Study of a variable mass Atwood’s machine using a smartphone
Dany Lopez, Isidora Caprile, Fernando Corvacho, and Orfa Reyes

Citation: The Physics Teacher 56, 182 (2018); doi: 10.1119/1.5025303
View online: https://doi.org/10.1119/1.5025303
View Table of Contents: http://aapt.scitation.org/toc/pte/56/3
Published by the American Association of Physics Teachers

Articles you may be interested in
A Person Stands on a Balance in an Elevator: What Happens When the Elevator Starts to Fall?
The Physics Teacher 56, 156 (2018); 10.1119/1.5025292

When Does Air Resistance Become Significant in Projectile Motion?
The Physics Teacher 56, 168 (2018); 10.1119/1.5025298

A Tale of Two Slinkies: Learning about Model Building in a Student-Driven Classroom
The Physics Teacher 56, 134 (2018); 10.1119/1.5025285

Wavelength variation of a standing wave along a vertical spring
The Physics Teacher 56, 155 (2018); 10.1119/1.5025291

Thomson’s Jumping Ring Over a Long Coil
The Physics Teacher 56, 176 (2018); 10.1119/1.5025301

ELECTROMAGNETIC WAVES
The Physics Teacher 56, 133 (2018); 10.1119/1.5025284
Study of a variable mass Atwood’s machine using a smartphone
Dany Lopez, Isidora Caprile, Fernando Corvacho, and Orfa Reyes, Universidad de Chile, Santiago, Chile

The Atwood machine was invented in 1784 by George Atwood and this system has been widely studied both theoretically and experimentally over the years. Nowadays, it is commonplace that many experimental physics courses include both Atwood’s machine and variable mass to introduce more complex concepts in physics. To study the dynamics of the masses that compose the variable Atwood’s machine, laboratories typically use a smart pulley. Now, the first work that introduced a smartphone as data acquisition equipment to study the acceleration in the Atwood’s machine was the one by M. Monteiro et al. Since then, there has been no further information available on the usage of smartphones in variable mass systems. This prompted us to do a study of this kind of system by means of data obtained with a smartphone and to show the practicality of using smartphones in complex experimental situations.

Theory

The variable mass Atwood’s machine consists of two variable masses $m_a(t)$ and $m_b(t)$. Without loss of generality, we considered that only $m_a(t)$ changes in time. Both masses are connected by an inextensible massless string over an ideal massless pulley. The acceleration equation of this system has been studied in depth by José Flores et al. Based on the results obtained there, the common acceleration is given by

$$a = \frac{m_a(t) - m_b}{m_a(t) + m_b} g,$$

(1)

under the influence of an effective gravitational field g. As we can see, the integrability of Eq. (1) is largely dependent on $m_a(t)$. After some considerations that are well explained in Ref. 6 for $m_a(t) = c_0(t) + m_a(t = 0)$, the common speed is given by:

$$v(t) = v(t = 0) + \frac{gt}{\lambda} + \left(\frac{M_0 - \lambda m_{ab,0}}{\lambda^2 C_0}\right) g \ln \left(1 - \frac{c_0 \lambda t}{M_0}\right),$$

(2)

where

$$\lambda = 1 - \left(\frac{m_b}{M_0 - (1/2) m_a(t = 0)}\right)$$

(3)

and c_0 is the flow rate of sand when the system is not accelerating, $M_0(t) = m_b + m_a(t = 0)$ and $m_{ab,0} = m_a(t = 0) - m_b$.

Equation (2) can be compared directly with the results of our smartphone measurements.
Fig. 2. Snapshot of the Vernier app. We observe three acceleration curves collected by the acceleration sensor. The yellow, blue, and red lines represent the x-, y-, and z-components, respectively. The only relevant component is the z. The interested area is highlighted in blue.

Fig. 3. Experimental result of the variable mass Atwood’s machine. The circles represent the measured values of the velocity collected directly by using the Smart Pulley. The inset shows the linear flow rate of sand equal to 0.0065 N/s. The parameters of the system were \(m_1 (f = 0) = 0.16170 \pm 0.00001 \text{ kg} \) and \(m_2 = 0.15135 \pm 0.00001 \text{ kg} \). The measured value of the acceleration \(g = 9.78 \text{ m/s}^2 \). The continuous line represents the analytical solution given by Eq. (2). The triangular dots represent the measured values of the velocity collected directly by using the Smart Pulley. The inset shows the linear flow rate of sand equal to 0.0065 N/s. The parameters of the system were \(m_1 (f = 0) = 0.16170 \pm 0.00001 \text{ kg} \) and \(m_2 = 0.15135 \pm 0.00001 \text{ kg} \). The measured value of the acceleration \(g = 9.78 \text{ m/s}^2 \).

At the same time, the accelerations over time were also measured using the PASCO Smart Pulley software in order to compare the results obtained by the smartphone. The experiment was replicated several times, maintaining the initial proportions between the masses. All the other results were quite similar as the one shown in Fig. 2. To obtain the experimental velocity curve, the accelerations collected from the Vernier app (shown in the highlighted area in Fig. 2) were numerically integrated with respect to time by using the standard discrete integration formula. After some minor adjustment of scale, the experimental velocity trend (collected using a smartphone) is shown in blue circles in Fig. 3 (this corresponds to one experimental realization only). Comparing this result with the analytical solution given by Eq. (2) (continuous line in Fig. 3), we observed a good agreement.

Finally, the data from the PASCO Smart Pulley software (triangular dots) are also plotted in Fig. 3. The results were qualitatively similar with respect to those obtained from the smartphone. Nevertheless, it is important to point out the fact that as soon as the masses changed their velocity directions, the Smart Pulley needed to change its rotational directions quickly, making it impossible to collect any data in that period of time. This inconvenience is highlighted in the dashed square area in Fig. 3. However, it is clear that a smartphone does not present any problem acquiring data when the system changes its velocity direction abruptly. This might be quite useful to laboratory courses in order to study more complex variable mass systems.

Conclusion

From Fig. 3 we can conclude that it is possible to study a variable mass system by using a smartphone. Indeed, a really good agreement between the experiment and theoretical prediction was observed. Moreover, using smartphones as data acquisition equipment instead of traditional laboratory equipment (such as a smart pulley) might be more adequate when systems present more complex dynamics, such as those faced when carrying out this experiment.

Despite the fact that this type of system is usually considered quite advanced to introduce in physics laboratory courses, it could be useful for students to get a deeper understanding about the physics behind variable mass systems. Moreover, introducing a smartphone as data acquisition equipment might lead students to think more carefully about the experimental data treatment and to question the meaning of the experimental results. Nonetheless, introducing both, variable mass Atwood’s machine and smartphone, at the beginning might not be very useful and perhaps it is better to start with a more basic experiment, for instance those in Refs. 5, 6, and 9 to mention a few, before introducing this one.

Acknowledgments

This work was carried out by D.L. in collaboration with two undergrad. students, I.C. and F.C., as an undergraduate laboratory project in the Department of Physics of the Faculty of Sciences, U.C. We would like to acknowledge the valuable comments and constant support of Professor Mario Molina.

References

8. In order to integrate the experimental acceleration data numerically, we computed a discrete integration:

\[
\begin{align*}
\Delta v_i &= \frac{\Delta x_i}{\Delta t_i} + \frac{a_{x_{i+1}} + a_{x_i}}{2} (t_{x_{i+1}} - t_x) \\
\text{where } v_i &= 0.
\end{align*}
\]