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SPECTRAL MIXTURE KERNELS FOR MULTI-OUTPUT GAUSSIAN PROCESSES

Multi-Output Gaussian Processes (MOGPs) are the multivariate extension of Gaussian pro-
cesses (GPs [1]), a Bayesian nonparametric method for univariate regression. MOGPs address
the multi-channel regression problem by modeling the correlation in time and/or space (as
scalar GPs do), but also across channels and thus revealing statistical dependencies among
different sources of data. This is crucial in a number of real-world applications such as fault
detection, data imputation and financial time-series analysis.

Analogously to the univariate case, MOGPs are entirely determined by a multivariate
covariance function, which in this case is matrix valued. The design of this matrix-valued co-
variance function is challenging, since we have to deal with the trade off between (i) choosing
a broad class of cross-covariances and auto-covariances, while at the same time (ii) ensur-
ing positive definiteness of the symmetric matrix containing these scalar-valued covariance
functions. In the stationary univariate case, these difficulties can be bypassed by virtue of
Bochner’s theorem, that is, by building the covariance function in the spectral (Fourier) do-
main to then transform it to the time and/or space domain, thus yielding the (single-output)
Spectral Mixture kernel [2].

A classical approach to define multivariate covariance functions for MOGPs is through
linear combinations of independent (latent) GPs; this is the case of the Linear Model of
Coregionalization (LMC [3]) and the Convolution Model [4]. In these cases, the resulting
multivariate covariance function is a function of both the latent-GP covariances and the linear
operator considered, which usually results in symmetric cross-covariances that do not admit
lags across channels. Due to their simplicity, these approaches fail to provide interpretability
of the dependencies learnt and force the auto-covariances to have similar structure.

The main purpose of this work is to extend the spectral mixture concept to MOGPs: We
rely on Cramér’s theorem [5, 6], the multivariate version of Bochner’s theorem, to propose
an expressive family of complex-valued square-exponential cross-spectral densities, which,
through the Fourier transform yields the Multi-Output Spectral Mixture kernel (MOSM).
The proposed MOSM model provides clear interpretation of all the parameters in spectral
terms. Besides the theoretical presentation and interpretation of the proposed multi-output
covariance kernel based on square-exponential spectral densities, we inquiry the plausibility of
complex-valued t-Student cross-spectral densities. We validate our contribution experimen-
tally through an illustrative example using a tri-variate synthetic signal, and then compare
it against all the aforementioned methods on two real-world datasets.
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Introduction

One of the most elementary problems in Statistics is that of regression, which can be defined
as the estimation of the relationship between independent variables (also known as input
variables) and dependent variables (also known as output variables), the first ones being
usually time and/or space and the second ones being, scalar or vectorial representing a
continuous quantity.

The Bayesian approach to the regression problem consists in the choice of a prior distri-
bution over the relationship between input an output variables, which in conjunction with a
likelihood function for observed data, yields a posterior distribution through Bayes’ theorem,
that can be used for prediction and forecasting. Within this context, in particular in the
Machine Learning field, Gaussian processes (GPs [1]) play the role of prior distributions over
continuous functions. This prior is fully characterized by a covariance function or positive-
definite kernel that represents to what degree two similar input variables produce similar or
close output variables. This generates a full non-parametric Bayesian method for univari-
ate regression, i.e. the output variable is scalar, which excels at flexibility, tractability and
interpretability due to its explicit matrix calculations and since it is a probabilistic method
allows to define confidence intervals for variance estimation ranges.

Unfortunately, all these useful advantages are restricted to univariate regression. Gaussian
processes can be generalized to tackle multivariate regression, i.e. the output variable is now
a vector and each component of the vector output variable is called an output or a channel.
This generalization it is known as Multi-Output Gaussian Processes (MOGPs [7]) which,
analogously to the univariate case, yields a prior distribution over multivariate continuos
functions that is fully characterized by a multivariate covariance function or multivariate
kernel. This multivariate covariance function breaks down into two kind of functions: (i)
auto-covariance functions that represent to what degree two similar input variables produce
similar output variables at each channel and (ii) cross-covariance functions that describes
the relationship across the different channels. This last peculiarity is the principal attribute
of MOGPs as it allows us to share statistical strength across channels, having applications
such as fault detection, data imputation and denoising, among others.

While, for the univariate case, there is an entire family of covariance functions to choose,
the principal obstacle to the proper use of MOGPs in multivariate regression is that there
is no clear way for constructing multivariate covariance functions, this is due the fact that
cross-covariance functions are difficult to define. An arbitrary choice for these functions
does not guarantee positive definiteness of the matrices needed for inference. Most of the
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previous work [7, 3, 8, 4] goes in the direction of bypassing this problem by applying linear
operations over latent processes which is equivalent to linear parametrizations of the cross-
covariance functions, which, while simple and handy, are limited by its linear parametric
nature. The main purpose of this thesis is to propose a parametric generative model for
stationary multivariate covariance functions that allows a fully interpretative understanding
of its parameters and that allows flexible cross-covariance while maintaining the autonomy of
auto-covariances, which is achieved through the spectral representation theorem of stationary
multivariate covariance functions known as Cramér’s theorem [5, 6].

This work is an extended version of the paper "Spectral Mixture Kernels for Multi-Output
Gaussian Processes" to appear in the Proceeding of Advances in Neural Processing Systems
(NIPS 2017) and it is organized as follows. The first chapter describes the preliminary notions
of GP and MOGPs along with the previous work. The second chapter describes the spectral
representation of multivariate covariance function which yields to the proposed model. In the
third chapter experiments of the proposed model are compared against previous approach
using synthetic data and real-world data, to end with the conclusions.
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Chapter 1

Background

The objective of this chapter is to describe the Gaussian processes methods for univariate
regression problems along with the kernel selection problem that they pose and its sug-
gested solution through spectral representations. We also describe the generalization of
Gaussian processes to multivariate regression which is known in the Machine Learning field
as Multi-Output Gaussian Processes, in addition to its analogous kernel selection problem.
We conclude with a review of the state-of-art models for MOGPs.

From now on, the input space, i.e. the set of input variables, will be denoted X which
without loss of generality will be assumed to be Rn, on the other hand, the output space i.e
the set of possible output variables, will be denoted Y and assumed to be Rm, an input-output
pair will be denoted (x, y) and a set of N of such pairs, that is D = {(xi, yi) : i = 1, . . . , N}
will be called the data set or training set. It is worth mentioning that there are two kinds
of training sets, the first kind called isotopic where for a given training input xi, all the
coordinates of the training output yi are known, meanwhile, the second kind called heterotopic
where for a training input xi only some coordinates of yi are known (it can be assumed
that only one coordinate its known by considering repetitions of training inputs), under this
circumstance the training set it is described as a disjoint union of training sets for each output
coordinate, namely, D = ∪mj=1Dj where Dj = {(xi, yij) : i = 1, . . . , Nj}. For simplicity and
understandability the training sets will be assumed to be isotopic, whereas in the experiments,
these will be heterotopic.

A regression problem can be thought as the estimation of the output y ∈ Y for any given
input variable x ∈ X , for which an estimator f : X → Y is built using the data from a training
set D by minimizing, for each pair (xi, yi) ∈ D, some measure of error between the estimation
f(xi) and the observation yi. From a Bayesian perspective, this problem can be solved by
choosing a prior distribution for the estimator f(x) which in conjunction with a likelihood
function for the training set, leads to a posterior distribution that can be used for prediction.
Within this context, the Gaussian processes methods capitalize on the appealing properties
of the Gaussian distribution, in particular its marginalization closure and its explicit and
tractable calculations, to produce a full non-parametric Bayesian approach to univariate
regression problems. The formalization of this method is the goal of the next section.
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1.1 Gaussian Processes

Gaussian processes (GPs [1], also known as kriging within Geostatistics [3]) are an univariate
non-linear regression method (this is Y = R) which excel in terms of flexibility, simplicity and
tractability. More precisely, GPs are stochastic processes that define probability distributions
over continous functions which can be seen as prior distributions that whenever combined
with observed data through a Gaussian likelihood function we obtain a posterior distribution
which is also a Gaussian process, namely

Definition 1.1 A Gaussian process is a stochastic process {f(x) : x ∈ X} such that for every
finite subset X = {xi}Ni=1 of X , the random vector f(X) := [f(x1), . . . , f(xN)] is a multivari-
ate Gaussian random variable.

From a classic probabilistic point of view, this definition is equivalent to stating a Gaussian
process is a stochastic process such that every finite-dimensional distribution is a Gaussian
distribution, then, in virtue of Kolmogorov consistency theorem [9] the resulting stochastic
process is well defined and consequently there is no mistake in reasoning Gaussian processes
as a probability distributions over continuous functions. A key property of GPs is that they
are entirely determined by its mean functionm(x) and its covariance function k(x, x′), defined
as follows

m(x) = E[f(x)], ∀x ∈ X
k(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))], ∀x, x′ ∈ X

without loss of generality, the mean function can be assumed to be zero. The choice of a
covariance function determines the sample properties of the prior distribution over functions
that a GP embodies by characterizing properties of the process such as: smoothness, peri-
odicity and stationarity among others, but not all two-input function serve as a covariance
function, since it must be positive definite and symmetric, specifically

Definition 1.2 A two-input function k : X × X → R is a covariance function (also called
kernel) if it is:

(i) Symmetric, i.e., k(x, x′) = k(x′, x),∀x, x′ ∈ X , and

(ii) Positive definite, i.e., ∀N ∈ N, c ∈ RN , {xp}Np=1 ⊆ X we have,

N∑
p,q=1

cpcqk(xp, xq) ≥ 0 (1.1)

The terms covariance function and kernel will be used interchangeably, furthermore, we
say that a covariance function is stationary if k(x, x′) = k(x − x′), in this case we denote
τ = x− x′. Given two finite sets X = {xi}Ni=1, X

′ = {x′j}N
′

j=1 ⊆ X we will denote by k(X,X ′)
the N × N ′-matrix where [k(X,X ′)]ij = k(xi, x

′
j) ∀i, j ∈ {1, . . . , N} and will be called the

Gram matrix of the covariance function k(x, x′). Usually, covariance functions will have a
parametric form and the set of parameters that defines them will be denoted by θ. It is
typical to assume that we have noisy observations, that is, y = f(x) + ε for each (x, y) ∈ D,
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where the noise ε ∼ N (0, σ2) is iid. Training and prediction is performed by (i) finding the
set of parameters θ that maximize the Gaussian marginal likelihood of the observed data and
then (ii) conditioning the joint distribution at training inputs and prediction inputs given
the observed data which yields to the posterior distribution, namely, given a training set
D = {(xi, yi) : i = 1, . . . , N} and let denote X = [x1, . . . , xN ] the set of training inputs,
y = [y1, . . . , yN ] the set of noisy training outputs, and f = f(X) = [f(x1), . . . , f(xN)] the set
of training latent values, then we have the Gaussian marginal likelihood function

p(y|X, θ) =

∫
p(y|f , X)p(f |X, θ)df = N

(
y|0, k(X,X) + σ2IN

)
(1.2)

which yields to the log likelihood function

log p(y|X, θ) = −1
2
y>[k(X,X) + σ2IN ]−1y − 1

2
log |k(X,X) + σ2IN | − N

2
log 2π (1.3)

and by denoting y∗ = f(X∗), we obtain the posterior distribution by conditioning the joint
Gaussian distribution at inputs X,X∗ given the noisy observed data y, that is

p(y∗|X,y, X∗) = N
(
y∗|k(X∗, X)[k(X,X) + σ2IN ]−1y,

k(X∗, X∗)− k(X∗, X)[k(X,X) + σ2IN ]−1k(X,X∗)
) (1.4)

This posterior distribution its entirely determined by the choice of the covariance function
k(x, x′). In that regard, flexible families of covariance functions that can automatically learn a
proper prior for the data have become of particular interest [2, 10, 11]. An intuitive approach
to these automatic kernels are spectral kernels which are the topic of the next section.

1.2 Spectral Representation of Stationary Covariance func-
tions

The spectral representation theorem of stationary complex-valued covariance functions known
as Bochner’s theorem [12, 6], it is the key result behind of what are called spectral kernels
which suggest a solution to the kernel selection problem by granting a family of kernels that
can approximate any integrable stationary covariance function given enough parameters, to
understand this let us remind the definition of Lebesgue-Stieljes measures in Rn [13].

Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, the interval (a, b] ⊂ Rn is defined as {x =
(x1, . . . , xn) ∈ Rn : ai < xi ≤ bi for all i = 1, . . . , n}; the interval (a,+∞) is defined as
{x ∈ Rn : ai < xi for all i = 1, . . . , n}, the interval (−∞, b] as {x ∈ Rn : xi ≤ bi for all i =
1, . . . , n}. The smallest σ-algebra containing the intervals is denoted by B(Rn). Given a real-
valued function F in Rn it is possible to define a measure in B(Rn) through this function as
long as it fulfill certain conditions, this measure given by F will be called a Lebesgue-Stieljes
measure.

Definition 1.3 Let F : Rn → R, we say that F is a distribution function if it has the following
properties

• lim
xi→−∞

F (x1, . . . , xn) = 0 ∀i = 1, . . . , n

5



• F (x1, x2, . . . , xn) is right-continuous

These conditions are enough to define signed Lebesgue-Stieljes measures in B(Rn) through
distribution functions, however in order to get a positive measure, a monotonic condition its
needed, namely

Definition 1.4 Let F : Rn → R, we define the difference operator ∆ as

∆biaiF (x1, . . . , xn) = F (x1, . . . , xi−1, bi, xi+1, . . . , xn)− F (x1, . . . , xi−1, ai, xi+1, . . . , xn)

Furthermore, for an interval I = (a, b] ⊂ Rn, let F (I) denote

∆bnan∆bn−1an−1 . . .∆b1a1F (x1, . . . , xn)

We say that a distribution function F is increasing if F (I) ≥ 0 for any interval I ∈ B(Rn).

Theorem 1.5 Let F an increasing distribution function in Rn, for any interval I, let define
µF (I) = F (I), then µF is a measure over the semi-algebra induced by the intervals and it can
be uniquely extended to B(Rn), this measure will be called a Lebesgue-Stieljes measure [13].

It is worth mentioning that if we define a Lebesgue-Stieljes measure as in Theorem 1.5
with a bounded distribution function we obtain a finite measure, if the distribution function
is not increasing we obtain a signed measure and if the distribution is complex-valued we
obtain a complex measure. With this in mind, the following theorem gives a characterization
of complex-valued stationary covariance functions in terms of Fourier-Stieljes integrals which
can be simplified to simple Fourier transforms through the Lebesgue’s decomposition theorem
of measures over B(Rn).

Theorem 1.6 (Bochner’s theorem [12, 6]) A function k : Rn → C is the covariance function
of a weakly-stationary mean-square-continuous stochastic process f : Rn → C if and only if
it admits the following representation

k(τ) =

∫
Rn
eιω
>τ dµF (ω) (1.5)

where F (ω) is a bounded distribution function on Rn and ι denotes the imaginary unit.

This theorem is the key result behind the Spectral Mixture kernel (SM) proposed by
Wilson & Adams [2], although they make an important simplification to this theorem in
order to make it suitable to applications, that is, they consider only the absolute continuous
part of the finite measure µF . Lebesgue’s decomposition theorem [14] applied on the finite
measure µF gives us the representation

µF = µ
(a)
F + µ

(s)
F (1.6)

where µ(a)
F is the absolute continuous part of the measure with respect Lebesgue’s measure

in B(Rn) and µ
(s)
F is the singular part of the measure. By neglecting the singular part of

the measure and focusing only in the absolute continuous part which has a positive density
S(ω) : Rn → R+ with respect Lebesgue’s measure, Theorem 1.6 can be simplified to a more
convenient version.
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Theorem 1.7 (Bochner’s theorem simplified [6]) An integrable1 function k : Rn → C is
the covariance function of a weakly-stationary mean-square-continuous stochastic process f :
Rn → C if and only if it admits the following representation

k(τ) =

∫
Rn
eιω
>τ S(ω)dω (1.7)

where S(ω) is a non-negative integrable function on Rn called the spectral density of k(τ).

This simplified version of Bochner’s theorem gives an explicit relationship between the
spectral density S(ω) and the stationary covariance function k(τ) of the stochastic process
f(x), in this sense [2] proposed to model the integrable spectral density S(ω) as a weighted
mixture of Q square-exponential functions, with weights wq, centres µq and diagonal covari-
ance matrices Σq, that is,

S(ω) =

Q∑
q=1

wq
1

(2π)n/2|Σq|1/2
exp

(
−1

2
(ω − µq)>Σ−1

q (ω − µq)
)
. (1.8)

This is motivated by the fact that strict positivity is much easier to achieve than positive
definiteness, thus, by relying on Theorem 1.6, the stationary covariance function associated
to the spectral density S(ω) in eq. (1.8) is given the spectral mixture kernel defined as
follows.

Definition 1.8 A spectral-mixture (SM) kernel is a positive-definite stationary covariance
function given by

k(τ) =

Q∑
q=1

wq exp

(
−1

2
τ>Σqτ

)
cos(µ>q τ) (1.9)

where µq ∈ Rn, Σq = diag(σ
(q)
1 , . . . , σ

(q)
n ) and wq, σq ∈ R+.

Due to the universal function approximation of the sum-of-Gaussians [15] (considered here
in the frequency domain) and the relationship given by Theorem 1.6, the SM kernel is able
to approximate continuous stationary kernels at an arbitrary precision given enough spectral
components. This concept points in the direction of sidestepping the kernel selection problem
in GPs and it will be extended to cater for multivariate regression in the next chapter.

1.3 Multi-Output Gaussian Processes

GPs can be extended to tackle multivariate regression (i.e Y = Rm, m > 1) by considering
a ensemble of univariate stochastic processes that are jointly Gaussian, this generalization
is known as Multi-Output Gaussian Processes (MOGPs) in the Machine Learning field and
is also known as co-kriging within Geostatistics [3]. This ensemble yields to a vector-valued
stochastic process such that it will also be completely determined by its covariance function,

1A function g(x) is said to be integrable if
∫
Rn |g(x)|dx < +∞

7



but alike the univariate case, the construction of this covariance function will be the principal
obstacle to a proper and effective employment of this method in multivariate regression
problems since a positive-definite like condition complicates the modeling of dependencies
between each component of the output. The formalization of the ideas above is as follows

Definition 1.9 An m-channel Multi-Output Gaussian process is an m-tuple of stochastic
processes {(f1(x), f2(x), . . . , fm−1(x), fm(x)) : x ∈ X}, is an m-tuple of stochastic processes
{fp(x) : x ∈ X} ∀p = 1, . . . ,m, such that for any family {Xi}mi=1 of finite subsets of X , the
random vector [f1(X1), . . . , fm(Xm)] is a multivariate Gaussian random variable.

Each component of the vector f(x) := (f1(x), . . . , fm(x)) ∀x ∈ X , will be called a channel
or an output. Recall that the construction of a scalar-valued GP requires choosing a scalar-
valued mean function and a scalar-valued covariance function. Conversely, the construction
of a m-channel MOGP requires an Rm-valued mean function whose ith element denotes the
mean function of the ith channel, and an Rm × Rm-valued covariance function whose (i, j)th

element denotes the covariance between the ith and jth channels, this two functions are defined
as follows

m(x) = E[f(x)], ∀x ∈ X
K(x, x′) = E[(f(x)−m(x))(f(x′)−m(x′))>], ∀x, x′ ∈ X

Analogously to the scalar-valued GPs, the vector-valued mean function can be assumed to
be zero, meanwhile, the symmetry and positive-definiteness conditions of the MOGP kernel
are defined as follows

Definition 1.10 A two-input matrix-valued function K(x, x′) : X × X → Rm×m defined
element-wise by

[
K(x, x′)

]
ij

= kij(x, x
′) is a multivariate covariance function (kernel) if it is:

(i) Symmetric, i.e., K(x, x′) = K(x′, x)>,∀x, x′ ∈ X , and

(ii) Positive definite, i.e., ∀N ∈ N, {cp}Np=1 ⊆ Rm, {xp}Np=1 ⊆ X , we have
m∑

i,j=1

N∑
p,q=1

cpicqjkij(xp, xq) ≥ 0 (1.10)

Furthermore, we say that a multivariate kernel K(x, x′) is stationary if K(x, x′) = K(x−x′)
or equivalently kij(x, x′) = kij(x − x′) ∀i, j ∈ {1, . . . ,m}, in this case, we denote τ = x −
x′. Note that the positive-definite condition (1.10) imposes the diagonal components of a
multivariate covariance function K(x, x′) (i.e. the functions kii(x, x′) ∀i ∈ {1, . . . ,m}), to
be positive-definite as in (1.1), that is, they are univariate covariance functions, conversely,
the off-diagonal components (i.e the functions kij(x, x′) for i 6= j) are not restricted to be
positive-definite as in (1.1), hence its design is much more complicated since we cannot rely
on representations as Theorem 1.7.

Given two finite sets X = {xi}Ni=1, X
′ = {x′j}N

′
j=1 ⊆ X we will denote by K(X,X ′) the

mN ×mN ′-block-matrix where the (i, j)-block is kij(X,X ′) ∀i, j ∈ {1, . . . ,m} and will be
called the Gram matrix of the multivariate covariance function K(x, x′). Similarly to the
univariate case, usually multivariate covariance functions will have a parametric form and
the set of parameters them will be denoted by Θ.
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The design of multivariate covariance functions involves jointly choosing functions that
model the covariance of each channel (diagonal elements in K, called auto-covariances) and
functions that model the cross-covariance between different channels at different input lo-
cations (off-diagonal elements in K, conveniently called cross-covariances). Choosing these
m(m+ 1)/2 covariance functions is challenging when we want to be as expressive as possible
and include, for instance, delays, phase shifts, negative correlations or to enforce specific
spectral content while at the same time maintaining positive definiteness of K.

Analogously to the univariate case, training and prediction in MOGPs is done by (i) finding
the set of parameters Θ that maximizes the Gaussian marginal likelihood of the observed
data and then (ii) conditioning the joint distribution at training inputs and prediction inputs
given the observed data which yields to the posterior distribution, namely, given a isotopic
training set D = {(xi, yi) : i = 1, . . . , N} and let denote X = [x1, . . . , xN ] ∈ RnN the
concatenated training inputs, y = [y1, . . . , yN ] ∈ RmN the concatenation of noisy training
outputs, and F = [f(x1), . . . , f(xN)] ∈ RmN the contatenated training latent values, then we
have the Gaussian marginal likelihood function

p(y|X,Θ) =

∫
p(y|F, X)p(F|X,Θ)dF = N

(
y|0,K(X,X) + Σ

)
(1.11)

where Σ is the diagonal matrix of output-dependent noises, the above Gaussian marginal
likelihood yields to the log likelihood function

log p(y|X,Θ) = −1
2
y>[K(X,X) + Σ]−1y − 1

2
log |K(X,X) + Σ| − mN

2
log 2π (1.12)

and by denoting y∗ = [f1(X∗), . . . , fm(X∗)], we obtain the posterior distribution by condi-
tioning the joint Gaussian distribution at inputs X,X∗ given the noisy observed data y, that
is

p(y∗|X,y, X∗,Θ) = N
(
y∗|K(X∗, X)[K(X,X) + Σ]−1y,

K(X∗, X∗)−K(X∗, X)[K(X,X) + Σ]−1K(X,X∗)
) (1.13)

This MOGP posterior distribution allows joint inference between channels through the cross-
covariance functions, that is why the proper modelling of these functions is fundamental for
an effective use of this method for multivariate regression, unfortunately there is no clear
insight on how to build flexible cross-covariances. In the next section, previous work on this
issue will be reviewed.

1.4 Previous work

As pointed out in the previous section, MOGPs require a matrix-valued covariance function
which has to be symmetric and positive-definite, the design of each component of this mul-
tivariate covariance function, while intuitive, it is complicated due to condition (1.10). In
this section, previous proposals of multivariate covariance functions will be review and as it
will be seen, they all bypass the difficulty on the design by relying on linear operations over
latent processes.
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1.4.1 Linear Model of Coregionalization (LMC)

The most fundamental and basic idea comes from Geostatistics and it is known as the Linear
Model of Coregionalization (LMC [3]). There are two equivalent ways to conceive this pro-
posed model, on one side, it is reasonable to construct m correlated processes by considering
each one of them as generated by the same source process u(x) to which an operation has
been applied, on the other hand, it is possible to choose an univariate covariance function and
expand it to a multivariate covariance function through multiplications with positive definite
matrices, more formally, let {uq(x) : x ∈ X , q = 1, . . . , Q} a family of Q Gaussian processes,
called latent processes, each with covariance function kq(x, x′), the essential idea in the LMC
is to consider each channel (f1(x), . . . , fm(x)) of a m-channel MOGP as a linear combination
of these Q latent processes, namely

fj(x) =

Q∑
q=1

ajquq(x) ∀j = 1, . . . ,m (1.14)

then, the m channels are naturally correlated and the covariance between them can be calcu-
lated explicitly which establish a MOGP with the following multivariate covariance function

K(x, x′) =

Q∑
q=1

Aq(Aq)
>kq(x, x

′) (1.15)

where Aq = [a1q, . . . , amq]
> ∈ Rm. Note that essentially, this is a multivariate covariance

function obtained by multiplying a univariate covariance function with a rank 1 positive
definite matrix (usually called coregionalization matrix ), in order to increment the rank of
these matrices, this model proposes to consider clusters of latent processes instead, that
is, each latent process uq(x) is replaced by a family of Rq latent processes, all independent
between each other with the same covariance function kq(x, x′), see fig 1.1, specifically, each
output is now

fj(x) =

Q∑
q=1

Rq∑
c=1

acjqu
c
q(x) ∀j = 1, . . . ,m (1.16)

by defining Acq = [ac1q, . . . , a
c
mq]
> ∈ Rm, we obtain the multivariate covariance function that

the LMC proposes

K(x, x′) =

Q∑
q=1

 Rq∑
c=1

Acq(A
c
q)
>

 kq(x, x
′) (1.17)

This model, while simple, economical and effective at building valid multivariate covari-
ance functions, it is limited, mainly due to the fact that cross-covariances are merely linear
combinations of univariate covariance functions which results in symmetric and centered
cross-covariances, leaving out an entire spectrum of problems that cannot be modeled prop-
erly by this restricted family of multivariate covariance functions, although, as an advantage,
it allows the construction of non-stationary multivariate covariance functions by considering
the latent processes covariance functions to be non-stationary.
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Figure 1.1: Graphical model of the Linear Model of Coregionalization with Q = 3 and m = 2.
Each cluster has R1, R2 and R3 latent processes respectively.

1.4.2 Intrinsic Model of Coregionalization (IMC)

The Intrinsic Model of Coregionalization (IMC [3]) is a particular case of the LMC, where in
expression (1.17), the factorization vijbq :=

∑Rq
c=1 a

c
iqa

c
jq its considered, which is equivalent to

consider the LMC with Q = 1, thus the IMC proposes the following multivariate covariance
function

[K(x, x′)]ij =

Q∑
q=1

vijbqkq(x, x
′) = vij

Q∑
q=1

bqkq(x, x
′) = vijk(x, x′)

that is, the proposed multivariate covariance function is K(x, x′) = Bk(x, x′) where B ∈
Rm×m is a positive definite matrix. This kind of multivariate covariance functions it is
understood as the detachment of the covariance between inputs x, x′ and the covariance
across outputs (i, j), which gives them the name of separable kernels.

1.4.3 Semi-parametric latent factor model (SLFM)

This model proposed by Teh et. al. [16], as pointed out in [7], results in a particular case of
the LMC where Rq = 1, that is

K(x, x′) =

Q∑
q=1

Aq(Aq)
>kq(x, x

′) (1.18)

The semi-parametric name comes from the non-parametric latent model that is the latent
Gaussian processes and the linear parametric combination of these latent processes.
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1.4.4 Convolution Model (CONV)

The Convolution model [8, 4, 17] is a generative model for multivariate covariance func-
tions based on latent processes where the operation applied on the latent process is the
convolution operation, more formally, let {uq(x) : x ∈ X , q = 1, . . . , Q} a family of Q la-
tent processes, independent of each other, each with covariance function kq(x, x

′) and let
{kjq(τ) : j = 1, . . . ,m, q = 1, . . . , Q} a family of stationary kernels, called smoothing kernels,
the essential idea in the Convolution model is to consider each channel (f1(x), . . . , fm(x)) of
a m-channel MOGP as the sum of these Q latent processes convolved with its corresponding
smoothing kernels, namely

fj(x) =

Q∑
q=1

∫
X
kjq(x− z)uq(z)dz ∀j = 1, . . . ,m (1.19)

Since the convolution of a Gaussian process with a smoothing kernel is also a Gaus-

u1

u2

u3

u4

u5

f1

f2

f3

k11

k12

k13

k14

k15

Figure 1.2: Graphical model of the Convolution model with Q = 5 and m = 3, for this model
Q(m+ 1) kernels are needed.

sian process, the above expression allows to define a MOGP with the following multivariate
covariance function

[K(x, x′)]ij =

Q∑
q=1

∫
X

∫
X
kiq(x− z)kjq(x

′ − z′)kq(z, z′)dzdz′ (1.20)

The principal obstacle to the use of this multivariate covariance function is the choice of
smoothing kernels and covariance functions for the latent processes that allows the integrals
in expression (1.23) to have an explicit and tractable form, the proposed approach [4] to
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tackle this problem is to consider Gaussian functions as smoothing kernels and the covari-
ance functions of the latent processes due to the fact Gaussian functions are closed under
convolution, then

Definition 1.11 The Gaussian Convolution model (denoted CONV) is given by the following
choice of smoothing kernels and latent covariance functions

kjq(τ) =
wjq|Σjq|1/2

(2π)n/2
exp

(
1
2
τ>Σjqτ

)
(1.21)

kq(τ) = exp
(

1
2
τ>Σqτ

)
(1.22)

by denoting Σijq = Σ−1
iq + Σ−1

jq + Σ−1
q , we obtain

[K(τ)]ij = kij(τ) =

Q∑
q=1

wiqwjq|Σ−1
q |1/2

|Σijq|1/2
exp

(
1
2
τ>Σ−1

ijqτ
)

(1.23)

This multivariate covariance function is a generalization of the LMC and it is not within
the separable family, which yields an increase in the complexity of the cross-covariances
generated, but they are still limited to linear combinations of univariate covariance functions,
but more limiting is the fact that the model in (1.23) only allows covariances that are either
positive or negative.

1.4.5 Cross-Spectral Mixture kernel (CSM)

The Cross-Spectral Mixture (CSM) kernel [18] proposed by Ulrich et al. is an innovation to
the LMC where the coregionalization matrices have complex coefficients which, when chosen
wisely, will produce non-symmetric cross-covariances. The source idea of this model starts by
considering the LMC with spectral mixture kernels as the covariance functions of the latent
processes, that is

K(τ) =

Q∑
q=1

 Rq∑
c=1

Acq(A
c
q)
>

 kq(τ) (1.24)

where kq(τ) = F−1(Sq(ω)) = exp
(
−1

2
τ>Σqτ

)
cos(µ>q τ) is a basic spectral mixture kernel, the

fundamental idea of the CSM kernel comes from considering the coefficients of the coregion-
alization matrices as complex numbers of the form aciq = bciq exp(ιψciq) for bciq, ψciq ∈ R, which
yields to

K(τ) =

Q∑
q=1

 Rq∑
c=1

Acq(A
c
q)
H

 kq(τ) (1.25)

where (·)H is the Hermitian (transpose and conjugate) operator and by using the spectral
representation of the SM kernels, we obtain

[K(τ)]ij =

Q∑
q=1

Rq∑
c=1

bciqb
c
jq

∫
Rn
eι(ω

>τ+ψciq−ψcjq) Sq(ω)dω (1.26)

13



which in conjunction with the following reparameterization ψciq = µ>q φ
c
iq where µq is the

frequency of the SM kernel kq(τ) and φciq ∈ Rn, the CSM kernel is as follows

Definition 1.12 The Cross-Spectral Mixture Kernel (CSM) is defined as follows

[K(τ)]ij =

Q∑
q=1

Rq∑
c=1

bciqb
c
jq exp(τ>Σqτ) cos

(
(τ + φciq − φcjq)>µq

)
(1.27)

This multivariate covariance function is the first, among the previous approaches, that
allows non-symmetric cross-covariance functions given by the phase parameters φciq, this hints
the importance of having complex cross-spectral densities but since it is constructed from the
LMC framework, the auto-covariance functions across channels cannot be to different from
each other, which presuppose a strong correlation between channels. As it will be seen, this
model is a particular case of the model to be proposed in the next chapter.
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Chapter 2

Multi-Output Spectral Mixture Kernel

In the previous chapter it has been described how covariance functions for Gaussian pro-
cesses can be built in the frequency domain in virtue of Bochner’s theorem which yielded the
Spectral Mixture kernel, whereas the purpose of this chapter is to give details of the gener-
alization to multiple outputs of the aforementioned theorem. This generalization is known
as Cramér’s theorem and as we shall see it gives necessary and sufficient conditions for the
construction of multivariate covariance functions in the frequency domain, which will be used
in order to propose a generalization of the SM kernel to multiple outputs that will be called
the Multi-Output Spectral Mixture kernel (MOSM).

2.1 Spectral Representation of Stationary Multivariate
Covariance functions

The design of multivariate covariance functions is challenging because we have to deal with a
trade off between choosing auto-covariances and cross-covariances flexible enough that model
a extensive class of possible dependencies while at the same time these choices have to fulfill
condition (1.10).

In that regard, motivated by the univariate spectral kernels, it is reasonable to ask whether
auto-covariance and cross-covariance functions can be built in the spectral domain in con-
junction, thus, bypassing the troublesome positive definite condition (1.10). The required
framework for this is provided by the following theorem which presents a spectral represen-
tation for multivariate covariance functions that with similar simplifications to those that
had been done in the univariate case, will allow us to build, with relative ease, multivariate
covariance functions in the frequency domain as in [2].

Theorem 2.1 (Cramér’s Theorem [5, 6]) A family {kij(τ)}mi,j=1 of complex-valued functions
are the covariance functions of a weakly-stationary multivariate stochastic process if and only
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if they (i) admit the representation

kij(τ) =

∫
Rn
eιω
>τ dµFij(ω) ∀i, j ∈ {1, . . . ,m} (2.1)

where each Fij is a complex-valued distribution function Fij : Rn → C and (ii) fulfil the
positive definiteness condition, for any interval I

m∑
i,j=1

zizjFij(I) ≥ 0 ∀{z1, . . . , zm} ⊂ C (2.2)

where z is the complex conjugate of z ∈ C. Likewise in the construction of the Spectral
Mixture kernel, it is possible to only consider the absolute continuous part of the complex-
valued measures µFij which leads to a complex-valued density Sij(ω) : Rn → C with respect
Lebesgue’s measure and is equivalent to reduce the representation to integrable multivariate
covariance functions, this simplifies Theorem 2.1 as follows

Theorem 2.2 (Cramér’s Theorem simplified [6]) A family {kij(τ)}mi,j=1 of integrable func-
tions are the covariance functions of a weakly-stationary multivariate stochastic process if
and only if they (i) admit the representation

kij(τ) =

∫
Rn
eιω
>τ Sij(ω)dω ∀i, j ∈ {1, . . . ,m} (2.3)

where each Sij is an integrable complex-valued function Sij : Rn → C known as the spectral
density associated to the function kij(τ), and (ii) fulfil the positive definiteness condition

m∑
i,j=1

zizjSij(ω) ≥ 0 ∀{z1, . . . , zm} ⊂ C, ω ∈ Rn (2.4)

Note that eq.(2.3) states that each covariance function kij(τ) is the inverse Fourier trans-
form of a spectral density Sij(ω), therefore, we will say that these functions are Fourier
pairs and refer to the set of arguments of the covariance function τ ∈ Rn as time or space
domain depending of the application considered, and to the set of arguments of the spec-
tral densities ω ∈ Rn as Fourier or frequency domain. Furthermore, a direct consequence
of the above theorem and the symmetry property of covariance is that for any element ω
in the Fourier domain, the matrix defined by S(ω) = [Sij(ω)]mi,j=1 ∈ Cm×m is Hermitian,
i.e., Sij(ω) = Sji(ω) ∀i, j, ω, which implies that diagonal spectral densities (i = j) must be
real-valued.

Theorem 2.2 gives the guidelines to construct multivariate covariance functions for MOGPs
by designing their corresponding spectral densities instead, i.e., the design is performed in
the Fourier rather than the space domain. The simplicity of design in the Fourier domain
stems from the positive-definiteness condition of the spectral densities in eq. (2.4) which
is much easier to achieve than that of the covariance functions in eq. (1.10). This can
be understood through an analogy with the univariate model: in the single-output case
the positive-definiteness condition of the covariance function only requires positivity of the
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spectral density, whereas in the multi-output case the positive-definiteness condition of the
multivariate covariance function only requires that the matrix S(ω), ∀ω ∈ Rn, is positive
definite which is a way more weak condition plus there are no severe constraints on each
function Sij : ω 7→ Sij(ω).

2.2 Spectral Densities

Following the idea behind the Spectral Mixture kernel, the goal now is to propose a family of
Hermitian positive-definite complex-valued functions {Sij(·)}mi,j=1, thus fulfilling the require-
ments of Theorem 2.1, eq. (2.2), to use them as cross-spectral densities within multivariate
covariance functions. As we shall see the complex-valued requirement is going to be funda-
mental for the proper modeling of a broad family of cross-covariances which is going to be
the main improvement and contribution over the latent processes models, in addition with
more autonomy across auto-covariances. The proposed family of functions is designed with
the aim of providing physical parametric interpretation and closed-form covariance functions
after applying the inverse Fourier transform.

An intuitive procedure for constructing positive-definite complex matrix-valued functions
is to construct the Cholesky decomposition instead. Recall that complex-valued positive-
definite matrices be decomposed in the form S(ω) = RH(ω)R(ω), meaning that the (i, j)th

entry of S(ω) can be expressed as Sij(ω) = RH
:i (ω)R:j(ω); where R(ω) ∈ CQ×m, R:i(ω) is

the ith column of R(ω), and (·)H denotes the Hermitian (transpose and conjugate) operator.
Clearly, this factor decomposition fulfills eq. (2.4):

m∑
i,j=1

ziR
H
:i (ω)R:j(ω)zi =

∥∥∥∥∥∥
m∑
i=1

ziR:i(ω)

∥∥∥∥∥∥
2

=
∥∥R(ω)z

∥∥2 ≥ 0 ∀z = [z1, . . . , zm]> ∈ Cm, ω ∈ Rn

We refer to Q as the rank of the decomposition, since by choosing Q < m the rank of
S(ω) = RH(ω)R(ω) can be at most Q. For ease of notation we choose1 Q = 1, where the
columns of R(ω) are complex-valued functions {Ri(ω)}mi=1, and S(ω) is modeled as a rank-one
matrix according to Sij(ω) = Ri(ω)Rj(ω) ∀i, j = 1, . . . ,m.

Squared-exponential (SE) functions have many useful properties that suggest them as
suitable spectral densities, such as closed-form expressions in Fourier’s transform calculations,
they are closed under multiplications i.e the product of two SE functions is also a SE function,
but also they allow an easy integration with imaginary parts, hence it is proposed

Ri(ω) = wi exp
(
−1

4
(ω − µi)>Σ−1

i (ω − µi)
)

exp
(
−ι(θ>i ω + φi)

)
, i = 1, . . . ,m (2.5)

where wi, φi ∈ R, µi, θi ∈ Rn and Σi = diag([σ2
i1, . . . , σ

2
in])> ∈ Rn×n. This choice of the

functions {Ri}mi=1 in conjunction with the following property of SE functions

Proposition 2.3 The product of SE functions is closed up to a constant, that is

e

(
−1

2
(x−µi)>Σ−1

i (x−µi)
)
e

(
−1

2
(x−µj)>Σ−1

j (x−µj)
)

= αije

(
−1

2
(x−µij)>Σ−1

ij (x−µij)
)

1The extension to arbitrary Q will be presented at the end of this section.
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where:
αij = e(−

1
2

(µi−µj)>(Σi+Σj)
−1(µi−µj))

µij = (Σi + Σj)
−1(Σiµj + Σjµi)

Σij = Σi(Σi + Σj)
−1Σj

yields the spectral densities {Sij}mi,j=1 which are given by

Sij(ω) = wij exp
(
−1

2
(ω − µij)>Σ−1

ij (ω − µij) + ι
(
θ>ijω + φij

))
, ∀i, j = 1, . . . ,m (2.6)

meaning that the cross-spectral density between channels i and j is modeled as a complex-
valued SE function with the following parameters

• covariance: Σij = 2Σi(Σi + Σj)
−1Σj

• mean: µij = (Σi + Σj)
−1(Σiµj + Σjµi)

• magnitude: wij = wiwj exp
(
−1

4
(µi − µj)>(Σi + Σj)

−1(µi − µj)
)

• delay: θij = θi − θj
• phase: φij = φi − φj

where the so-constructed magnitudes wij ensure positive definiteness and, in particular, the
auto-spectral densities Sii are real-valued SE functions (since θii = φii = 0) as in the standard
(scalar-valued) spectral mixture approach [2].

The proposed spectral densities in eq. (2.6) yields complex-valued covariance functions and
therefore complex-valued GPs. In order to restrict this generative model only to real-valued
GPs, there are two equivalent procedures, on the one hand, the real part of a complex-
valued covariance function is a real-valued covariance function, thus we can focus only in
the real part of the right-side expression (2.3), on the other hand, the proposed family of
spectral densities can be symmetrized with respect to ω [19] which ensures that the covariance
function is real-valued, we then make Sij(ω) symmetric simply by reassigning Sij(ω) 7→
1
2
(Sij(ω) + Sij(−ω)), this is equivalent to choosing Ri(ω) to be a vector of two mirrored

complex SE functions. Therefore, the proposed multivariate covariance function is obtained
by calculating the inverse Fourier transform of the spectral densities Sij(ω), that is, the
integral

kij(τ) =

∫
Rn
eιω
>τSij(ω) dω = wij

∫
Rn
eιω
>τe(−

1
2

(ω−µij)>Σ−1
ij (ω−µij)+ι(θ>ijω+φij)) dω

=

∫
Rn

exp

(
−1

2
ω>Σ−1

ij ω +
(

Σ−1
ij µij + ι(τ + θij)

)>
ω − 1

2
µ>ijΣ

−1
ij µij + ιφij

)
dω

the above integral has a closed-form determined by the fact that for any diagonal matrix
Λ = diag(λ(1), . . . , λ(n)) and for any b ∈ Cn, c ∈ C we have∫

Rn
exp (−x>Λx− 2b>x+ c) dx =

π
n
2

|Λ|1/2 exp
(
b>Λ−1b+ c

)
(2.7)
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by making use of the preceding formula with Λ = 1
2
Σ−1
ij , b = −1

2

(
Σ−1
ij µij + ι(τ + θij)

)
and

c = −1
2
µ>ijΣ

−1
ij µij + ιφij, we get

kij(τ) = αij exp

(
1
2

(
Σ−1
ij µij + ι(τ + θij)

)>
Σij

(
Σ−1
ij µij + ι(τ + θij)

)
− 1

2
µ>ijΣ

−1
ij µij + ιφij

)
= αij exp

(
−1

2
(τ + θij)

>Σij(τ + θij) + ι
(

(τ + θij)
>µij + φij

))
where αij = wij(2π)

n
2 |Σij|1/2. By taking the real part of the above complex-valued covari-

ance function kij(τ) or by symmetrizing the spectral densities Sij(ω), the desired real-valued
covariance function is obtained

kij(τ) = αij exp
(
−1

2
(τ + θij)

>Σij(τ + θij)
)

cos
(

(τ + θij)
>µij + φij

)
(2.8)

Note that the auto-covariances (i = j) are, up to normalization, Spectral Mixture kernels
since αii ≥ 0 and θii = φii = 0. Conversely, the proposed model for the cross-covariance
between different channels (i 6= j) allows for (i) both negatively- and positively-correlated
channels (αij ∈ R), (ii) delayed channels through the delay parameter θij 6= 0 and (iii) out-of-
phase channels where the covariance is not symmetric with respect to the delay for φij 6= 0.
Fig. 2.1 shows cross-spectral densities and their corresponding covariance function for a
choice of different delay and phase parameters. In addition, unlike latent processes models,
each auto-covariance function has it own set of parameters which only interact through the
cross-covariances functions. Although, this extra complexity comes at a price: a higher
number of parameters, the proposed multivariate covariance function (2.8) has 3mn + 2m
parameters which is significant more compared than those in the latent process models.
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Figure 2.1: Cross-spectral densities (bottom, real part in blue and imaginary part in green)
and cross-covariance function (top) generated by the proposed model in eq. (2.8): From left
to right: zero delay and zero phase; zero delay and non-zero phase; non-zero delay and zero
phase; and non-zero delay and non-zero phase. The dashed lines denote the SE envelopes.

The multivariate covariance function in eq. (2.8) resulted from a low rank choice for the
PSD matrix Sij, therefore, increasing the rank in the proposed model for Sij is equivalent to
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consider several spectral components. Arbitrarily choosing Q of these components yields to
the expression for the proposed multivariate covariance function:

Definition 2.4 The Multi-Output Spectral Mixture Kernel (MOSM) has the form:

kij(τ) =

Q∑
q=1

α
(q)
ij exp

(
−1

2
(τ + θ

(q)
ij )>Σ

(q)
ij (τ + θ

(q)
ij )

)
cos
(

(τ + θ
(q)
ij )>µ

(q)
ij + φ

(q)
ij

)
(2.9)

where α(q)
ij = w

(q)
ij (2π)

n
2 |Σ(q)

ij |1/2 and the superindex (·)(q) denotes the parameter of the qth
component of the spectral mixture.

This multivariate covariance function has spectral-mixture positive-definite kernels as
auto-covariances, while the cross-covariances are non-symmetric, delayed, and not neces-
sarily positive-definite, spectral mixture kernels with different parameters for different pairs
of outputs. Therefore, the MOSM kernel is a multi-output generalization of the spectral mix-
ture approach [2] where the positive definiteness is guaranteed by the factor decomposition
of Sij as shown in eq. (2.2).

Note that, in virtue of the Fourier convolution theorem, the factor decomposition of
the spectral densities Sij(ω) = Ri(ω)Rj(ω), is equivalent to convolutions of complex-valued
squared exponential functions, that is

kij(τ) = F−1(Sij(ω))(τ)

= (F−1(Ri) ∗ F−1(Rj))(τ)

= (ki(−τ) ∗ kj(τ))(τ) ∀i, j ∈ {1, . . . ,m}

where ki(τ) is a complex-valued squared exponential function given by

ki(τ) = F−1(Ri(ω))(τ)

= (4π)n/2|Σi|1/2wi exp

(
−(τ − θi)>Σi(τ − θi) + ι

(
(τ − θi)>µi − φi

))
This hints the possibility of building non-parametric cross-covariances as in [11] given the
convolution formalism.

2.3 Relationship with other models

Generalizing the scalar spectral mixture kernel to multivariate covariance functions can be
achieved from the LMC framework by considering scalar spectral mixture kernels as the
covariance functions of the latent processes (this approach is denoted SM-LMC), as pointed
out in [18], this formulation its equivalent to consider only real-valued cross-spectral densities,
that is why the authors propose a multivariate covariance function by including a complex
component, within the LMC framework, to the cross spectral densities to cater for phase
differences across channels. The CSM model can be seen as a particular case of the proposed
MOSM model with µi = µj, Σi = Σj, θi = θj ∀i, j ∈ {1, . . . ,m} and φi = µ>i ψi for ψi ∈ Rn,
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therefor, the SM-LMC is a particular case of the MOSM model where the parameters µi,Σi, θi
are restricted to be same for all channels and therefore only phase shifts and no delays are
allowed unlike the example in Fig. 2.1.

2.4 t-Student Spectral Densities

As we saw in the previous sections, squared exponential spectral densities are useful and
handy, since they allow an easy integration of imaginary parts and they have explicit Fourier
calculations, on the downside, these spectral densities yield infinite differentiable covariance
functions, thus, inference brings forth infinite differentiable estimators. Such an excessive
smoothness can be unrealistic on several physical problems where the smoothness of the data
is known. In this section we explore the possibility of using a similar approach to the MOSM
model but with t-Student spectral densities instead, as in [20, 21], since they allow parameters
that restricts the smoothness of the resultant covariance functions, for this purpose, let us
remember the Matérn covariance functions for one-dimensional input spaces (that is n = 1):

Definition 2.5 A t-Student distribution with 2ν degrees of freedom and scale parameter α
has the form:

S(ω) = w2 Γ(ν + 1/2)

(
√

2να)π1/2Γ(ν)

(
1 +

ω2

2να2

)−(ν+1/2)

(2.10)

= w2 Γ(ν + 1/2)(2να2)ν

π1/2Γ(ν)

1

(2να2 + ω2)ν+1/2
(2.11)

where Γ(z) is the Gamma function and ν, α ∈ R+, w ∈ R

Bochner’s theorem can be used with this distribution as spectral density which yields the
renowned Matérn covariance function, defined as follows

Definition 2.6 The Matérn covariance function has the form:

k(τ) = w2 21−ν

Γ(ν)
(
√

2ν|τ |)νKν(
√

2ν|τ |) (2.12)

where Kν is the modified Bessel function of the second kind, defined by

Kν(cτ) =
Γ(ν + 1/2)(2c)ν

π1/2τ ν

∫ ∞
0

cos(ωτ)

(c2 + ω2)ν+1/2
dω ∀c, τ > 0 (2.13)

For this class of covariance functions we have the following property: a Gaussian process
f(x) with a Matérn covariance function is mean-squared k-times differentiable if and only
if ν > k, thus by choosing an specific value of ν we can limit the differentiability of the
estimators. A regular choice for this parameters is ν = p+1/2 for p ∈ N, mainly due the fact
that the Bessel function can be simplified into a product of a polynomial and a exponential
function, for example:
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• p = 0, ν = 1/2, k(τ) = w2 exp(−α|τ |) (also known as Ornstein-Uhlenbeck kernel)

• p = 1, ν = 3/2, k(τ) = w2
(

1 +
√

3α|τ |
)

exp(−
√

3α|τ |)

• p = 2, ν = 5/2, k(τ) = w2
(

1 +
√

3α|τ |+
√

5α2|τ |2
)

exp(−
√

5α|τ |)

Following the approach of [21], it is possible to propose spectral densities of the form

Sij(ω) =

∫ ∞
0

Ri(ω, ξ)Rj(ω, ξ)dξ ∀i, j ∈ {1, . . . ,m} (2.14)

where each Ri(ω, ξ) is defined as:

Ri(ω, ξ) = wi
2νi/2−1/2

π1/4
ξ

(
νi
2

+
1
4
−1

2

)
e
−
(
α2
i

2
+
ω2

2

)
ξ

∀i ∈ {1, . . . ,m} (2.15)

thus, by using the fact that Γ(b)/ab =
∫∞

0
ξb−1e−aξdξ, the spectral densities Sij are given by

Sij(ω) = wiwj
2νij−1Γ(νij + 1

2
)α

2νij
ij

π1/2α
2νij
ij

1

(α2
ij + ω2)νij+1/2

∀i, j ∈ {1, . . . ,m} (2.16)

where α2
ij =

α2
i+α

2
j

2
and νij =

νi+νj
2

. These spectral densities fullfil condition (2.4) due to the
decomposition in (2.14), therefore, in virtue of Cramér’s theorem, the covariance functions
are given by

kij(τ) =
wiwj

α
2νij
ij

(αij|τ |)νijKνij(αij|τ |) ∀i, j ∈ {1, . . . ,m} (2.17)

This multivariate covariance function is a simplification of the work in [21] and it allows
different length-scales and different differentiability across outputs, but it doesn’t allows
the modeling of phases and delays due to the fact that the spectral densities proposed are
real valued and centered around zero, provided that, it is possible to extend these spectral
densities by considering a non-centered t-Student distribution and by adding an imaginary
component, as in the MOSM model, that is, to propose

Sij(ω) = wiwj
2νij−1Γ(νij + 1

2
)α

2νij
ij

π1/2α
2νij
ij

eι
(
θijω+φij

)
(α2

ij + (ω − µ)2)νij+1/2
∀i, j ∈ {1, . . . ,m} (2.18)

where θij, φij are defined alike the MOSM model and µ is the shift of the t-Student spectral
density of the origin, by denoting wij =

wiwj

α
2νij
ij

, we obtain the following multivariate covariance

function:
kij(τ) = wij(αij|τ + θij|)νijKνij(αij|τ + θij|) cos

(
µ(τ + θij) + φij

)
(2.19)

Analogously to the MOSM model, we can consider a mixture of these spectral densities
in order to increase the rank of the PSD matrix Sij, which, in virtue of Cramér’s theorem,
yield the following multivariate covariance function:

Definition 2.7 The extended multivariate Matérn covariance function has the form:

kij(τ) =

Q∑
q=1

w
(q)
ij (α

(q)
ij |τ + θ

(q)
ij |)ν

(q)
ij K

ν
(q)
ij

(α
(q)
ij |τ + θ

(q)
ij |) cos

(
µ(q)(τ + θ

(q)
ij ) + φ

(q)
ij

)
(2.20)

22



where w(q)
ij = w

(q)
i w

(q)
j /(α

(q)
ij )

2ν
(q)
ij and the superindex (·)(q) denotes the parameter of the qth

component of the spectral mixture.

This multivariate covariance function allows for different length-scales, smoothness, delays
and phases across channels. On the downside, it doesn’t allow different for frequencies µ
across channels as in the MOSM model, also, is limited to one-dimensional inputs only, in
this regard, this model is incomplete. This poses the question whether a more general family
of t-Student spectral densities can be formulated, a family of the form:

Sij(ω) ∝ eι(θ
>
ijω+φij)(

1 + 1
2νij

(ω − µij)>Σ−1
ij (ω − µij)

)νij+1/2
(2.21)

is it possible to choose the parameters of this family as in the MOSM model such that fullfil
condition (2.4) and when the degree of freedom parameters goes to infinity (νij → ∞) this
model converges to the MOSM model? (due to the convergence of t-Student distributions to
Gaussian distributions). For now this question will remain unanswered.
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Chapter 3

Experiments

With the purpose of testing the proposed MOSMmodel and to compare against other models,
we first validated the ability of the model in the identification of known auto- and cross-
covariances of synthetic data and compare it against the spectral-mixture linear model of
coregionalization (SM-LMC, [3, 2, 18], the Gaussian convolution model (CONV, [4]), and
the cross-spectral mixture model (CSM, [18]), to then test the model in the estimation
of missing real-world data in two different distributed settings: climate signals and metal
concentrations. All models were implemented in Tensorflow [22] using the package GPflow
[23]. The performance of all the models in the experiments was measured by the mean
absolute error given by

MAE :
1

N

N∑
i=1

|yi − ŷi| (3.1)

where yi denotes the true value and ŷi the MOGP estimate.

3.1 Synthetic example: Learning derivatives and delayed
signals

A very important property of Gaussian processes, it is that they are closed under linear
operators, in particular, since the derivative operator is linear, then, the derivative of a
Gaussian process is also a Gaussian process, that is

Proposition 3.1 Let f(x) be a Gaussian process with stationary covariance function k(τ),
then the derivative stochastic process f ′(x) is also a Gaussian process and its stationary
covariance function is −k′′(τ), furthermore,

(
f(x), f ′(x)

)
form a two-channel Multi-Output

Gaussian process ([24], [1], sec. 9.4) with the following multivariate covariance function

K(τ) =

(
k(τ) −k′(τ)
k′(τ) −k′′(τ)

)
(3.2)
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With this in mind, all four models were implemented to recover the auto- and cross-
covariances of a three-channel MOGP with the following components: (i) a reference function
sampled from a GP f(x) ∼ GP(0, KSM) with spectral mixture covariance kernel KSM and
zero mean, (ii) its derivative f ′(x), and (iii) a noiseless delayed version fδ(x) = f(x − δ).
The motivation for this illustrative example is that, since the auto-covariances and cross-
covariances of the aforementioned processes are known explicitly, we can therefore expect the
models to learn approximates of these theoretical covariances and use them for extrapolation.

The reference function was sampled on the domain [-20, 20] and we chose N1 = 500
noisy samples of the reference function for training, the derivative was computed numerically
(first order through finite differences) in the same range and N2 = 400 randomly selected
noisy samples in the interval [-20, 0] were chosen, the same goes for the delayed signal.
Table 3.1 presents the MAE for all models for the estimation of the reference signal and
the extrapolation of the derivative and delayed signals over the interval [0, 20] over ten
realisations of the experiment.

Fig. 3.1 shows the ground truth and MOSM estimates for all three synthetic signals
and the covariances (normalized), where the proposed model successfully learnt all cross-
covariances cov(f(x), f ′(x)) and cov(f(x), f(x − δ)), and auto-covariances without prior in-
formation about the delay or the derivative relationship between the two channels and, fur-
thermore, the proposed model is able to extrapolate the derivative and delayed signals in the
interval [0,20] where there is no data of these signals.
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Figure 3.1: MOSM learning of the covariance functions of a synthetic reference signal, its
derivative and a delayed version. Left: synthetic signals, middle: autocovariances, right:
cross-covariances. The dashed line represents the ground truth and the solid colour lines the
MOSM estimates with the respective variances, the training data is shown in green.

For this experiment, the MOSM model was used with only one spectral component
(Q = 1), meanwhile, the other models were used with five latent processes (Q = 5). The
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experiment shows the earnings of allowing different parameters across auto-covariances since
it yields distinct behaviors across the channels, in contrast with the latent processes mod-
els where auto-covariances partake its behavior, on the other hand, learnt cross-covariances
shows that the complex parameters of the cross-spectral densities play a fundamental role
in this experiment by identifying correctly the nature of the data, allowing non trivial cross-
covariances, which implies that the MOSM model can be used for system identification.

Table 3.1: Mean absolute error for all four models with one-standard-deviation error bars
over five realizations.

Model Reference Derivative Delayed

CONV 0.211 ± 0.085 0.759 ± 0.075 0.524 ± 0.097
SM-LMC 0.166 ± 0.009 0.747 ± 0.101 0.398 ± 0.042
CSM 0.148 ± 0.010 0.262 ± 0.032 0.368 ± 0.089
MOSM 0.127 ± 0.011 0.223 ± 0.015 0.146 ± 0.017

On the other hand, Fig. 3.2 shows the estimates for the CSM model and the learnt
auto-covariance and cross-covariances. Note how despite the fact that this model is able
to extrapolate the derivative signal with relative low error, it is unable to extrapolate the
delayed signal, this is due the fact that in order to model the correlation between a signal
and delayed or shifted version of it, a shifted cross-covariance function is needed and this
model only allows centered cross-covariances. Additionally, Fig. 3.3 shows the estimates
for the LMC model and the learnt auto-covariances and cross-covariances. This model fails
in the extrapolation of both derivative and delayed signals as a result of the symmetric
cross-covariances product of linear combinations of univariate covariance functions.
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Figure 3.2: CSM learning of the covariance functions of a synthetic reference signal, its
derivative and a delayed version. Left: synthetic signals, middle: autocovariances, right:
cross-covariances. The dashed line represents the ground truth and the solid colour lines the
CSM estimates.
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Figure 3.3: SM-LMC learning of the covariance functions of a synthetic reference signal, its
derivative and a delayed version. Left: synthetic signals, middle: autocovariances, right:
cross-covariances. The dashed line represents the ground truth and the solid colour lines the
SM-LMC estimates.

Fig. 3.4 shows the estimates for the CONV model and the learnt auto-covariance and
cross-covariances. The expression (1.23) shows that this model is only capable of constructing
auto-covariances and cross-covariances that are either positive or negative, which is confirmed
in this experiment, resulting in the failure of extrapolating the derivative and delayed signals.
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Figure 3.4: CONV learning of the covariance functions of a synthetic reference signal, its
derivative and a delayed version. Left: synthetic signals, middle: autocovariances, right:
cross-covariances. The dashed line represents the ground truth and the solid colour lines the
CONV estimates.
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3.2 Climate data

In order to compare the MOSM model against the others models in a real-data setting, a one-
dimensional in the input real-world dataset was used, this dataset1 contains measurements
from a sensor network of four climate stations in the south on England, called: Cambermet,
Chimet, Sotonmet and Bramblemet. Each sensor measures signals of Air Temperature, Wind
Gust, Wind Speed, Tidal Height, among others at 5-minute intervals. For this experiment
the normalized Air Temperature signal was considered from March 12, 2017 to March 16,
2017, that is 5692 samples, from where N = 1000 were randomly chosen for training.

Following [4] a sensor failure was simulated by removing the second half of the measure-
ments for one sensor and leaving the remaining three sensors operating correctly, all this with
the objective of testing the capability of the models to extrapolate the signals of the faulty
sensor given the highly correlated signals of the three remaining sensors. This same setup
was reproduced across all four sensors thus having four independent experiments. All models
considered had five latent processes/spectral components (Q = 5 for all models).
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Figure 3.5: Climate data: Signals of all four sensor and the noisy samples, the faulty sensor
in this case is the Cambermet sensor.

For all four models considered, Fig. 3.6 shows the estimates of missing data for the case
where Cambermet was the simulated faulty sensor. Note how all models were able to capture
the behavior of the signal in the missing range, this is because the considered climate signals
are very similar to one another. This shows that the MOSM can also collapse to models that
share parameters across pairs of outputs when required.

1Data can be obtained from www.cambermet.co.uk. and the sites therein.
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Figure 3.6: Climate data: Prediction of the Cambermet sensor in a simulated missing-data
scenario. The red points denote the observations, the dashed black line the true signal, and
the solid colour lines the considered models: From left to right: MOSM, CONV, SM-LMC
and CSM.

Table 3.2: Mean absolute error for all four experiments with one-standard-deviation error
bars over ten realizations.

Model Cambermet Chimet Sotonmet Bramblemet

CONV 0.098 ± 0.008 0.192 ± 0.015 0.211 ± 0.038 0.163 ± 0.009
SM-LMC 0.084 ± 0.004 0.176 ± 0.003 0.273 ± 0.001 0.134 ± 0.002
CSM 0.094 ± 0.003 0.129 ± 0.004 0.195 ± 0.011 0.130 ± 0.004
MOSM 0.097 ± 0.006 0.137 ± 0.007 0.162 ± 0.011 0.129 ± 0.003

Table 3.2 shows the mean absolute error with one standard deviation of the four exper-
iments over ten realizations. These results do not show a significant contrast between the
proposed model and the latent processes based models, in order to test for statistical signifi-
cance, the Kolmogorov-Smirnov test was used with a significance level α = 0.05, concluding
that for the Sotonmet sensor we can assure that the MOSM model yields the best results.
Conversely, for the Cambermet, Chimet and Bramblemet sensors, MOSM and CSM pro-
vided similar results, however, we cannot confirm their difference is statistically significant.
Although, given the high correlation of these signals and the relationship between the MOSM
model and the CSM model, the similar performance between these two under this dataset is
not unexpected.
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3.3 Heavy metal concentrations

With the intention of testing the proposed model in a multidimensional setting, the well-
known Jura dataset [3] from Geostatistics was used. This dataset, as shown in Fig. 3.7, is
a two-dimensional dataset (n = 2) that contains, in addition to other geological data, the
concentration of seven heavy metals in a region of 14.5 km2 of the Swiss Jura at different
locations.

Figure 3.7: Map showing the split of the 359 data locations into a validation set (black circles)
and a training set (white circles)

For each heavy metal concentrations data in this dataset, the data is divided into a training
set (259 locations) and a validation set (100 locations). A procedure identical to [3, 4] was
reproduced where the motivation is to aid the prediction of a variable that is expensive to
measure by using abundant measurements of correlated variables which are less expensive to
acquire. Specifically, Cadmium and Copper was estimated at the validation locations using
measurements of related variables (Nickel and Zinc for Cadmium, and Lead, Nickel and Zinc
for Copper) at the training and validation locations.

Table 3.3: Mean absolute error for the estimation of Cadmium and Copper concentrations
with one-standard-deviation error bars over ten repetitions of the experiment, the results for
the CONV model were obtained from [4]

Model Cadmium Copper

IGP 0.56± 0.005 16.5± 0.1
CONV 0.443± 0.006 7.45± 0.2
SM-LMC 0.46± 0.01 7.0± 0.1
CSM 0.47± 0.02 7.4± 0.3
MOSM 0.43± 0.01 7.3± 0.1
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Fig. 3.8 and Fig. 3.9 shows the estimation of the Cadmium and Copper concentrations
respectively for the MOSM model, the MAE—see eq. (3.1)—is shown in Table 3.3, where
the results for the CONV model were obtained from [4] and all models considered five latent
signals/spectral components (Q = 5) except the independent Gaussian process (denoted
IGP) which had a SM kernel as covariance function.
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Figure 3.8: Jura dataset: Upper-left: estimation of the Cadmium concentration over the
region, Upper-right: estimation of the Nickel concentration over the region, Bottom-left:
estimation of the Zinc concentration over the region, the data points are shown in red and
the validation (or prediction) locations are shown in black.

Note the proposed MOSM model outperforms all other models over the Cadmium data,
which is statistical significant with a significance level α = 0.05, while in the Copper case, we
cannot guarantee statistical-significance difference between the CSM model and the MOSM.
In either cases, testing for statistical significance against the CONV model was not possible
since those results were obtained from [4]. On the other hand, the higher variability and
non-Gaussianity of the data, as shown in Fig. 3.10 may be the reason of why the simplest
MOGP model (SM-LMC) achieves the best results.
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Figure 3.9: Jura dataset: Upper-left: estimation of the Copper concentration, Upper-
right: estimation of the Nickel concentration over the region, Bottom-left: estimation of
the Lead concentration over the region, Bottom-right: estimation of the Zinc concentration
over the region, the data points are shown in red and the validation (or prediction) locations
are shown in black.
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Figure 3.10: Jura dataset: Histogram of the different heavy metal concentrations in the Jura
dataset, the non-Gaussian behavior is visible.
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Conclusions

In this work, we have proposed the Multi-Output Spectral Mixture model (MOSM), which
is a generalization to multi-outputs of the well-known Spectral Mixture kernel [2], this novel
multivariate covariance function allows for modelling of rich relationships across multiple out-
puts within Gaussian processes regression models. This has been achieved by constructing
a positive-definite matrix of complex-valued spectral densities and then transforming them
by using the inverse Fourier transform according to Cramér’s Theorem. The resulting mul-
tivariate covariance function provides clear interpretation from a spectral viewpoint, where
each of its parameters can be identified with frequency, magnitude, phase and delay for a
pair of outputs. A key feature that is unique to the proposed multivariate covariance func-
tion is the ability joint model delays and phase differences, this has been possible due to the
complex-valued model for the cross-spectral density considered and validated experimentally
using a synthetic example—see fig. 3.1. The MOSM kernel has also been compared against
existing MOGP models on two real-world datasets, where the proposed model performed
competitively in terms of the the mean absolute error. Additionally, we studied possible
extensions of the multivariate Matérn model of [20, 21] by using complex-valued t-Student
spectral densities instead of complex-valued squared exponential spectral densities.

One aspect left out, that most of the previous models have, is a sparse implementation
[4, 25, 17] of the proposed model which is necessary due to the high computational cost that
GPs have, also, an sparse representation of the model could allow the design of inducing
variables that exploit the spectral content of the processes as in[26, 11]. On the other hand,
further research should point towards the development of a general multivariate spectral
kernel method such as in [27] where the spectral densities of covariance function given by
Bochner’s theorem are not modeled as a sum of Gaussian functions, but as a sum of arbitrary
integrable functions, this allows to prescind of the infinite differentiability of sampled functions
given by SM kernels, property which is unfortunately inherited by the MOSM model.

In summary, the proposed model shows the importance of complex components in the
cross-spectral densities and hints how Cramér’s theorem can be used to build stationary
multivariate covariance functions by modelling the Cholesky decomposition instead, which
open the possibility of new spectral multivariate models.
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