ([13], Theorem 6.5.4) Given two proper functions g, h : X → R we have
(g�h)∗ = g∗ + h∗.

Proposition 2.2 [12, Theorem3.1] Let X, Z be two lcs, f ∈ �0(Z)and A ∈ L(X, Z).
Then

∂ ( f ◦ A) (x) =
⋂

η>0

A∗ (
∂η f (Ax)

)w∗
, for all x ∈ X.

3 The class of epi-pointed functions

The class of epi-pointed functions was introduced in the finite dimension by Hiriart-
Urruty and Benoist [2] but the original definition goes back to the Nobel laureate
mathematical economist Gérard Debreu in the fifties [11].

To introduce this class of functions, the authors used the notion of asymptotic
function f ∞, for a proper function f : Rn → R, defined by

f ∞(x) := lim inf
t→0+
y→x

t f (t−1y).
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634 R. Correa et al.

So, f is said to be epi-pointed if the epigraph of its asymptotic function (which
is clearly a cone) is pointed (that is, ξ1, . . . , ξp ∈ epi f ∞ and ξ1 + . . . + ξp = 0 ⇒
ξi = 0 i = 1, . . . , p).

The following proposition allows us to better appreciate the definition of the epi-
pointed function.

Proposition 3.1 Consider f : Rn → R lsc and proper. Then the following statements
are equivalent:

(a) f is epi-pointed.
(b) There exist ū ∈ R

n, α > 0 and r ∈ R such that:

f (x) ≥ 〈ū, x〉 + α‖x‖ + r ∀x ∈ R
n

(c) There exists ū ∈ R
n such that f ∗ is bounded from above on a neighbourhood of

ū.

Proof First we will prove that

lim inf‖x‖→∞
f (x)

‖x‖ = inf‖x‖=1
f ∞(x). (1)

Indeed, consider sequences (xk), (tk), (yk) and points w0, w1 of norm one such that:

• ‖xk‖ → +∞, lim inf‖x‖→∞
f (x)
‖x‖ = lim f (xk)

‖xk‖ and xk‖xk‖ → w0.

• tk → 0+, yk → w1 and inf‖x‖=1
f ∞(x) = f ∞(w1) = lim tk f (

yk
tk

) ( f ∞ is lsc).

Then

lim inf‖x‖→∞
f (x)

‖x‖ = lim
f (xk)

‖xk‖ = lim
f ( xk‖xk‖‖xk‖)

‖xk‖ ≥ f ∞(w0) ≥ f ∞(w1)

= lim tk f (
yk
tk

) = lim ‖yk‖ tk
‖yk‖ f (

yk
tk

) ≥ lim inf‖x‖→∞
f (x)

‖x‖ .

Now we will prove the proposition:

• (a) ⇒ (b) Suppose that f is epi-pointed. Then inf‖x‖=1
f ∞(x) =: γ > −∞ (if

this does not happen, {0} × R ⊂ epi f ∞). Now we will show that there exists
ū ∈ R

n such that for every ‖x‖ = 1, f ∞(x) > 〈ū, x〉. In fact, consider the set
K := conv{(x, α) ∈ epi f ∞ : ‖x‖ = 1}. We have (0, 0) /∈ K , because if this
is not true, then there exists (xk, αk) = ∑n

i=0 λki (x
k
i , β

k
i ) (n is the dimension of

the underlying space, by Carathéodory’s Theorem) with (xki , β
k
i ) ∈ K , λki ≥ 0

and
∑n

i=0 λki = 1 with (xk, αk) → (0, 0). By taking a subsequence we can
suppose that for every i , xki → xi and λki → λi ; moreover, because βk

i ≥ γ , we
conclude that λki β

k
i → βi (taking another subsequence). From the fact that f ∞ is
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On Brøndsted–Rockafellar’s Theorem… 635

lsc and positively homogeneous we get (λi xi , βi ) ∈ epi f ∞, that is to say, there are
(wi , αi ) ∈ epi f ∞ (not all identically zero) such that (w0, α0)+. . .+(wn, αn) = 0,
which contradicts the epi-pointed assumption. Now we apply the Hahn-Banach
Theorem (if K = ∅ the result is trivial) to conclude the existence of w ∈ R

n ,
d ∈ R and η such that dα + 〈w, x〉 > η > 0 for every (x, α) ∈ K , then
necessarily d ≥ 0. So, taking ū = −d−1w if d > 0 or ū = −2 |γ |

η
w if d = 0, we

get inf‖x‖=1( f − ū)∞(x) = inf‖x‖=1 f ∞(x) − 〈ū, x〉 > 0. Now using Eq. 1 we
conclude

lim inf‖x‖→∞
f (x) − 〈ū, x〉

‖x‖ > 0.

Then there are α > 0 and M > 0 such that f (x) ≥ 〈ū, x〉 + α‖x‖ for every
‖x‖ ≥ M . So, taking r := minw∈B(0,M){ f (w) − 〈ū, w〉 − α‖w‖, 0} (because f
is lsc and proper) we conclude (b).

• (b) ⇒ (a) Suppose there exists {(xi , αi )}pi=0 ⊂ epi f ∞ (not all identically zero)
such that (x0, α0) + · · · + (xp, αp) = 0. Then, taking h(x) = f (x) − 〈ū, x〉 we
have

lim inf‖x‖→∞
h(x)

‖x‖ > 0,

and so we get

inf‖x‖=1
h∞(x) = inf‖x‖=1

f ∞(x) − 〈ū, x〉 > 0.

Let us compute the sum
∑p

i=0{ f ∞(xi ) − 〈ū, xi 〉}; as ∑p
i=0{ f ∞(xi ) − 〈ū, xi 〉} ≤

∑p
i=0 αi − ∑p

i=0〈ū, xi 〉, and ∑p
i=0 αi − ∑p

i=0〈ū, xi 〉 = 0 , we deduce that there
exists some xi �= 0 such that f ∞(xi )−〈ū, xi 〉 ≤ 0, and then h∞(

xi‖xi‖ ) ≤ 0, which
is a contradiction.

• (b) ⇒ (c)Take an arbitraryw ∈ B(0, α). Then for every x ∈ R
n , 〈w, x〉−α‖x‖−

r ≥ 〈ū + w, x〉 − f (x). Therefore, f ∗(ū + w) ≤ −r for every w ∈ B(0, α).
• (c) ⇒ (b) Let M ≥ 0 and α > 0 such that f ∗(ū + w) ≤ M for all w ∈ B(0, α).
Then 〈ū + w, x〉 − f (x) ≤ M for every w ∈ B(0, α) and every x ∈ R

n . Then
taking w := α x

‖x‖ we conclude (b).

This equivalence shows that the property of epi-pointedness is characterized by the
continuity of f ∗ at some point ū and it justifies the definition for functions defined on
a locally convex space X , that we will adopt in this work.

Definition 3.2 A function f : X → R is said to be epi-pointed if f ∗ is proper and
τ(X∗, X)-continuous at some point of its domain.

Next, we give typical examples that illustrate the amplitude of this class of functions.
For simplicity, we consider a reflexive Banach space (X, ‖ · ‖), because in this class
of spaces the Mackey topology coincide with the norm topology.
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Example 3.3 Let f : R → R be a function such that f (0) = 0 and the closed convex
envelope of f is positive; that is to say, conv f (x) > 0 for all x ∈ R\{0}. Then f is
an epi-pointed function.

Example 3.4 Let f : X → R∪{+∞} be a 1-coercive function; that is, ‖x‖−1 f (x) →
+∞ as ‖x‖ → +∞. Then, f is epi-pointed.

Example 3.5 Let f : X → R ∪ {+∞} be a proper lsc convex function. Then, for
every α > 0, the function x → f (x) + α‖x‖2 is epi-pointed.
Example 3.6 Let f : X → R ∪ {+∞} proper and prox-bounded function; that is,
f ≥ −μ‖x‖2 for some μ ≥ 0. Then for every ε > 0 the function f + (μ + ε)‖ · ‖2
is epi-pointed.

Example 3.7 For every function f : X → R ∪ {+∞} and every bounded set C ⊂ X
such that C ∩ dom f �= ∅ and f is minorized on C by a continuous affine form, the
function f + IC is epi-pointed.

Example 3.8 If X is a lcs and f : X → R is convex and continuous at some point of
its domain, then f ∗ : X∗ → R is epi-pointed.

4 Brøndsted–Rockafellar Theorem and consequences

First we give in Lemma 4.1 a simple variational principle, for convex functions defined
on lcs, that is the key tool in the proof of our main results.

Lemma 4.1 Fix x0 ∈ X and let f : X → R ∪ {+∞} and ρ : X → [0,∞) be
two convex lsc functions such that ρ(0) = 0 and the function f (·) + ρ(· − x0) is
epi-pointed. For any ε ≥ 0 and x∗

0 ∈ ∂ε f (x0) with x∗
0 ∈ Int(dom( f + ρ(· − x0))∗),

there exists xε ∈ X such that:

(a) ρ(x0 − xε) ≤ ε,
(b) x∗

0 ∈ ∂( f + ρ(· − x0))(xε),
(c) | f (x0) − f (xε)| ≤ |〈x∗

0 , x0 − xε〉| + ε.

Proof Define g := f +ρ(·− x0)− x∗
0 . By Proposition 2.1 (b) we see that the (proper

lsc convex) function g is inf-compact, and there exists xε ∈ argmin g (the minima of
g), such that

f (xε) + ρ(xε − x0) − x∗
0 (xε) ≤ f (x0) − x∗

0 (x0) ≤ f (xε) − x∗
0 (xε) + ε.

Hence, ρ(xε − x0) ≤ ε. Now, since 0 ∈ ∂g(xε), by Proposition 2.1 (a) we have

x∗
0 ∈ ∂( f + ρ(· − x0))(xε).

Finally, 〈x∗
0 , x0 − xε〉 ≤ f (x0)− ( f (xε)+ρ(xε − x0)) ≤ f (x0)− f (xε) ≤ 〈x∗

0 , x0 −
xε〉 + ε, gives us the last statement.
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On Brøndsted–Rockafellar’s Theorem… 637

The following result gives the counterpart of Brøndsted–Rockafellar-Borwein The-
orem (e.g., [3]) for convex lsc epi-pointed functions defined in locally convex spaces.

Theorem 4.2 Let f : X → R ∪ {+∞} be a convex, lsc and epi-pointed function.
Consider ε ≥ 0, β ∈ [0,∞), a continuous seminorm p, λ > 0 and x0 ∈ X. If
x∗
0 ∈ ∂ε f (x0)∩ Int(dom f ∗), then there are xε ∈ X, y∗

ε ∈ Bp(0, 1)◦ and λε ∈ [−1, 1]
such that:

(a) p(x0 − xε) + β|〈x∗
0 , x0 − xε〉| ≤ λ,

(b) x∗
ε := x∗

0 + ε
λ

(
y∗
ε + βλεx∗

0

) ∈ ∂ f (xε),
(c) |〈x∗

ε , x0 − xε〉| ≤ ε + λ
β
,

(d) | f (x0) − f (xε)| ≤ ε + λ
β
,

(e) x∗
ε ∈ ∂2ε f (x0),

With the convention 1
0 = +∞.

Proof Define ρ(x) = ε
λ

(
p(x) + β|〈x∗

0 , x〉|
)
. We apply Lemma 4.1 to f and ρ to

conclude the existence of xε ∈ X such that ρ(x0− xε) ≤ ε, x∗
0 ∈ ∂( f +ρ(·− x0))(xε)

and | f (x0) − f (xε)| ≤ |〈x∗
0 , x0 − xε〉| + ε. So, xε verifies (a) and (d). Now we

use Proposition 2.1 (a) to obtain 0 ∈ ∂ f (xε) − x∗
0 + ε

λ
Bp(0, 1)◦ + ε

λ
β · [−1, 1] ·

x∗
0 , from which we find y∗

ε ∈ Bp(0, 1)◦ and λε ∈ [−1, 1] such that x∗
ε := x∗

0 +
ε
λ

(
y∗
ε + βλεx∗

0

) ∈ ∂ f (xε). Then

|〈x∗
ε − x∗

0 , x0 − xε〉| ≤ ε
λ
|〈y∗

ε + βλεx∗
0 , x0 − xε〉|

≤ ε
λ

(|〈y∗
ε , x0 − xε〉| + β|〈x∗

0 , x0 − xε〉|
)

≤ ε
λ

(
p(x0 − xε) + β|〈x∗

0 , x0 − xε〉|
) ≤ ε,

and (c) follows (using (a)) |〈x∗
ε , x0−xε〉| ≤|〈x∗

ε −x∗
0 , x0−xε〉|+|〈x∗

0 , x0−xε〉| ≤ ε+ λ
β
.

Finally, since x∗
0 ∈ ∂ε f (x0) and x∗

ε ∈ ∂ f (xε) we get, for every x ∈ X ,

〈x∗
ε , x − x0〉 = 〈x∗

ε , x − xε〉 + 〈x∗
ε − x∗

0 , xε − x0〉 + 〈x∗
0 , xε − x0〉

≤ f (x) − f (xε) + ε + f (xε) − f (x0) + ε

= f (x) − f (x0) + 2ε;

that is, x∗
ε ∈ ∂2ε f (x0).

This Theorem allows us to obtain the counterpart of the classical statement of
Brøndsted–Rockafellar’s Theorem for lsc convex epi-pointed functions in locally con-
vex spaces.

Corollary 4.3 Let f : X → R ∪ {+∞} be a convex lsc epi-pointed function. Then
for every x ∈ dom f there exist nets {(xα), (x∗

α)}α∈A such that x∗
α ∈ ∂ f (xα), xα → x

and f (xα) → f (x).

Proof Consider a filtered family of seminorms N (ordered by ρ1 ≤ ρ2 if and only if
ρ1(x) ≤ ρ2(x) for all x ∈ X ), which defines the topology on X . We also define the
index set A := N × (0, 1) associated with the partial order

α1 = (ρ1, ε1) ≤ α2 = (ρ2, ε2) if and only if ρ1 ≤ ρ2 and ε1 ≥ ε2.
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It is easy to see that for every ε ∈ (0, 1), ∂ε f (x) ∩ Int(dom f ∗) �= ∅. Therefore, for
every ε ∈ (0, 1) and for every continuous seminorm ρ ∈ N we can apply Theorem
4.2 to f with β = 1 and λ = √

ε. We get that there exists (xε,ρ, x∗
ε,ρ) in the graph of

the subdifferential of f such that ρ(x − xε,ρ) ≤ √
ε and | f (x) − f (xε,p)| ≤ ε + √

ε.
To prove the convergence of this net, take a neighborhood V of zero and δ > 0 and
let seminorm ρ0 ∈ N and ε0 ∈ (0, 1) such that Bρ0(0,

√
ε0) ⊆ V and ε0 + √

ε0 ≤ δ.
Therefore, for every (ρ, ε) ≥ (ρ0, ε0) we have that ρ0(x − xε,ρ) ≤ ρ(x − xε,ρ) ≤√

ε ≤ δ and | f (x) − f (xε,p)| ≤ ε + √
ε ≤ ε0 + √

ε0 ≤ δ, which implies that
xε,ρ ∈ x + V and | f (x) − f (xε,p)| ≤ δ.

Now, we apply Theorem 4.2 to obtain themaximal monotonicity of the subdifferen-
tial operator of proper lsc convex epi-pointed functions in locally convex spaces.1 For
proper lsc convex functions defined in Banach spaces, this corresponds to the famous
theorem by Rockafellar, [15, Theorem A].

Theorem 4.4 Let f : X → R ∪ {+∞} be a convex lsc function. If either f or f ∗ is
epi-pointed, then ∂ f and ∂ f ∗ are maximal monotone operators.

Proof Without lost of generality we consider that f is an epi-pointed function, that
f (0) = 0 and that 0 /∈ ∂ f (0). We pick an x ∈ X such that f (2x) < f (x) < 0 (such
an element exists, since by supposing the contrary, one deduces that f (x) ≥ f ( x2 ) for
any x such that f (x) < 0, and we get f (x) ≥ f ( x

2n ) for any n ∈ N, which leads us
to the contradiction f (x) ≥ lim infn→+∞ f ( x

2n ) ≥ f (0)). If a := f (x) − f (2x) and
δ ∈ (0, a

a+3 ), we choose an x
∗ ∈ ∂δ2 f (x)∩ Int(dom f ∗) (this choice is possible since

f (x) = f ∗∗(x) = sup{〈y∗, x〉 − f ∗(y∗) : y∗ ∈ Int(dom f ∗)}). Then

〈x∗, x〉 = 〈x∗, 2x − x〉 ≤ f (2x) − f (x) + δ2 ≤ δ2 − a < 0.

Define p(x) = |〈x∗, x〉| a continuous seminorm so that Bp(0, 1) = {x ∈ X :
|〈x∗, x〉| ≤ 1} and (Bp(0, 1))◦ = [−1, 1] · x∗. Then Theorem 4.2 (with ε = δ2,
λ = δ and β = 0) ensures the existence of x0 ∈ X and x∗

0 ∈ ∂ f (x0) such that
x − x0 ∈ δBp(0, 1) and x∗ − x∗

0 ∈ δ(Bp(0, 1))◦. Thus, |〈x∗ − x∗
0 , x − x0〉| ≤ δ2,

|〈x∗ − x∗
0 , x〉| ≤ δ|〈x∗, x〉| = δ(a − δ2) and |〈x∗, x − x0〉| ≤ δ. In conclusion, we get

〈x∗
0 , x0〉 = 〈x∗, x〉 + 〈x∗ − x∗

0 , x − x0〉 + 〈x∗
0 − x∗, x〉 + 〈x∗, x0 − x〉

≤ δ2 − a + δ2 + δ(a − δ2) + δ < −a + δ(a + 3) < 0.

We finish this section by applying Theorem 4.2 to get limiting calculus rules for
the subdifferential mapping of the composition with a linear mapping and the sum of
convex functions. Our proof is an adaptation of [16, Theorem 3] that uses the following
lemma.

1 The arguments used in the proof of this result (Theorem 4.4) follows the suggestion made by one of the
referees.

123



On Brøndsted–Rockafellar’s Theorem… 639

Lemma 4.5 Let X, Z be two lcs, f ∈ �0(Z) be an epi-pointed function and A ∈
L(X, Z) (linear and continuous mapping). Then for every x ∈ dom( f ◦ A)

∂ ( f ◦ A) (x) =
⋂

η>0

A∗ [
∂η f (Ax) ∩ Int(dom f ∗)

]w∗
.

Proof By Proposition 2.2 we only need to prove that for every η > 0

A∗ (
∂η f (Ax)

) ⊂ [
A∗ (

∂η f (Ax) ∩ Int(dom f ∗)
)]w∗

.

Indeed, if z ∈ dom f , then

f (z) = sup{〈x∗, z〉 − f (x∗) : x∗ ∈ Int(dom f ∗)}

and ∂η f (z) ∩ Int(dom f ∗) �= ∅ for every η > 0. Because Int(dom f ∗) is open and
dense in dom f ∗ we have that ∂η f (z) ∩ Int(dom f ∗) = ∂η f (z) = ∂η f (z). Hence,
since A∗ is w∗ to w∗ continuous we conclude the lemma.

Theorem 4.6 Let X, Z be two lcs, A ∈ L(X, Z), g ∈ �0(Z) be an epi-pointed
function, f := g ◦ A and x ∈ dom f . Then x∗ ∈ ∂ f (x) if and only if there exists
a net (zi , z∗i )i∈I ∈ Z × Z∗ such that z∗i ∈ ∂g(zi ), zi → y = Ax, g(zi ) → g(y),

〈zi − z, z∗i 〉 → 0 and A∗(z∗i )
w∗→ x∗.

Proof Take x∗
0 ∈ ∂ f (x). Consider a filtered family of seminorms N1 (ordered by

ρ1
Z ≤ ρ2

Z if and only if ρ1
Z (z) ≤ ρ2

Z (z) for all z ∈ Z ), which defines the topology on Z
and a filtered family of seminormsN2 (ordered in a similar way asN1: ρ1

X∗ ≤ ρ2
X∗ if

and only if ρ1
X∗(x∗) ≤ ρ2

X∗(x∗) for all x∗ ∈ X∗), which defines the weak∗ topology on
X∗.We also define the index set I := N1×N2×(0, 1)ordered by i1 = (ρ1

Z , ρ1
X∗ , ε1) ≤

i2 = (ρ2
Z , ρ2

X∗ , ε2) if and only if ρ1
Z ≤ ρ2

Z , ρ1
X∗ ≤ ρ2

X∗ and ε1 ≥ ε2. Now, we take
i = (ρZ , ρX∗ , ε) ∈ I and set U := {z ∈ Z : pZ (z) ≤ 1}. Choose an η > 0 such
that

√
η + η ≤ ε

2 and 2
√

η ≤ ε
(
maxU◦ pX∗(A∗(y∗)) + pX∗(x∗

0 ) + 1
)−1. Then by

Lemma 4.5 we take z∗0 ∈ ∂ηg(z) ∩ Int(dom g∗) such that pX∗(A∗z∗0 − x∗
0 ) ≤ η. By

Theorem 4.2 (with β = 1, λ = √
η) there exists z∗i ∈ ∂g(zi ) such that pZ (zi − z) ≤√

η, z∗i = z∗0 + √
η

(
u∗
i + ληz∗0

) ∈ ∂g(zi ), u∗
η ∈ U ◦, |〈z∗i , z − zi 〉| ≤ η + √

η

and |g(z) − g(zi )| ≤ η + √
η. Therefore, pZ (zi − z) ≤ ε, |〈z∗i , z − zi 〉| ≤ ε and

|g(z) − g(zi )| ≤ ε. Finally,

pX∗(A∗z∗i − x∗
0 ) ≤ pX∗(A∗z∗0 − x∗

0 ) + pX∗(A∗z∗i − A∗z∗0)

≤ ε

2
+ √

η
(
pX∗(A∗u∗

i ) + pX∗(A∗z∗0 − x∗
0 ) + pX∗(x∗

0 )
)

≤ ε

2
+ √

η
(
pX∗(A∗u∗

i ) + η + pX∗(x∗
0 )

)

≤ ε

2
+ √

η

(

max
U◦ pX∗(A∗(y∗)) + pX∗(x∗

0 ) + 1

)

≤ ε.
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To prove the necessity part, let (yi , y∗
i )i∈I ⊂ gph ∂g a net such that (yi ) → y = Ax ,

g(yi ) → g(y), 〈yi − y, y∗
i 〉 → 0 and A∗(y∗

i )
w∗→ x∗. Then 〈y− yi , y∗

i 〉 ≤ g(y)−g(yi )
for every i ∈ I and y ∈ X . It follows that

〈z − x, A∗y∗
i 〉 + 〈y − yi , y

∗
i 〉 = 〈Az − yi , y

∗
i 〉 ≤ f (z) − g(yi ) ∀i ∈ I, ∀z ∈ X.

Taking the limits gives 〈z − x, x∗〉 ≤ f (z) − f (x), for all z ∈ X , and so x∗ ∈ ∂ f (x).

Remark 1 We give a simple example which shows that the above subdifferential cal-
culus rule is not valid without the epi-pointedness assumption. Let g : X → R be a
convex lsc and proper function with empty subdifferential everywhere (see [4]). Then
take a continuous linear function A : R → X such that dom g∩ A(R) �= ∅. We easily
check that the function f = g ◦ A is proper, convex, and lsc in R. This implies that
there exists a point x0 ∈ R such that ∂ f (x0) �= ∅ and Theorem 4.6 does not hold.

From the last theorem we deduce the subdifferential limiting calculus rule for the sum
of convex epi-pointed functions.

Theorem 4.7 Let f1, f2 ∈ �0(X) be epi-ponted functions and x ∈ dom( f1 + f2).
Then x∗ ∈ ∂ ( f1 + f2) (x) if and only if there exist two nets (xk,i , x∗

k,i )i∈I ⊂ X × X∗
such that x∗

k,i ∈ ∂ fk(xk,i ) k = 1, 2, xk,i → x, fk(xk,i ) → fk(x), 〈xk,i − x, x∗
k,i 〉 → 0,

for k = 1, 2, and (x∗
1,i + x∗

2,i )
w∗→ x∗.

Proof We apply Theorem 4.6 with Z = X × X , A : X → Z defined by Ax = (x, x)
and g(x1, x2) = f1(x1)+ f2(x2).We have f := f1+ f2 = g◦A. The sufficiency part is
immediate, taking y = (x, x) = Ax , yi = (x1,i , x2,i ) and y∗

i = (x∗
1,i , x

∗
2,i ), for i ∈ I .

For the necessity part, we take x∗ ∈ ∂ f (x). By Theorem 4.6 there exists (yi , y∗
i )i∈I ⊂

Z × Z∗ such that y∗
i ∈ ∂g(yi ), yi → y = Ax , g(yi ) → g(y), 〈yi − y, y∗

i 〉 → 0

and A∗(y∗
i )

w∗→ x∗. Taking yi = (x1,i , x2,k) and y∗
i = (x∗

1,i , x
∗
2,i ), by the formula

∂g(x1, x2) = ∂ f1(x1) × ∂ f2(x2), we get x∗
k,i ∈ ∂ fk(xk,i ) and xk,i → x for k = 1, 2.

Suppose that lim sup f1(x1,i )− f1(x) > δ > 0. Then J := {i ∈ I : f1(x1,i )− f1(x) >

δ} is a co-final set in I . It follows that g(yi ) − g(y) ≥ δ + f2(x2,i ) − f2(x) for every
i ∈ J . Then taking the lower limits we get 0 ≥ δ and, hence, fk(xk,i ) → fk(x), for
k = 1, 2. Finally, using the following inequalities

f1(x1,i ) − f1(x) ≤ 〈x1,i − x, x∗
1,i 〉 ≤ 〈x1,i − x, x∗

1,i 〉
+ 〈x2,i − x, x∗

2,i 〉 + f2(x) − f2(x2,i ) ∀i ∈ I,

and taking the limits, we infer that 〈x1,i − x, x∗
1,i 〉 → 0.

5 Banach spaces

In this last section, we show how to recover from our previous results the classical
Brøndsted–Rockafellar Theorem in the context of Banach spaces, for any proper lsc
convex functions which are not necessarily epi-pointed. In the case of reflexive spaces,
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it is an easy exercise, using adequate perturbations of the convex function in order to
obtain an epi-pointed function, in the line of Examples 3.5 and 3.7.

Proposition 5.1 Let X be a reflexive Banach space and f ∈ �0(X). Consider x0 ∈
dom f , ε ≥ 0 and x∗

0 ∈ ∂ε f (x0). Then there exist (xε, x∗
ε ) ∈ X × X∗ such that

x∗
ε ∈ ∂ f (xε), ‖xε − x0‖ ≤ √

ε and ‖x∗
ε − x∗

0‖ ≤ √
ε. In particular, dom f ⊂ dom ∂ f

and dom f ∗ ⊂ Im ∂ f .

Proof Consider x∗
0 ∈ ∂ε f (x0). We define the function g(w) := f (w) + IB(0,M),

where M ≥ ‖x0‖ + ε + √
ε. It is easy to see that g is epi-pointed (recall Example

3.7), dom(g∗) = X∗ and x∗
0 ∈ ∂εg(x0), hence we apply Theorem 4.2 with λ = √

ε,
and β = 0, to get the existence of (xε, x∗

ε ) ∈ X × X∗ such that x∗
ε ∈ ∂g(xε)),

‖x0 − xε‖ ≤ √
ε and ‖x∗

ε − x∗
0‖ ≤ √

ε. From the fact that xε ∈ Int B(0, M), we
conclude that x∗

ε ∈ ∂ f (xε).

Proposition 5.2 Let X be a reflexive Banach space and f ∈ �0(X). Then ∂ f is a
maximal monotone operator.

Proof Let f ∈ �0(X) such that for every (x, x∗) ∈ gph ∂ f we have 〈x∗, x〉 ≥ 0. We
take the function g(w) := f (w) + 1

2‖x‖2. Clearly, g is epi-pointed (recall Example
3.5), and so by Theorem 4.4 ∂g is a maximal monotone operator. Moreover, for every
x ∈ X , ∂g(x) = ∂ f (x) + ∂ 1

2‖ · ‖2(x), where ∂ 1
2‖ · ‖2(x) = {x∗ ∈ X∗ : 〈x∗, x〉 =

‖x‖2 = ‖x∗‖2}. Then, for every w∗ ∈ ∂g(x), 〈w∗, x〉 ≥ 0 and by the maximality we
get 0 ∈ ∂g(0). Finally, because ∂ f (0) = ∂g(0) we obtain 0 ∈ ∂ f (0).

Proposition 5.3 Let X be an lcs, Z be a reflexive Banach space, A ∈ L(X, Z),
g ∈ �0(Z) , f := g ◦ A and x ∈ dom f . Then x∗ ∈ ∂ f (x) if and only if there exists
a net (yi , y∗

i )i∈I ⊂ Z × Z∗ such that y∗
i ∈ ∂g(yi ), yi → y = Ax, g(yi ) → g(y),

〈yi − y, y∗
i 〉 → 0 and A∗(y∗

i )
w∗→ x∗.

Proof Consider the functions g̃ := g+ IB(A(x),1) and f̃ := g̃ ◦ A. We apply Theorem
4.6 to f̃ and obtain the existence of a net (yi , y∗

i )i∈I ∈ Z × Z∗ such that y∗
i ∈ ∂ g̃(yi ),

(yi ) → y = Ax , (g(yi )) → g(y), 〈yi − y, y∗
i 〉 → 0 and A∗(y∗

i )
w∗→ x∗. Because

(yi ) → y = Ax we can suppose that (yi )? ⊂ Int B(A(x), 1), so we have g̃(yi ) =
g(yi ) and by Proposition 2.1 (a) we have y∗

i ∈ ∂g(yi ).

Finally we show that Brøndsted–Rockafellar’s Theorem can also be obtained from
Lemma 4.1.

Theorem 5.4 Let X be a Banach space and h : X → R a convex lsc function. If
x∗
0 ∈ ∂ε2h(x0), then for every δ > 0 there exist xε ∈ X and x∗

ε ∈ X∗ such that
‖x0 − xε‖ < ε + δ, ‖x∗

0 − x∗
ε ‖ < ε + δ and x∗

ε ∈ ∂h(xε).

Proof Take a sequence of positive numbers {δn}n≥1, such that
∑∞

n=1 δn < δ and
δ0 := ε. We claim that if x∗

n ∈ ∂δ2n
h(xn), then there exists (xn+1, x∗

n+1) ∈ X × X∗
such that ‖xn − xn+1‖ ≤ δn , ‖x∗

n − x∗
n+1‖ ≤ δn and x∗

n+1 ∈ ∂δ2n+1
h(xn+1). Take

f := h∗ and ρ := δn‖ · ‖ and consider the duality pair (X∗, w∗, X, ‖ · ‖). Since xn ∈
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∂δ2n
f (x∗

n )∩Int(dom( f +ρ(·−x∗
n ))

∗) (dom( f +ρ(·−x∗
n ))

∗ ⊇ dom h+δn BX (0, 1)),
we apply Lemma 4.1 and we conclude that there exists x∗

n+1 ∈ X∗ such that ‖x∗
n+1 −

x∗
n‖ ≤ δn and xn ∈ ∂( f + ρ(· − x∗

n ))(x
∗
n+1). By applying Proposition 2.1 (a) in X∗∗,

xn ∈ ∂ f ∗(x∗
n+1) + δn BX∗∗ , and so there exists x∗∗ ∈ X∗∗ such that x∗

n+1 ∈ ∂ f ∗(x∗∗)
and ‖xn − x∗∗‖ ≤ δn . Finally, we apply Proposition 2.1 (c) to h and IBX (xn ,δn) with
the duality pair (X, ‖ · ‖, X∗, w∗) to get h∗�σBX (xn ,δn) = (h + IBX (xn ,δn))

∗. Next,
we apply Proposition 2.1 (d) to h∗ and σBX (xn ,δn) = σBX∗∗ (xn ,δn) with the duality pair
(X∗, ‖ · ‖∗, X∗∗, w∗) to get

epi(h∗∗ + IBX∗∗ (xn ,δn)) = epi(h + IBX (xn ,δn))
∗∗ = epi

w∗
(h + IB(xn ,δn)).

Therefore there exist a net (xi , αi )i∈I ∈ epi(h+ IB(xn ,δn)) ⊆ X×R such that xi
w∗→ x∗∗

and αi → h∗(x∗∗), which implies the existence of an element i0 ∈ I such that

xi0 ∈ B(xn, δn),
δ2n+1
2 +h∗∗(x∗∗) > αi0 ≥ h(xi0) and

δ2n+1
2 +〈x∗

n+1, xi0〉 > 〈x∗
n+1, x

∗∗〉.
Set xn+1 := xi0 . Then we get

h(xn+1) + h∗(x∗
n+1) ≤ h∗∗(x∗∗) + h∗(x∗

n+1) + δ2n+1

2
≤ 〈x∗∗, x∗

n+1〉

+δ2n+1

2
≤ 〈x∗

n+1, x
∗
n+1〉 + δ2n+1,

and the construction of the sequences xn and x∗
n is done. From the facts that ‖xn −

xn+1‖ ≤ δn , ‖x∗
n−x∗

n+1‖ ≤ δn and
∑∞

i=1 δi < +∞, it follows that (xn, x∗
n ) is aCauchy

sequence. By the completeness of X and X∗, we conclude that (xn, x∗
n )

‖·‖→ (xε, x∗
ε ),

and so ‖x0 − xε‖ < ε + δ, ‖x∗
0 − x∗

ε ‖ < ε + δ. Hence, x∗
ε ∈ ∂h(xε).
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