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Abstract Epi-Lipschitz sets in normed spaces are represented as sublevel sets of
Lipschitz functions satisfying a so-called qualification condition. Canonical represen-
tations through the signed distance functions associated with the sets are also obtained.
New optimality conditions are provided, for optimization problems with epi-Lipschitz
set constraints, in terms of the signed distance function.
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1 Introduction

Given a subset S of a normed space X , Rockafellar [15,16] showed that the Clarke
tangent cone T (S; x) of the set S at x ∈ S can be described as follows: a vector
v ∈ T (S; x) provided that, for any neighbourhood V of v in X , there are a real ε > 0
and a neighbourhood U of x such that

(x + t V ) ∩ S �= ∅ for all x ∈ U ∩ S, t ∈]0, ε[. (1.1)
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In order to establish, for two subsets S1, S2 of X with x ∈ S1 ∩ S2, the fundamental
inclusion T (S1; x) ∩ T (S2; x) ⊂ T (S1 ∩ S2; x), Rockafellar [15,16] introduced in
Variational Analysis the concept of epi-Lipschitz sets. It is then proved in [17] that
the latter inclusion with the Clarke tangent cones holds true whenever the set S2 is
epi-Lipschitz at x in a direction belonging to T (S1; x). According to [16] the set
S is epi-Lipschitz at x in a direction v ∈ X (see the beginning of Sect. 3 for the
terminology) provided there exist a real ε > 0 and neigbbourhoods U and V in X of
x and v respectively such that

U ∩ S +]0, ε[ V ⊂ S. (1.2)

The set of such vectors v, which is obviously an open convex cone, is called the
interior tangent cone of S at x that we will denote by I (S; x). So, one says that S
is epi-Lipschitz at x when I (S; x) �= ∅. If S is epi-Lipschitz at any of its points, or
equivalently at any of its boundary points, it is called epi-Lipschitz. If S is closed
near x , [15] shows that it is epi-Lipschitz at x if and only if it can be written -near
x- as the epigraph of a Lipschitz function. In fact, this is the justification of the term
”epi-Lipschitz set” (see Sect. 3 for details).

Cornet and Czarnecki [5] showed the following representation of closed epi-
Lipschitz set.

Theorem 1.1 [5] A closed set S of Rp is epi-Lipschitz if and only if there is a locally
Lipschitz function g : Rp → R such that

S = {x ∈ R
p : g(x) ≤ 0}

and

0 /∈ ∂g(x) for all x ∈ bdry S,

where bdry S denotes the boundary of the set S and ∂g(x) is the Clarke generalized
gradient of the function g at x.

This equivalence theorem has been extended to Banach spaces in [9] with the use of
a result in [8]. The proofs in [5,8,9] rely on the characterization of epi-Lipschitz sets
as epigraphs of Lipschitz functions. The present paper only uses the original definition
of Rockafellar with the interior tangent cone, which does not restrict to locally closed
sets and thus allows for far more generality. For example, convex sets with nonempty
interiors are epi-Lipschitz, see [16, Proposition 3]. This allows to consider epigraphs
of convex functions without lower semicontinuity property. Also, open epi-Lipschitz
sets commonly occur in PDEs as sets with interior cone property, also called sets with
Lipschitz boundary.

On the other hand our approach shows how some arguments in [5] can be modified
and adapted to deal in general normed spaces with the above sublevel representation as
well as with canonical sublevel representation in terms of the signed distance function.
In doing so, some new properties of epi-Lipschitz sets, related to (possibly fixed)
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interiorly tangent directions, will be proved in Sect. 2. The sublevel representations
are established in Sect. 3. Optimality conditions for optimization problems with epi-
Lipschitz set constraints are provided in the last section in terms of the signed distance
function.

2 Tangential and topological properties of epi-Lipschitz sets

Throughout the paper, unless otherwise stated, (X, ‖ · ‖) will be a (real) normed space
and X∗ its topological dual. We will denote by B(x, r) (resp. B[x, r ]) the open (resp.
closed) ball centered at x ∈ X with radius r > 0. The topological interior (resp.
closure) of the subset S of X will be written as intX S (resp. clX S). When there is no
risk of confusion the subscript X will be omitted.

Let U be an open set in X and f : X → R be a locally Lipschitz function. Its
Clarke directional derivative at x is defined by

f o(x; v) := lim sup
t↓0,x→x

t−1( f (x + tv) − f (x)
)
, (2.1)

and its Clarke generalized gradient or subdifferential at x is given by

∂ f (x) := {x∗ ∈ X∗ : ∀v ∈ X, 〈x∗, v〉 ≤ f o(x; v)}. (2.2)

The continuous function f o(x; ·) being sublinear (that is, convex and positively homo-
geneous), it is the support function of the weak-∗ compact convex set ∂ f (x). In the
paper, (unless otherwise specified) we will consider only the Clarke generalized gra-
dient as concept of subdifferential and only the Clarke tangent cone and the interior
tangent cone as concepts of tangent cones; so, no confusion will arise with notations
∂ f (x) and T (S; x).

Given the set S of X containing x , the Clarke tangent cone T (S; x) has been defined
in [2,3] through the distance function dS as

T (S; x) := {v ∈ X : doS(x; v) ≤ 0} = {v ∈ X : doS(x; v) = 0}. (2.3)

Clearly, T (S; x) is a closed convex cone in X . Previously to the characterization
(1.1) (due to [15,16]) recalled in the introduction, it has been proved in [11]1 that a
vector v ∈ T (S; x) whenever, for any sequence (tn)n in ]0,+∞[ tending to 0 and any
sequence (xn)n in S converging to x , there exists a sequence (vn)n converging to v in
X such that

xn + tnvn ∈ S for all n ∈ N. (2.4)

Combining this with (2.3) one can prove that v ∈ T (S; x) if and only if, instead of
(2.4), it is required that

xn + tnvn ∈ S for infinitely many n ∈ N; (2.5)

1 Hiriart-Urruty [11] formally states the result in a Banach space. The proof is obviously valid in any
normed space.
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(see [10,18,19]).
With this at hand, it is easy to see:

Proposition 2.1 Let S be a set of a normed space (X, ‖ · ‖) and x ∈ cl S. Let S′ be a
subset of X such that S ∩ U ⊂ S′ ∩ U ⊂ (cl S) ∩ U for some neighbourhood U of
x. Then, a vector v ∈ T (S ∪ {x}; x) if and only if, for any sequence (tn)n in ]0,+∞[
tending to 0 and any sequence (xn)n in S′ converging to x, there is a sequence (vn)n
in X converging to v such that xn + tnvn ∈ S for all n ∈ N.

A sequential characterization is also available for the interior tangent cone. Indeed,
from (1.2) it easy to see that a vector v ∈ I (S; x) if and only if, for any sequence (tn)n
in ]0,+∞[ tending to 0, any sequence (xn)n in S converging to x , and any sequence
(vn)n converging to v in X

xn + tnvn ∈ S for all n large enough. (2.6)

Combining this with (2.4) it is not difficult to see that

I (S; x) + T (S; x) ⊂ I (S; x).

Then, when I (S; x) �= ∅ (that is, S is epi-Lipschitz at x), as shown in [16], the
equalities

T (S; x) = clX I (S; x) and I (S; x) = intX T (S; x), (2.7)

hold true.
The next proposition provides a local property concerning the closure of the interior

of an epi-Lipschitz set, and this will be used later.

Proposition 2.2 Let S be a set of a normed space X such that S∪{x} is epi-Lipschitz
at x ∈ S in a direction v, where S := clX S. The following hold.

(a) There exists an open neighbourhood U of x such that

int S ∩U = int S ∩U = S ∩U.

(b) If C is a set containing x for which there exits some neighbourhood U0 of x such
that

(int S) ∩U0 ⊂ C ∩U0 ⊂ S ∩U0,

then C is epi-Lipschitz at x in the direction v and I (C; x) = I (S ∪ {x}; x); in
particular S is epi-Lipschitz at x in the direction v and I (S; x) = I (S ∪ {x}; x).

Proof To prove (a) we may suppose that x ∈ bdry S since the result is obvious if
x ∈ int S. From the epi-Lipschitz property of S∪{x} at x in the direction v, there are by
definition a real ε > 0, an open neighbourhoodU of x and an open neighbourhoodV of
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v such that (S∪{x})∩U+]0, ε[V ⊂ S∪{x}, thus in particular S∩U+]0, ε[V ⊂ S∪{x}.
Since the first member of the latter inclusion is open, it ensues that

S ∩U+]0, ε[V ⊂ int (S ∪ {x}).

Fix any x ′ ∈ S ∩ U and choose a sequence (xn)n in S converging to x ′. For some
integer N we have xn ∈ S ∩ U for all n ≥ N since U is a neighbourhood of x ′.
Therefore, for each t ∈]0, ε[ and each v′ ∈ V we have

xn + tv′ ∈ int (S ∪ {x})

for all n ≥ N , thus x ′ + tv′ ∈ int (S ∪ {x}). From Lemma 2.1 below we obtain
x ′ + tv′ ∈ int S, so x ′ ∈ int S. The two latter inclusions ensure S ∩U ⊂ int S and

S ∩U+]0, ε[V ⊂ S, hence S ∩U+]0, ε[V ⊂ int S. (2.8)

The inclusion S ∩U ⊂ int S guarantees the equalities

S ∩U = int S ∩U = int S ∩U

in (a) since we always have int S ⊂ int S ⊂ S.
Let us prove (b). Choose an open neighbourhood U ′ ⊂ U ∩ U0 of x , a real 0 <

ε′ < ε, and a neighbourhood V ′ ⊂ V of v such that U ′+]0, ε′[V ′ ⊂ U0. This entails
by the second inclusion in (2.8)

C ∩U ′+]0, ε′[V ′ = (
C ∩U ′+]0, ε′[V ′) ∩U0 ⊂ (int S) ∩U0,

thus the assumption on C gives C ∩ U ′+]0, ε′[V ′ ⊂ C , which justifies that C is
epi-Lipschitz at x in the direction v.

From the equalities in (a) and the assumption of (b) it is easily seen that S ∩U ′ =
C∩U ′, or equivalently S ∪ {x}∩U ′ = C∩U ′. It ensues that T (S∪{x}; x) = T (C; x).
The latter equality implies the desired equality I (S ∪ {x}; x) = I (C; x) of (b) since
I (P; x) = int

(
T (P; x)) whenever the set P is epi-Lipschitz at x [see (2.7)]. The

proof is then finished. ��
Lemma 2.1 Let S be a set of a normed space X, X �= {0}, and let x ∈ X. Then,
denoting by S the closure of S one has

int (S ∪ {x}) = int S.

Proof We only need to show that int (S ∪ {x}) ⊂ int S. Fix any x in the first member
that we suppose nonempty. There exists a real r > 0 such that B(x, r) ⊂ S ∪ {x}. If
x �= x , choosing 0 < ρ < min{r, ‖x − x‖} we see that B(x, ρ) ⊂ S, so x ∈ int S.

Now suppose that x = x , so B(x, r) ⊂ S ∪ {x}. Then, considering the nonempty
set U := B(x, r)\{x}, we derive U ⊂ S, thus U ⊂ int S. Since x ∈ U , it results that
x ∈ int S, completing the proof. ��
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In addition to the relevance of the epi-Lipschitz property in the calculus of the
Clarke tangent cone of intersection as said in the introduction, Clarke tangent cones
of an epi-Lipschitz set and its complement are linked as in the following proposition
from [16] (see also [11, page 84]). For completeness and the convenience of the reader,
we provide a direct proof.

Proposition 2.3 Let S be a set of a normed space X, let x ∈ S ∩ bdry S, and let
Sc := (X\S). The equality

I (Sc ∪ {x}; x) = −I (S; x)

holds, thus S is epi-Lipschitz at x in a direction v if and only if Sc∪{x} is epi-Lipschitz
at x in the opposite direction −v. So,

T (Sc ∪ {x}; x) = −T (S; x)

whenever S is epi-Lipschitz at x.

Proof Suppose that I (S; x) is nonvoid and, for any fixed v ∈ I (S; x), let us prove
that −v ∈ I (Sc ∪ {x}; x). Take, from the definition of I (S; x), a real ε > 0, a
neighbourhoodU of x , and an open neighbourhood V of v such that S∩U+]0, ε[V ⊂
S. Since the set S∩U+]0, ε[V is open, we have S∩U+]0, ε[V ⊂ int S. Choose a real
0 < ε′ < ε and neighbourhoodsU ′ and V ′ of x and v such thatU ′+]−ε′, ε′[V ′ ⊂ U .
To see that−v ∈ I (Sc∪{x}; x) it suffices to show that (Sc∪{x})∩U ′+]0, ε′[(−V ′) ⊂
Sc∪{x}. If the latter inclusion does not hold, there exist a real 0 < t < ε′, and elements
x ′ ∈ (Sc ∪ {x}) ∩ U ′ and v′ ∈ V ′ such that u := x ′ − tv′ ∈ X\(Sc ∪ {x}), hence
u ∈ S ∩ U . Writing x ′ = u + tv′ we obtain x ′ ∈ S ∩ U + tV ⊂ int S, which
is a contradiction since x ′ ∈ Sc ∪ {x} = (X\S) ∪ {x} and x ∈ bdry S. Therefore,
−v ∈ I (Sc ∪ {x}; x) and the inclusion I (S; x) ⊂ −I (Sc ∪ {x}; x) is justified.

Since (X\Sc∪{x})∪{x} = Swemay permute S and Sc∪{x} to get I (Sc∪{x}; x) ⊂
−I (S; x). The desired equality concerning the interior tangent cone is then established.

The equality above ensures that S is epi-Lipschitz at x in a direction v̄ if and only if
Sc ∪{x} is epi-Lipschitz at x in the direction −v. Further, under the epi-Lipschitzness
assumption the same equality guarantees the equality T (S; x) = −T (Sc ∪ {x}; x)
since the Clarke tangent cone is the closure of the interior tangent cone whenever the
latter is nonempty [see (2.7)]. This finishes the proof. ��

For a convex set with nonempty interior, it is well-known that the interior of the set
coincides with the interior of its closure. A first corollary of the previous proposition
and Proposition 2.2 shows a similar relationship with an epi-Lipschitz set.

Corollary 2.1 Let S be a set of a normed space X which is epi-Lipschitz at x ∈
S ∩ bdry S. Then, there exists a neighbourhood U of x such that, with S := cl S, one
has

U ∩ int S = U ∩ int (int S) = U ∩ int S.
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Proof Clearly, we have x ∈ bdry (X\S). Further, from the above proposition we know
that (X\S)∪{x} is epi-Lipschitz at x . Then, Proposition 2.2 furnishes a neighbourhood
U of x such that

U ∩ cl
(
int (X\S)

) = U ∩ cl (X\S).

Writing cl (X\S) = X\int S and

cl
(
int (X\S)

) = cl (X\S) = X\int S,

we deduce the equality U ∩ (X\int S) = U ∩ (X\int S), from which we see (without
difficulty) that U ∩ int S = U ∩ int S. This combined with the easy double inclusion
int S ⊂ int (int S) ⊂ int S yields the desired double equality of the proposition. ��

In view of deriving Corollary 2.2 bellow, let us describe the Clarke tangent cone
of the boundary of a set. We need first the following proposition which is a direct
adaptation of the statement and proof of [12, Theorem 1].2

Proposition 2.4 Let S be a subset of a normed space X and let x ∈ bdry S. Let
Sc := X\S. The following are equivalent, for a vector v ∈ X:

(a) The vector v ∈ T (S ∪ {x}; x);
(b) for any sequence (tn)n in ]0,+∞[ tending to 0 and any sequence (xn)n in bdry S

converging to x, there is a sequence (vn)n in X converging tov such that xn+tnvn ∈
S for infinitely many n ∈ N;

(c) for any sequence (tn)n in ]0,+∞[ tending to 0 and any sequence (xn)n in bdry S
converging to x, there is a sequence (vn)n in X converging tov such that xn+tnvn ∈
cl S for infinitely many n ∈ N.

Proof Suppose that v ∈ T (S ∪ {x}; x). Proposition 2.1 (applied with S′ = cl S) says
that, for any sequence (tn)n in ]0,+∞[ tending to 0 and any sequence (xn)n in cl S,
there is a sequence (vn)n in X converging to v such that, for each n ∈ N, we have
xn + tnvn ∈ S. Since bdry S ⊂ cl S, we deduce that, for any sequence (tn)n in ]0,+∞[
tending to 0 and any sequence (xn)n in bdry S converging to x , there exists a sequence
(vn)n in X converging to v such that xn + tnvn ∈ S for all n ∈ N. This justifies the
implication (a) ⇒ (b).

The implication (b) ⇒ (c) being obvious, suppose (c) is fulfilled, and take any
sequence (tn)n in ]0,+∞[ tending to 0 and any sequence (xn)n in cl (S ∪ {x}) = cl S
converging to x . Consider first the case when xn + tnv /∈ cl S for large n, say n ≥ N .
For each n ≥ N , there is some rn ∈ [0, tn[ such that un := xn + rnv ∈ bdry S. Putting
un := x for n < N and noting that tn − rn → 0 with tn − rn > 0, by assumption there
exists a sequence (v′

n)n in X converging to v satisfying un + (tn − rn)v′
n ∈ cl S for all

n ∈ J , where J is an infinite subset of N\{1, . . . , N − 1}. For each n ∈ J , it results
that

xn + tn

(
v + tn − rn

tn
(v′

n − v)

)
= un + (tn − rn)v

′
n ∈ cl (S ∪ {x}),

2 Again, stated in a Banach space, and valid in any normed space.
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so with vn := v + tn−rn
tn

(v′
n − v), clearly vn → v and xn + tnvn ∈ cl (S ∪ {x}) for all

n ∈ J . In the remaining case, there is an infinite set K ⊂ N such that, for each n ∈ K ,
we have xn + tnv ∈ cl S. Consequently, in any case there is an increasing function
s : N → N and a sequence (vn)n converging to v with xs(n) + ts(n)vn ∈ cl (S ∪ {x})
for all n. This guarantees that v ∈ T

(
cl (S ∪ {x}); x) by (2.5). From the definition of

Clarke tangent cone [see (2.3)] we obtain that v ∈ T (S∪{x}; x), that is, the implication
(b) ⇒ (c) holds true. ��
Proposition 2.5 Let S be a subset of a normed space X and let x ∈ bdry S. Then,
setting Sc := X\S one has the equality

T (bdry S; x) = T
(
S ∪ {x}; x) ∩ T

(
Sc ∪ {x}; x).

Proof Since x ∈ bdry S = bdry (Sc), the inclusion of the first member into the
second follows directly from the equivalence between (a) and (c) in the previous
proposition. Take now any v in the second member and consider any sequence (tn)n
in ]0,+∞[ tending to 0 and any sequence (xn)n in bdry S converging to x . There
exist two sequences (v′

n)n and (vn
′′)n converging to v with xn + tnv′

n ∈ cl S and
xn + tnvn ′′ ∈ cl(X\S) for all n. Thus there is θn ∈ [0, 1] such that xn + tn(θnv′

n + (1−
θn)vn

′′) ∈ bdry S. So, putting vn := θnv
′
n + (1− θn)vn

′′ we obtain xn + tnvn ∈ bdry S
with vn → v, and this implies that v ∈ T (bdry S; x) according to (2.4). ��
Remark 2.1 The similar equality with the Bouligand contingent cone K (·; ·) in place
of the Clarke tangent cone T (·; ·) has been established in [14, Corollary 2.4]. It is also
worth mentioning that through the equality

T (C; x) = Lim inf
S�u→x

K (C; u)

for any closed set C of a finite dimensional space, the equality in Proposition 2.5 can
be derived from the one with the Bouligand contingent cone in [14] when X is finite
dimensional. ��

Given an epi-Lipschitz set S at x ∈ S∩bdry S, we also note, by Propositions 2.3 and
2.5, that T (bdry S; x) = T (S; x) ∩ −T (S; x), and this entails that T (bdry S; x) is a
vector space since T (S; x) is a convex cone. We state those properties in the corollary:

Corollary 2.2 Let S be a subset of a normed space X which is epi-Lipschitz at x ∈
S ∩ bdry S. Then, the following equality holds

T (bdry S; x) = T (S; x) ∩ −T (S; x),

which yields in particular that T (bdryS; x) is a closed vector subspace of X.

3 Representations of epi-Lipschitz sets as sublevels

Assume that the subset S of the normed space X is closed near x ∈ bdry S, that is,
S ∩ U is closed in U , for some neighbourhood U of x . Assume also that S is epi-
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Lipschitz at x in a direction v ∈ X with v �= 0. The main theorem in [15]3 provides a
topologically complemented closed vector hyperplane E of Rv (so, X = E ⊕ Rv), a
neighbourhood W of x in X , and a function f : E → R locally Lipschitz near πE x
(with E endowed with the induced norm and x = πE x + πvx with πE x ∈ E and
πvx ∈ R) such that

W ∩ S = W ∩ {u + rv : u ∈ E, r ∈ R, f (u) ≤ r}.

Consider the linear isomorphism π : X → E ×R defined by π(x) := (πE x, πvx)
and note that the function g : X → R, with g(x) := f (πE x) − πvx , is Lipschitz near
x along with W ∩ S = W ∩ {x ∈ X : g(x) ≤ 0} and

go(x; v) = f o(πE x;πEv) − πvv.

With w := π−1(0E , 1) we have go(x;w) = −1 < 0, so 0 /∈ ∂g(x). Then, we
notice that the property says in particular that any set epi-Lipschitz at x ∈ S is locally
around x the sublevel set of a locally Lipschitz function g with 0 /∈ ∂g(x). The next
proposition shows that the converse also holds true. It has been proved in [9] through
some specific constructions, in order to recover the above characterization. Below we
give a simple and direct proof -with the original definition of Rockafellar with the
interior tangent cone.

Proposition 3.1 Let g : X → R be a function which is Lipschitz near a point x of
the normed space X and let S := {x ∈ X : g(x) ≤ 0}. Assume that x ∈ bdry S and
0 /∈ ∂g(x). Then, the set S is epi-Lipschitz at x.

Proof From the definition of the Clarke directional derivative (2.1) of the locally
Lipschitz function we see that, for every v ∈ X ,

go(x; v) = lim sup
t↓0,(x ′,v′)→(x,v)

t−1(g(x ′ + tv′) − g(x ′)
)
.

Since 0 /∈ ∂g(x), there is some v ∈ X such that go(x; v) < 0, and hence the latter
equality furnishes some real ε > 0 such that, for all x ′ ∈ B(x, ε), v′ ∈ B(v, ε), and
t ∈]0, ε[, we have

t−1(g(x ′ + tv′) − g(x ′)
)

< 0, i.e., g(x ′ + tv′) < g(x ′).

So, for all x ′ ∈ S ∩ B(x, ε), v′ ∈ B(v, ε), and t ∈]0, ε[, we obtain

g(x ′ + tv′) < g(x ′) ≤ 0

(the second inequality being due to the inclusion x ′ ∈ S). This yields that

S ∩ B(x, ε)+]0, ε[ B(v, ε) ⊂ S,

3 As the author notices in [16], the argument in [15], written in finite dimensions, remains valid in any
normed space.
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which means that S is epi-Lipschitz at x . ��
We now use the signed distance function to obtain canonical sublevel representa-

tions of epi-Lipschitz sets. Recall that the signed distance function �S (also called
oriented distance function) from a subset S of the normed space X is defined by

�S(x) := dS(x) − dSc (x) for all x ∈ X,

where Sc := X\S. It is clear that

cl S = {x ∈ X : �S(x) ≤ 0} and bdry S = {x ∈ X : �S(x) = 0}. (3.1)

When S �= ∅ and S �= X , it is known (see, e.g., [11]) that �S is Lipschitz on X with 1
as a Lipschitz constant; further, for such a set S, it is shown in [11, Theorem 3]4 that,
for any x ∈ bdry S,

T (S ∪ {x}; x) ∩ −T (Sc ∪ {x}; x) = {v ∈ X : 〈x∗, v〉 ≤ 0, ∀x∗ ∈ ∂�S(x)}. (3.2)

We establish first a local sublevel representation.

Theorem 3.1 Let S be a subset of a normed space (X, ‖ · ‖) and x ∈ S ∩ bdry S.
Assume with S := cl S that (int S) ∩ U ⊂ S for some neighbourhood U of x, which
holds in particular whenever S is closed at x. Then, the following assertions hold:

(a) The set S is epi-Lipschitz at x in a nonzero direction v if and only if

(�S)
o(x; v) < 0.

(b) The set S is epi-Lipschitz at x if and only if 0 /∈ ∂�S(x).

Proof The function (�S)
o(x; ·) being the support function of ∂�(x), the assertion (b)

is a consequence of (a). If �o(x; v) < 0, by the equality S = {u ∈ X : �S(u) ≤ 0}
(where S := cl S) Proposition 3.1 says that S is epi-Lipschitz at x in the direction v.
Applying Proposition 2.2(b) with S in place of S and S in place of C , we derive that
S is epi-Lipschitz at x in the direction v.

Now suppose that S is epi-Lipschitz at x in the direction v. Putting Sc := X\S, we
know that Sc ∪{x} is epi-Lipschitz at x in the direction−v (see Proposition 2.3), so by
definition of epi-Lipschitz sets there is a real ε ∈]0, 1[ such that, with S′ := Sc ∪ {x},

S∩B(x, 3ε)+]0, ε[B(v, 2ε) ⊂ S and S′∩B(x, 3ε)+]0, ε[B(−v, 2ε) ⊂ S′. (3.3)

By Proposition 2.2(a) applied to the set S, using int S = X\Sc, and to the set Sc, using
int Sc = X\S, we can also choose the above real ε > 0 such that

B(x, ε) ∩ S = B(x, ε) ∩ X\Sc and B(x, ε) ∩ Sc = B(x, ε) ∩ X\S. (3.4)

4 In a Banach space, the argument in [11] is valid in any normed space.
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Claim 1. dS(x) ≥ dS(x + tv) for all t ∈]0, ε[, v ∈ B[v, ε] and x ∈ B(x, ε).
Fix any x ∈ B(x, ε), any v ∈ B[v, ε], and any t ∈]0, ε[. Choose a sequence (yn)n

in S such that dS(x) = lim
n→∞ ‖x − yn‖. Since dS(x) ≤ ‖x − x‖ < ‖x − x‖ + ε, we

may suppose that ‖x − yn‖ < ‖x − x‖ + ε for all n. Then,

‖yn − x‖ ≤ ‖yn − x‖ + ‖x − x‖ < 2‖x − x‖ + ε < 3ε.

For every n ∈ N, it results that yn + tv ∈ S by (3.3), hence

dS(x + tv) ≤ ‖x + tv − (yn + tv)‖ = ‖x − yn‖,

so dS(x + tv) ≤ dS(x) as says the claim.
Claim 2. For all 0 < t < ε

2(1+‖v‖) and x ∈ B(x, ε/2) ∩ Sc, one has x − tv /∈ S and
dS(x − tv) ≥ dS(x) + εt/2.

Fix any such real t and fix also any x ∈ B(x, ε/2) ∩ (X\S). Take any v ∈ B[v, ε],
and note that

‖x − tv − x‖ ≤ ‖x − x‖ + t‖v‖ <
ε

2
+ ε

2(1 + ‖v‖) (ε + ‖v‖) < ε.

Thus, x − tv ∈ B(x, ε), which gives dS(x − tv) ≥ dS(x − tv + tv) = dS(x) by Claim
1. This means that

dS(y) ≥ dS(x) for all y ∈ B[x − tv, εt]. (3.5)

Choose zt ∈ S such that

dS(x − tv) ≥ ‖x − tv − zt‖ − εt/2.

Noticing that dS(x) > 0 (since x /∈ S), the inclusion zt ∈ S and (3.5) imply that
zt /∈ B[x − tv, εt]. Then, we can choose ut ∈ [x − tv, zt ] (the line segment) such that
‖x − tv − ut‖ = εt . It ensues that

dS(x − tv) ≥ ‖x − tv − zt‖ − 1

2
εt = −1

2
εt + ‖x − tv − ut‖ + ‖ut − zt‖

= 1

2
εt + ‖ut − zt‖ ≥ 1

2
εt + dS(ut ),

hence by (3.5) we get dS(x− tv) ≥ dS(x)+εt/2. By continuity of the function dS and
by (3.4) we deduce that the latter inequality still holds for all x ∈ B(x, ε/2)∩(X ∩ Sc)
as stated in the claim. Clearly, the inequality also tells us that x − tv /∈ S.
Claim 3. For all 0 < t < ε

2(1+‖v‖) and x ∈ B(x, ε/2) ∩ S, one has x + tv /∈ Sc and
dSc (x + tv) ≥ dSc (x) + εt/2.

It suffices to apply Claim 2 with the set Sc ∪ {x} and the vector −v in place of S
and v respectively. Noticing that x ∈ bdry S implies int S ⊂ S\{x} ⊂ S, and applying
Proposition 2.2, (a), to obtain S\{x} = S.
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Claim 4. For all 0 < t < ε
4(1+‖v‖) and x ∈ B(x, ε/4),

�S(x + tv) − �S(x) ≤ −εt

2
.

Fix any such t and any x ∈ B(x, ε/4).
If x ∈ S, by Claim 3, x + tv /∈ Sc, i.e., x + tv ∈ int S, and

�S(x + tv) − �S(x) = (−dSc (x + tv)) − (−dSc (x)) ≤ −εt

2
.

If x /∈ S, i.e., x ∈ int Sc, let

τ = sup{θ | θ ≤ t , [x, x + θv] ⊂ X\S}.

Then x + τv ∈ B(x, ε/2) ∩ Sc and by Claim 2,

�S(x + τv) − �S(x) = dS(x + τv) − dS(x)

= dS(x + τv) − dS(x + τv − τv)

≤ −ετ

2
. (3.6)

In the case τ = t , the latter inequality translates the desired claim. Now, suppose
τ < t . Then x + τv ∈ bdry S, so writing x + tv = x + τv + (t − τ)v, we see by
Claim 3 that x + tv /∈ Sc and

�S(x+tv)−�S(x+τv) = (−dSc (x+τv+(t−τ)v))−(−dSc (x+τv)) ≤ −ε(t − τ)

2
.

(3.7)
By adding (3.6) and (3.7), we deduce the claim.

Finally, applying Claim 4 we obtain

(�S)
o(x; v) ≤ −ε/2,

which finishes the proof. ��
Through the above theorem, the Clarke normal cone of epi-Lipschitz sets can be

expressed in terms of the Clarke subdifferential of the signed distance function.

Corollary 3.1 Let S be a subset of a normed space (X, ‖ · ‖) which is epi-Lipschitz
at x ∈ S ∩ bdry S. Then, the Clarke normal cone of S at x can be described as

N (S; x) = R+∂�S(x),

where R+ := [0,+∞[.
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Proof We recall first that S := cl S = {u ∈ X : �S(u) ≤ 0}. Since (�S)
o(x; v) < 0,

for some v ∈ X , according to Theorem 3.1 above, it results (see, e.g., [4,13]) that the
inclusion N (S; x) ⊂ R+∂�S(x) holds true.

On the other hand, since T (Sc ∪ {x}; x) = −T (S; x) (see Proposition 2.3), from
(3.2) we obtain

T (S; x) = {v ∈ X : ∀x∗ ∈ ∂�S(x), 〈x∗, v〉 ≤ 0},

and from this we easily see that R+∂�S(x) ⊂ (
T (S; x))o = N (S; x), where Ko

denotes the negative polar cone of a cone K . Since N (S; x) = N (S; x), the desired
equality of the proposition is justified. ��

Putting Proposition 3.1 and Theorem 3.1 together yields the global sublevel repre-
sentation of epi-Lipschitz sets.

Theorem 3.2 Let S be a nonempty closed set of a normed space (X, ‖·‖)with S �= X.
Then, the following are equivalent:

(a) The set S is epi-Lipschitz;
(b) there exists a Lipschitz function g : X → R such that 0 /∈ ∂g(x) for every

x ∈ bdry S and

S = {x ∈ X : g(x) ≤ 0};

(c) the set S enjoys the canonical qualified sublevel representation:

S = {x ∈ X : �S(x) ≤ 0} with 0 /∈ ∂�S(u) ∀u ∈ bdry S.

Proof The implication (c) ⇒ (b) is obvious and (b) ⇒ (a) follows from Proposition
3.1. Finally, the last implication (a) ⇒ (c) results from Theorem 3.1. ��

4 Application in mathematical programming and perspective in
mathematical economics

4.1 Optimization problems with epi-Lipschitz set constraints

Let f : X → R be a locally Lipschitz function on a Banach space X and S be an
epi-Lipschitz set of X . Consider the optimization problems

(Pf,S)

{
Minimize f (x)
subject to x ∈ S

and (Pf,bdry S)

{
Minimize f (x)
subject to x ∈ bdry S.

Let x ∈ S be a local solution of (Pf,S) (resp. (Pf,bdry S)).
If x ∈ int S is a local solution of (Pf,S), then x is an unconstrained local minimizer

of f , so 0 ∈ ∂ f (x).
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Suppose now that x ∈ bdry S is a local solution of (Pf,S) (resp. (Pf,bdry S)). By
(3.1) the problems can be reformulated in the functional forms

{
Minimize f (x)
subject to �S(x) ≤ 0.

(
resp.

{
Minimize f (x)
subject to �S(x) = 0

)
.

By [4, Theorem 6.1.1] we know that there exists a non-null pair of reals (ρ, σ ) with
ρ ≥ 0 and σ ≥ 0 (resp. ρ ≥ 0 and σ ∈ R) such that

0 ∈ ∂(ρ f + σ�S)(x). (4.1)

Since 0 /∈ ∂�S(x) by Theorem 3.2, it results that ρ > 0, so multiplying the above
condition with ρ−1 > 0 we obtain with λ := ρ−1σ that

0 ∈ ∂( f + λ�S)(x).

Similar arguments hold true either with the approximate subdifferential in Banach
space or with the limiting subdifferential in reflexive space.

Proposition 4.1 Let X be a Banach space, f : X → R be a locally Lipschitz function
and x ∈ S. If x is a local solution of (Pf,S) (resp. (Pf,bdry S)), there exists a real λ ≥ 0
(resp. λ ∈ R) such that

0 ∈ ∂( f + λ�S)(x),

where ∂ denotes here either the Clarke or approximate subdifferential if X is a Banach
space or the limiting one if X is reflexive.

An optimality condition in the form

0 ∈ ∂ f (x) + R∂�S(x)

(encompassed by the above proposition) has been established with a totally different
method in [11, (3.18)] for the problem (Pf,bdry S) with Clarke subdifferential. Both
[11, (3.18)] and Proposition 4.1 require the completeness of the space X . In a general
normed space X , an optimality condition of the form

0 ∈ ∂ f (x) + λ�S(x),

with λ ≥ 0, for the problem (Pf,S), is a direct consequence of Corollary 3.1 and the
inclusions 0 ∈ ∂( f + δS)(x) ⊂ ∂ f (x) + ∂δ(x), where δS is the indicator function
of S. Proposition 4.1 gives a more precise condition. It relies on the Lagrangian type
optimality condition (4.1), which requires the completeness of the space.
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4.2 Equilibria and economics

The representation Theorem 1.1 is at the origin of a wide research on generalized equi-
libria, in finite dimensions. It allows for smooth normal approximation of epi-Lipschitz
sets, see [6], which in turn leads to applications to the existence of Equilibria [7] and
in Economics [1]. It opens many perspectives for further research based on our present
results, with the goal of extending and adapting the results in [1,6,7] in infinite dimen-
sions.
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