Tabla de contenido

Resu	men	i
Agra	decimientos	iii
Tabla	a de contenido	iv
Índic	e de tablas	vi
Índic	e de figuras	. vii
1.	Introducción	1
1.1	Antecedentes generales y motivación	1
1.2	Objetivos	3
1.2	.1 General	3
1.2	.2 Específicos	3
1.3	Alcances	3
2.	Antecedentes y estado del arte	4
2.1	Estanques de almacenamiento	4
2.1	.1 Estanques de techo fijo	4
2.1	.2 Estanques de techo flotante externo	5
2.1	.3 Estanques de techo flotante interno	6
2.1	.4 Estangues de domo y techo flotante externo	6
2.1	.5 Estangues horizontales	6
2.1	.6 Estangues presurizados	7
2.1	.7 Estanques de almacenamiento de gas natural licuado (GNL)	7
2.2	Defectología en estructuras de pared delgada	9
2.2	.1 Criterio basado en la relación entre el defecto y el proceso de carga	9
2.2	.2 Criterio basado en la distribución espacial de los defectos	9
2.2	.3 Criterio basado en los parámetros afectados	. 10
2.3	Defectología v mecanismos de daño según API 579	. 12
2.4	Defectos geométricos en estangues verticales	. 14
2.5	Modelación de defectos geométricos	. 17
2.6	Esfuerzos en estructuras de pared delgada	. 21
2.7	Análisis de esfuerzos en estructuras imperfectas	. 26
2.7	.1 Método de cargas equivalentes	. 27
2.7	.2 Método de perturbación [1]	. 31
2.7	.3 Método directo	. 32
2.8	Comportamiento plástico de materiales	. 35
2.9	Fallas estructurales en estangues verticales	. 37
2.10	Metodología FFS según API 579	. 42
2.11	Análisis FFS para defectos geométricos localizados según API 579	. 46
2.1	1.1 Método de análisis elasto-plástico	. 47
2.1	1.2 Protección contra el colapso plástico local	. 49
2.1	1.3 Protección contra el colapso por pandeo	. 49
3.	Estudio del caso base	. 51
3.1	Introducción	. 51
3.2	Descripción del estangue	. 51
3.2	.1 Códigos y documentos aplicados en el diseño del estangue	. 51

3.2.	2 Características geométricas	52
3.2.	3 Materiales constructivos	52
3.3	Cargas de diseño	52
3.4	Resumen de la inspección del estanque	54
3.5	Caracterización de defectos	56
4.	Metodología	57
4.1	Metodología general	57
4.1	1 Estudiar la tipología y defectología de estanques verticales de uso habitual en	
Chile	57	
4.1	2 Preparar y adaptar una rutina para el análisis de integridad estructural (AIE)	
basada er	el API 579	58
4.1	3 Analizar casos representativos aplicando la rutina para AIE	58
4.1	4 Categorizar los resultados según la IE de los estanques verticales analizados.	58
4.2	Parametrización de defectos	59
4.3	Modelación geométrica del estanque	61
4.3	1 Modelación en Inventor	61
4.3	2 Modelación en Design Modeler	61
4.4	Modelación geométrica de los defectos	64
4.5	Restricciones y solicitaciones del estanque	67
4.6	Selección de malla	69
4.7	AEF de los modelos	70
5.	Resultados y discusión	71
5.1	Modelación geométrica	71
5.1	1 Caso base	71
5.1	2 Defectos parametrizados	72
5.2	Selección de malla	75
5.3	AEF	76
5.3	1 Caso Base	76
5.3	2 Defectos parametrizados	84
5.4	Trabajo futuro	95
6.	Conclusiones	96
Biblic	grafía	99

Índice de tablas

Tabla 2.1: Cuadro comparativo de los métodos de modelación analizados	. 20
Tabla 2.2: Lista de algunos elementos utilizados para MEF [27].	. 33
Tabla 2.3: Resumen de las tolerancias de fabricación del API 650 [5].	. 46
Tabla 2.4: Combinaciones de cargas para el análisis elasto-plástico [5]	. 48
Tabla 4.1: Listado de vigas de la estructura del techo	. 62
Tabla 4.2: Codificación de resultados.	. 70
Tabla 5.1: Dimensiones generales de los defectos del caso base.	. 71
Tabla 5.2: Parametrización de los defectos del caso base	. 72
Tabla 5.3: Dimensiones generales de los defectos arbitrarios	. 72
Tabla 5.4: Parametrización de los defectos arbitrarios.	. 73
Tabla 5.5: Listado de mallas analizadas	. 75
Tabla 5.6: Resultados del análisis contra el colapso plástico global	. 77
Tabla 5.7: Resultados del estanque base para la combinación de cargas n°1	. 80
Tabla 5.8: Resultados del estanque base para la combinación de cargas n°2	. 80
Tabla 5.9: Resultados del estanque base para la combinación de cargas n°3	. 80
Tabla 5.10: Resultados del estanque base para la combinación de cargas n°4	. 81
Tabla 5.11: Resultados del estanque base para la combinación de cargas n°5	. 81
Tabla 5.12: Resultados del análisis contra el colapso plástico local para el defecto N°1 para la	
combinación de cargas n°6	. 82
Tabla 5.13: Resultados los defectos arbitrarios para la combinación de cargas n°1	. 88

Índice de figuras

Figura 2.1: Esquema de un estanque vertical de techo fijo con sus componentes principales	
(PL: Plancha).	5
Figura 2.2: Esquema de un estanque vertical de techo flotante externo [11]	5
Figura 2.3: Esquema de un estanque vertical de techo flotante interno [11].	6
Figura 2.4: Esquema de un estanque vertical de techo flotante externo [12]	6
Figura 2.5: Esquema de un estanque horizontal [13]	7
Figura 2.6: Esquema de un estanque presurizado [14].	7
Figura 2.7: Esquema de un estanque de almacenamiento de GNL [15]	8
Figura 2.8: Área de la estructura afectada por (a) defecto con propiedades prismáticas; (b)	
defectos con patrón repetido; (c) defecto localizado; y (d) defecto globalizado [1].	10
Figura 2.9: Esquema de una abolladura. Donde ddp corresponde a la profundidad del defect	0,
\vec{rd} es el radio de curvatura del defecto y tc es el espesor de cáscara [5]	15
Figura 2.10: Estanque de almacenamiento de hidrocarburos que presenta un defecto plano de	•
alrededor de 3x3 m ² en los anillos superiores. (Fotografía tomada por GIE S.A., 2011 [17])	15
Figura 2.11: Abolladura en estanque vertical producida por vacío (Fotografía extraída desde	el
sitio de Walt Beattie [18]).	16
Figura 2.12: Modelo de los defectos, donde t es el espesor de la cáscara, r corresponde al rad	io de
la circunferencia afectada por el defecto y f es la profundidad del defecto [15]	17
Figura 2.13: Modelamiento y notación de una estructura axisimétrica con defectos [1]	18
Figura 2.14: Modelo axisimétrico de una tubería de descarga indentada por una superficie ríg	gida
[20]	19
Figura 2.15: Esquema de fuerzas de membrana, momentos flectores y presiones de la cáscara	ì
cilíndrica [23].	23
Figura 2.16: Esquema de cilindro alargado sometido al momento flector M0 [24]	27
Figura 2.17: Esquema del método de cargas equivalentes para el análisis de un cilindro	
imperfecto bajo presión interna [22]	28
Figura 2.18: Curva esfuerzo-deformación del acero A36	36
Figura 2.19: Pandeo global en estanque vertical (29)[32].	37
Figura 2.20: Pandeo local en estanque [33].	38
Figura 2.21: Pandeo global tipo pata de elefante [34].	39
Figura 2.22: Esquema de la trayectoria de equilibrio para: cilindro de pared delgada perfecto	
(línea continua), y cilindro imperfecto (línea discontinua) [36]	40
Figura 2.23: Aumento de factor de carga (<i>LF</i>) debido a la razón de amplitud del defecto α/L	, para
domos de pared delgada. Donde <i>LF</i> 0 es el factor de carga de la estructura perfecta, α es la	
amplitud del defecto y <i>L</i> la longitud de la celda del domo [35]	41
Figura 3.1: Vista de elevación del estanque vertical TK-002.	51
Figura 4.1: Diagrama de la metodología	57
Figura 4.2: Modelo del manto y fondo del estanque	61
Figura 4.3: Extracto de plano del techo. Vista superior	62
Figura 4.4: Extracto de plano del techo. Vista de corte en elevación	62
Figura 4.5: Boceto del techo en ANSYS	63
Figura 4.6: Estructura de techo del estanque	63
Figura 4.7: Modelo terminado del estanque.	64

Figura 4.8: Vista isométrica del manto con los puntos importados (en verde) delimitados por Figura 4.9: Boceto del perfil del defecto donde el perfil del boceto se representa con una línea azul continua; los puntos de interpolación se muestran con sus grados de libertad en rojo; y los Figura 4.10: Izquierda: Bocetos del perfil parametrizado. Derecha: Detalle del boceto horizontal. Figura 5.2: Estanque con diferentes defectos (área verde). Los defectos poseen distinta relación de aspecto. Primera fila, RA= 1:1; Segunda fila, RA=3:1 y 2:1; Tercera fila, RA=1:2 y 1:3. 74 Figura 5.3: Mallas evaluadas. De izquierda a derecha: Mallado por default (2); mallado con cuadriláteros automático (3); y mallado con cuadriláteros por zonas (5). Los números indican la Figura 5.5: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al momento de la falla para la combinación de cargas n°1. Etiquetas: Esfuerzo equivalente máximo Figura 5.6: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al Figura 5.7: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al Figura 5.8: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al Figura 5.9: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al Figura 5.10: Izquierda: Esfuerzo equivalente, y derecha: deformación plástica equivalente al Figura 5.11: Esfuerzo equivalente para defectos de RA = 1: 1. De izquierda a derecha: $\epsilon =$ Figura 5.12: Esfuerzo equivalente para defectos de RA = 2:2. De izquierda a derecha: $\epsilon =$ Figura 5.13: Esfuerzo equivalente para defectos de RA = 3:3. De izquierda a derecha: $\epsilon =$ Figura 5.14: Esfuerzo equivalente para defectos de RA = 1:2. De izquierda a derecha: $\epsilon =$ Figura 5.15: Esfuerzo equivalente para defectos de RA = 1:3. De izquierda a derecha: $\epsilon =$ Figura 5.16: Esfuerzo equivalente para defectos de RA = 2: 1. De izquierda a derecha: $\epsilon =$ Figura 5.17: Esfuerzo equivalente para defectos de RA = 3: 1. De izquierda a derecha: $\epsilon =$

Figura 5.21: Gráfico de factor de deformación plástica equivalente vs masividad del defecto	91
Figura 5.22: Gráfico de factor de concentración de esfuerzos vs razón de profundidad	92
Figura 5.23: Gráfico de factor de concentración de esfuerzos vs masividad del defecto	93
Figura 5.24: Acercamiento del análisis del esfuerzo equivalente para el defecto N°4 para la	
combinación de cargas n°1	94
Figura 5.25: Acercamiento del análisis del esfuerzo equivalente para el defecto N°1 para la	
combinación de cargas n°1	94