Poly(lactic acid) composites based on graphene oxide particles with antibacterial behavior enhanced by electrical stimulus and biocompatibility

Paulo Arriagada,1 Humberto Palza,1 Patricia Palma,2 Marcos Flores,3 Pablo Caviedes4
1Laboratorio de polímeros, Depto. de Ingeniería Química y Biotecnología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
2Depto. Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Sergio Livingstone 943, Santiago, Chile
3Laboratory of Surfaces and Nanomaterials, Physics Department, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
4Centro de Investigación Clínica y Estudios Farmacológicos, Facultad de Medicina, Universidad de Chile, Santiago, Chile

Received 2 August 2017; revised 7 November 2017; accepted 4 December 2017
Published online 21 December 2017 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/jbm.a.36307

Abstract: Poly(lactic acid) (PLA) is a biodegradable and biocompatible polyester widely used in biomedical applications. Unfortunately, this biomaterial suffers from some shortcomings related with the absence of both bioactivity and antibacterial capacity. In this work, composites of PLA with either graphene oxide (GO) or thermally reduced graphene oxide (TrGO) were prepared by melt mixing to overcome these limitations. PLA composites with both GO and TrGO inhibited the attachment and proliferation of Escherichia coli and Staphylococcus aureus bacteria depending on the kind and amount of filler. Noteworthy, it is shown that by applying an electrical stimulus to the percolated PLA/TrGO, the antibacterial behavior can be dramatically increased. MTT analysis showed that while all the PLA/GO composites were more cytocompatible to osteoblast-like cells (SaOS-2) than pure PLA, only low content of TrGO was able to increase this property. These tendencies were related with changes in the surface properties of the resulting polymer composites, such as polarity and roughness. In this way, the addition of GO and TrGO into a PLA matrix allows the development of multifunctional composites for potential applications in biomedicine. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 1051–1060, 2018.

Key Words: graphene oxide, surface characterization, antibacterial activity, biocompatibility, electrical stimulus

INTRODUCTION

During the past few years, it has been an increase in development of biopolymers as an alternative to petroleum-based materials.1 Owing to their biocompatibility, these materials can be used in biomedical applications, such as tissue engineering, regenerative medicine, gene therapy, and controlled drug delivery.1,2 In particular, poly(lactic acid) (PLA), a thermoplastic aliphatic polyester produced from non-fossil renewable natural resources, has emerged as an interesting biopolymer due to its renewability, biodegradability and relatively low cost.3 Despite the large use of PLA as a biomaterial, it still has some limitations such as poor mechanical behavior and lack of an intrinsic bioactivity. Moreover, similar to any other biomaterial, it is foreseen to be infected due to the absence of antibacterial behavior.4 Different routes have been reported to overcome these issues where the addition of particles into PLA to produce composite materials is one of the most used. Different kind of particles had been used such as fibres5 and micro and nanoparticles.6,7

Among the diverse particles used in these composites—graphene derivatives (GD) such as graphene nanoplatelets (GNP), exfoliated graphite (EG), graphene oxide (GO), or reduced graphene oxide (rGO)—have emerged as an alternative due to their exciting properties recently.8 The addition of GD can improve some physical properties of a polymer matrix such as electrical and thermal conductivities, or mechanical behavior; among others.9,10

Regarding the antimicrobial behavior of polymer/GD materials, few polymers had been tested, including poly-N-vinylcarbazole (PVK),11 polyester,12 chitosan,13 poly(vinyl alcohol),14 and PLA. In these cases, GO was mainly used obtaining 100% of antibacterial efficiency at concentrations between 0.215 and 516 wt %.

© 2017 WILEY PERIODICALS, INC. 1051
behavior include oxidative stress by the formation of reactive oxygen species (ROS) and mechanical disruption of bacterial membranes.17

GD particles are outstanding because of their antimicrobial behavior but also because of some studies concluded that their toxicity is relatively low depending on the type, time, production method, and concentration of particles.18 As for polymer/GD composites, there are few examples about cell viability, for instance, using matrices such as PVK11 and poly(vinyl alcohol).14 Regarding PLA, the incorporation of GO was able to improve its biocompatibility toward neuronal,19 osteogenic cells,20,21 and foreskin fibroblast.22,23

The multifunctional behavior of polymer/GD composites is reflected in the improvements in other parameters related with the physical properties of the polymer matrix such as mechanical and electrical properties. PLA/GD nanocomposites showed an improvement in the Young modulus at low amount of EG.23–25 On the other hand, electrically conductive PLA composites were found by Kim and Jeong,24 improving 10 orders of magnitude the conductivity at 7 wt % of EG. Similar results were obtained by Shen et al.26 and Kashi et al.,27 at 2 vol % of CrGO and at 15 wt % of GNP, respectively. The electrical behavior is explained by the percolation theory assuming a conductive path formed through the composite. This makes a nonlinear change on the electrical property of the material depending of the additive concentration.28 Despite the evidence that electrical current through a material can improve several bio-related properties, studies about electrical percolated PLA composites for electrical stimulus have not been reported.

Based on the above mentioned, it is clear that the addition of different GD into PLA can produce multifunctional biomaterials with antimicrobial behavior and improved biocompatibility. In this regard, we report a comparative study of the behavior in these properties of PLA nanocomposites having either rGO or GO. Our results not only show that these materials presented improved both physical and bioactive properties, but also for a first time an electrical stimulus biocide behavior was observed in conductive PLA/rGO composites.

MATERIALS AND METHODS

Materials

A commercial grade for 3 D impression \textit{amorphous} poly (lactic acid) (PLA) from Polimersia Global, SL (Spain) with a melt flow rate of 7–9 g/10 min (2.16 kg/210°C) (Norm ASTM D-1238/95) and having a 96:4 L:D ratio content, was used as matrix. G (graphite fine powder extra pure) with a particle size <50 (μm), sulfuric acid (98.08%, H₂SO₄), potassium permanganate (99%, KMnO₄), hydrochloric acid (32%, HCl), and sodium nitrate (99.5%, NaNO₃) were obtained from Merck (Germany) and used as received. Hydrogen peroxide (5%, H₂O₂) was purchased from Kadus S.A.

Preparation of graphene derivatives

GO was prepared in oxidation process using G as raw material. The graphite oxidation process of Hummers and Offeman was employed.29 The first step is an oxidation of G with KMnO₄ and NaNO₃ in concentrated sulphuric acid. This oxidation was carried out using 250 mL of concentrated sulfuric acid as dispersion medium per 10 g of G. To the stirred dispersion, 5 g of NaNO₃ was added and after 30 min of stirring, it was cooled down to ~0°C using an ice water bath. Then 30 g of KMnO₄ were added during 4 h. When the addition was completed, the resulting dispersion was stirred at room temperature for 1.5 h. The reaction was quenched by pouring the dispersion into 0.5 L of ice water and adding 450 mL of H₂O₂ (5 wt %) until the excess of KMn04 was reduced. The GO was filtered off and washed with aqueous HCl and subsequently washed with water. The purified brown GO was dried under vacuum to 110°C for 10 h. Second, the dry GO was thermally reduced to afford TrGO in a nitrogen atmosphere by rapidly heating GO from room temperature up to 600°C during 40 s, using a quartz reactor heated in a vertical tube furnace preheated at 600°C. TrGO was obtained as a black powder with low bulk density. The thermal shock is the prime requirement to achieve reduction of graphene sheets.

Synthesis of PLA with graphene derivatives composites

The composites were prepared by using a Brabender Plasticorder (Brabender, Germany) internal mixer at 190°C and a speed of 110 rpm. Filler content ranges from 0 to 5 wt % for GO and 0 to 10 wt % for TrGO. First, a half of polymer was added to the mixer operated at 20 rpm. After 1 min approximately for melting the polymer, the filler was added during 3 min. Finally, the rest of polymer pellets was added and the speed of the mixer was held at 110 rpm for 10 min. Therefore, the total mixing time was around 14 min. After removal from the mixer, the composites were molded in a hot press at 190°C for 2 min, under a pressure of 150 kg/cm², into films of 12 x 12 cm² with approximately 1 mm thickness. After pressing, the films were cooled at room temperature. Samples with different dimensions were cut from these films, depending on the characterization test.

Characterization

\textit{G, GO, and TrGO powders.} X-ray diffraction (XRD) analysis was performed on a Siemens D-5000 diffractometer with scintillation detector diffraction system and Bragg–Brentano geometry operating with a Cu Kα1 radiation source filtered with a graphite monochromator (k = 1.5406 Å) at 40 kV and 30 mA in the 2θ range of 2-80° at the scan rate of 0.02°/s.

\textit{PLA/graphene derivatives composites.} MFI measurements of PLA and its nanocomposites were done using a Model 2 Digital Melt Flow Indexer (Ray-Ran) at 190°C/2.16 kg according to ASTM D1238.

Fourier transform infrared spectroscopy (FTIR) spectra were obtained through a Thermo Scientific Nicolet 8700 spectrometer, using attenuated total reflectance (ATR) in the 4000 and 400 cm⁻¹ spectral range averaging 50 scans with a resolution of 4 cm⁻¹.
Mechanical properties of composites were examined on a HP model D-500 dynamometer according to ASTM D638-10. Samples of $40 \times 16 \text{ mm}^2$ and a thickness of 2 mm were tested at a rate of 50 mm/min at room temperature. Results are the average values out of five measurements.

For electrical conductivity measurements, the material was cut into the shape of a rectangular specimen of length 4 cm, height 1 mm and width 1 cm. Copper wires were used as electrodes, being attached to both ends of the bar. With this set-up, the standard two points method was used. Electrical conductivity of composites was measured with different meghommeters (Megger BM11 with a highest voltage of 1200 V and AEMC 1060 with a highest voltage of 5000 V), depending on the conductivity of the samples. For each electrical value displayed in this investigation, at least four samples were prepared and four measurements for each one were carried out.

A macro lens was used to measure the contact angle of pure water on PLA composites films by the standard sessile drop method at 25°C. Measurements were realized on 5 different regions, and data were obtained with ImageJ software (National Institutes of Health, USA). Equilibrium contact angles considered at 60 s were measured for $5 \mu\text{L}$ droplet volumes.

The surface roughness was estimated from topographic images. The topographic images were obtained by AFM in contact mode. The measurements were performed in an Omicron SPM1 equipment running in vacuum conditions. Several images in different sites on areas of $5 \times 5 \mu\text{m}^2$ and $1 \times 1 \mu\text{m}^2$ were taken for each sample. The WSxM program was used to analyze the topographic images.

Biocompatibility test

Cytotoxicity of the PLA/graphene composites was evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (USB Corporation, USA) as per standard protocol to assess cell viability (ISO/EN 10993–5 2009). Samples of composites cut in discs with $5 \pm 0.5 \text{ mm}$ of diameter, sterilized by autoclave and UV light during 30 min, were placed at the bottom of each well. Human osteosarcoma cell line (SaOS-2) was seeded in DMEM/F12 supplemented with 10% fetal bovine serum (FBS), gentamicin (40 mg L$^{-1}$) and 1 μL ketokonazol (5 mg m$^{-1}$ of phosphate buffer solution (PBS)) mL$^{-1}$ culture media, at a density of 5×10^3 cells per well (150 μL of culture media). After 24 h of culture in an incubator at 37°C and humidified atmosphere (5% CO$_2$ in 95% air), the previous culture media was removed and each well washed with PBS. 100 μL of media with MTT (80 μL of MTT (5 mg mL$^{-1}$) 1 mL of DMEM/F12 without FBS or phenol red) was added to each well and incubated during 3 h. After incubation, the media containing MTT was removed from the 96-well plate and 200 μL of isopropyl alcohol was added per well to dissolve the formazan crystals. The optical density (OD) of the solution was measured at 540 nm by a microplate reader (Titerkert® Multiskan® MCC/340, MKII) and cell viability calculated. The MTT assay per each bioactive glass was performed with $n = 6$ and three independent experiments. The cells cultured with DMEM/ F12 media acted as control. The cell viability was calculated using Eq. (1):

$$\text{Viability} (\%) = \frac{OD_{\text{test culture}}}{OD_{\text{control culture}}} \times 100$$ (1)

Antibacterial activity test

The antibacterial efficiency PLA/GO and PLA/TrGO nanocomposites was analyzed using the standard protocol of antibacterial activity (ISO 22196:2007(E)) against E. coli ATCC 25922 and S. aureus ATCC 25923. Samples of nanocomposites were cut into $50 \times 50 \text{ mm}^2$, and polyethylene films were cut into $40 \times 40 \text{ mm}^2$. All squares were sterilized by autoclave, and before the test each glass recipient and tool was subjected to UV light for 30 min. After that, 0.4 mL with 2×10^6 CFU/mL bacterial suspension was seeded on each nanocomposite film sample and covered with polyethylene film so that the bacterial suspension can spread to the edges. For the electrically stimulated composites, each sample was connected to a circuit consisting in six serial batteries (Eveready, 9 V) through two copper electrodes attached in opposites sides of the composite sample, so the electrical current can flow across the entire film. After an incubation of 24 h (37°C, 90% RH), 10 mL of phosphate-buffered saline (PBS) was used to wash the samples and polyethylene films, using gentle shaking for 1 h. Serial dilutions of 10- to 10^6-fold with a gradient method, and 1 mL of each dilution was placed into separate sterile Petri dishes. Immediately, 15 mL of plate count agar was poured into each Petri dish to disperse the bacteria by swirling gently, and incubated at 37°C for 24 h. After incubation, the number of colonies was counted. The antibacterial efficiency (R) was calculated via Eq. (2):

$$R(\%) = \frac{N_0 - N}{N_0} \times 100$$ (2)

Statistical analysis

The results are expressed as the mean ± SD. Statistical differences were calculated with the two-sample t test and were considered significant at $p \leq 0.05$. For antibacterial activity and biocompatibility test were used the antibacterial efficiency $R(\%)$ and the viability ($\%$), respectively, to calculate statistical differences.

RESULTS

Characterization of GD and PLA/GD nanocomposites

X-ray diffraction (XRD) was used to detect the interlayer distance between graphene sheets, as displayed in Figure 1. Graphite (G) presents a sharp diffraction peak at $2\theta = 26.5^\circ$, corresponding to an interlayer spacing of 3.4 Å.31,32 The intensity of the G peak is reduced and shifted to $2\theta = 11.0^\circ$ after the oxidation. After thermal reduction of GO to obtain TrGO, there is no evidence of any diffraction peaks.
To analyze the effect of processing on the polymer molecular weight, MFI tests were carried out to some representative samples. As-received PLA presented an MFI value of 7.1 g/10 min, meanwhile after melt mixing (without nanoparticles) and hot-pressing molding, the MFI value of PLA increased to 11.5 g/10 min. Noteworthy, PLA composites with 5 wt % of either GO or TrGO presented an MFI below the resolution of the technique (>30 g/10 min).

FTIR-ATR analysis was carried out to PLA and its nanocomposites, where significant differences were found in the intensities of the peaks of the pure matrix and composites. As could be seen in Supporting Information, Figure S1, the peaks at 2995 and 2944 cm\(^{-1}\) were assigned to \(\text{CH}_2\) stretching, the peak at 1746 cm\(^{-1}\) was assigned to \(\text{C}=\text{O}\) carbonyl, the peaks at 1452, 1381, and 1360 cm\(^{-1}\) were assigned to asymmetric and symmetric \(\text{CH}_2\) deformation in \(\text{CH}_3\) bending, the peaks at 1262 and 1179 cm\(^{-1}\) and at 1128, 1079, and 1042 cm\(^{-1}\) were assigned to \(\text{C}–\text{O}–\) stretching in \(-\text{CH}–\text{O}–\) and \(-\text{O}–\text{C}–\text{O}–\), respectively, and the peak at 866 cm\(^{-1}\) was assigned to \(-\text{C}–\text{C}–\) stretching.\(^{33–35}\) By adding both type of fillers into the PLA, the peaks at 956, 1042–1262, and 1746 cm\(^{-1}\) decreased its bands area, while the peak at 922 presented an increase and a decrease in the band area for GO and TrGO, respectively, as could be seen in Supporting Information, Figure S2.

The sessile drop method was used to determine the water contact angles on the surfaces of the resulting composites as displayed in Figure 2. The contact angle of PLA/GO composites decreased >10° comparing with pristine PLA, meanwhile the water contact angle of PLA/TrGO composites increased around 13° comparing with PLA.

The topography of the surface of the different composites was further evaluated. In particular, AFM topographic images, with some representative images shown in Figure 3, were used to study surface roughness as displayed in Figure 4. The root mean square (RMS) roughness of PLA measured at sections of 1 and 5 \(\mu\)m\(^2\) was affected by the incorporation of both GO and TrGO carbon nanostructure, with the decreasing of its value.

Antibacterial activity

Antibacterial efficiencies against \textit{E. coli} and \textit{S. aureus} of PLA and its composites with GD are shown in Table I. Noteworthy, the antimicrobial behavior of the composites depended on the kind and the amount of particle, with GO presenting the best results. For instance, 5 wt % of GO nanofillers sacrificed 100% of both bacteria. For TrGO nanofililers, only composites with 10 wt % showed some antibacterial behavior for both \textit{E. coli} and \textit{S. aureus} bacteria, increasing its value.

Electrical properties

Electrical properties of the PLA/GD composites are showed in Figure 5. As is observed, the PLA/GO composites did not show electrical percolation, meanwhile the PLA/TrGO composites showed some electrical behavior for both \textit{E. coli} and \textit{S. aureus} bacteria, increasing its value.
composites showed an electrical percolation around 5 wt%. Composite with 10 wt% of TrGO showed an electrical conductivity of 10^{-2} [S/m].

Biocompatibility
Viability of SaOS-2 cells after 24 h of exposure to the different nanocomposites is shown in Figure 6. Cell viability in PLA is lower than control, and by adding low amount of TrGO (<1 wt%) and GO in the whole range studied, the samples increase the cell viability. For high amount of TrGO biocompatibility did not show statistical difference respect to PLA.

Mechanical properties
Figures 7 and 8 shows the changes of Young’s modulus and strain at break, respectively, of PLA/GO and PLA/TrGO.
composites as a function of graphene content. The mechanical behavior depended on the filler used with GO particles producing higher values of Young moduli than TrGO.

Dashed lines in Figure 7 show the Young modulus predicted by the Halpin-tsai model varying the aspect ratio, \(\alpha \), to the required value fitting the experimental data. For PLA/TrGO composites \(\alpha \) gets the value of 60 meanwhile in PLA/GO this value increased to 500.

DISCUSSION

Characterization of GD and PLA/GD nanocomposites

As displayed in Figure 1, the intensity of the G peak is reduced and shifted to \(2\theta = 11.0^\circ \) after the oxidation, meaning that the presence of functional groups disrupts the layer structure of pure graphite.32 After thermal reduction, there is no evidence of peaks associated with GO, confirming the disruption of the interlayer order.31 Both GD, meaning TrGO and GO, were used as fillers in PLA nanocomposites.

MFI values suggest a thermal degradation of PLA matrix during melt processing. Moreover, incorporation of GD into PLA increased its MFI value, which is attributed to a pronounced degradation of the polymer matrix22,36 by hydrolysis of its ester bond.33,34 This process is accelerated by the presence of GD, due to the defects caused by the fillers producing different interfaces in the polymer matrix, generating penetration channels for the infiltration of water molecules.22,24 Additionally, for GO, oxygen-containing groups induce the scission of the PLA molecular chains.34

Hydrolytic degradation could be studied by FTIR spectra, as is shown in Supporting Information, Figure S1. Compared with PLA, the PLA/GD composites exhibit visible alteration in the FTIR spectra, related to the changes in area of the peak bands. As seen in Supporting Information, Figure S2, a decrease in the area of the peaks between 1042 and 1262 cm\(^{-1}\) of a 15\% and a 60\% for GO and TrGO, respectively, was detected, confirming that hydrolysis of the ester bond is the predominant degradation mechanism.33,34 Decrease in the peak at 1746 cm\(^{-1}\) also confirms the disruption of the ester chemical bond.37 Furthermore, GD change the crystallinity of the PLA matrix, as is confirmed by the decrease in the peak at 956 cm\(^{-1}\), related to the amorphous region of the polymer, and a slight increase in the peak at 922 cm\(^{-1}\), related to the crystalline region.34,35

For the surface properties have a huge effect on the biological properties of a sample, such as protein adsorption and cell adhesion,38 the sessile drop method was used, as displayed in Figure 2. The contact angle of PLA/GO composites decreased >10\° comparing with pristine PLA, showing that addition of GO in the PLA matrix increases its

TABLE I. Antibacterial Efficiency R (%) and CFU/mL of PLA/Graphene Derivatives Composites

<table>
<thead>
<tr>
<th>Material</th>
<th>E. coli</th>
<th>S. aureus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R (%)</td>
<td>CFU/mL</td>
</tr>
<tr>
<td>PLA</td>
<td>-</td>
<td>8.82\times10^7</td>
</tr>
<tr>
<td>PLA/3% GO</td>
<td>3.1 ± 3</td>
<td>8.55\times10^7</td>
</tr>
<tr>
<td>PLA/5% GO</td>
<td>100 ± 0</td>
<td>3.13\times10^1</td>
</tr>
<tr>
<td>PLA/5% TRGO</td>
<td>13.8 ± 8</td>
<td>7.60\times10^7</td>
</tr>
<tr>
<td>PLA/10% TRGO</td>
<td>44.9 ± 11</td>
<td>4.34\times10^7</td>
</tr>
<tr>
<td>PLA/10% TRGO e-</td>
<td>100 ± 0</td>
<td>9.63\times10^1</td>
</tr>
</tbody>
</table>

*PLA was used as control.
 e- denotes that the composite was subjected to an electrical stimulus.
hydrophilicity. In contrast, the water contact angle of PLA/TrGO composites increased around 13° comparing with PLA, meaning an increase of hydrophobicity. Therefore, the presence of GD affects the surface properties, particularly its wettability, as was found by Pinto et al.20 and Pei et al.38 These results further confirmed the high polarity of GO associated with its functional groups as compared with TrGO with poor polarity because of the high content of carbon atoms.

The topography of the surface was further evaluated as it has an effect on cellular adhesion.38 In particular, AFM topographic images, with some representative images shown in Figure 3, were used to study surface roughness as displayed in Figure 4. The root mean square (RMS) roughness of PLA measured at sections of 1 and 5 μm² was affected by the incorporation of both GO and TrGO carbon nanostructure, decreasing its value. However, an increase in roughness at 3% of GO content was observed likely associated with the presence of GO particles in the surface of the composites.20 The presence of carbon nanostructures further decreased the RMS dispersion meaning an increase in the surface homogeneity. An opposite tendency has been reported, found an increment in roughness with the addition of GD.20,38 However, the method of mixing PLA with GD fillers should be considered as the solvent mixing used in previous reports improve the presence of GO and TrGO agglomerates in the surface.20

Effect of composite properties in antibacterial activity

As expected, pure PLA did not present any antimicrobial effect although the presence of GO and TrGO added a biocide behavior, as shown in Table I. In addition, there is not a significant statistical difference between both tested bacteria, so the differences in the outer bacterial membrane are not a relevant issue in this analysis. It is noteworthy that the antimicrobial behavior of the composites depended on the kind and the amount of particle, with GO presenting the best results. For instance, 5 wt % of GO nanofillers sacrificed 100% of both bacteria. This behavior agrees with studies by An et al.15 and Huang et al.16 The increased hydrophilicity of the composites (Fig. 2) creates an inhibition surface for bacteria proliferation, which is potentiated by the amphiphilic behavior of the surface.20 These results further confirmed the high polarity of GO associated with its functional groups as compared with TrGO. Roughness of the composites should be further considered in the antimicrobial behavior as bacterial adhesion is sensitive to this parameter, and can explain the absence of antibacterial behavior in composites with 3% of GO.39

For TrGO nanofillers, only composites with 10 wt % showed some antibacterial behavior. In this case, the surface roughness of PLA measured at sections of 1 and 5 μm² was affected by the incorporation of both GO and TrGO carbon nanostructure, decreasing its value. However, an increase in roughness at 3% of GO content was observed likely associated with the presence of GO particles in the surface of the composites.20 The presence of carbon nanostructures further decreased the RMS dispersion meaning an increase in the surface homogeneity. An opposite tendency has been reported, found an increment in roughness with the addition of GD.20,38 However, the method of mixing PLA with GD fillers should be considered as the solvent mixing used in previous reports improve the presence of GO and TrGO agglomerates in the surface.20

FIGURE 6. Cytocompatibility of PLA nanocomposites. * Statistically significant difference between experiment groups with control. + Statistically significant difference between experiment groups with PLA (n = 6; p < 0.05).

FIGURE 7. Young’s modulus of PLA/GO and PLA/TrGO composites as a function of graphene content (n = 5).

FIGURE 8. Strain at break of PLA/GO and PLA/TrGO composites as a function of graphene content (n = 5).
conductivity can render antimicrobial behavior to the composite, as displayed in Figure 5, PLA with 10 wt % of TrGO presented an electrical percolated state. This electrical conductivity can render antimicrobial behavior to the composite as recently reported, associated with the production process of energy in bacterial cells requiring electron transport chain to carry out respiration process,\(^40\) so bacteria membrane exhibits a negative net charge.\(^41\) As proposed by Li et al.,\(^42\) presence of graphene brings the facile transfer of electrons from bacteria membranes to graphene acceptors. This process produces an interruption of the electron transfer chain in the membrane, killing bacteria.\(^40\) In this form, electrical conductive nanocomposites with 10 wt % of TrGO show around 40% of antibacterial behavior, in contrast with not conductive nanocomposites with 5 wt % of TrGO without any effect. This process is illustrated in Figure 9, where graphene sheets embedded in the polymer attracts electrons from bacterial membrane.

Electricidal effect

Some studies\(^13\)–\(^45\) found that a prolonged exposure to low-intensity electrical current reduced the presence of *Staphylococcus* and *Pseudomonas* in material surfaces, a phenomenon that was called “electricidal effect” by Schmidt-Malan et al.\(^45\) Electrostatic forces between bacteria and surfaces are generally repulsive, as most of biomaterials are negatively charged as are bacteria.\(^44\) It has been proposed that these repulsive forces can be enhanced by the application of electrical current provoking the surface detachment of bacterial biofilms.\(^44\) Additionally, it could produce oxidative stress\(^46\) or changes in pH and temperature.\(^45\) Despite these results, application of electrically conductive polymer composites to antimicrobial application has been barely carried out. To our knowledge, there is no report about polymer/graphene nanocomposites for electrical antimicrobial behavior.

When the electrical percolated composite was subjected to an electrical stimulus (PLA/10% TrGO e-), the antimicrobial behavior dramatically increased, reaching values as high as 100% of antimicrobial activity. We hypothesized that the charge transfer process is potentiated by the electrical current, as is explained by van der Borden et al.\(^44\) Therefore, it is possible to control the bacterial attachment to the surface by applying an electrical current.\(^47\) The antibacterial behavior is based on the generation of an electrostatic effect that causes bacterial cell death.\(^42\) The effect was vanished at high TrGO content due to the negative effect associated with the increment of the surface hydrophobicity (Fig. 2) hindering cell adhesion.\(^16\) PLA/GO nanocomposites otherwise have more hydrophilic surfaces (Fig. 2), enhancing ECM protein absorption and consequently cell adhesion, as reported previously.\(^19,21\)

Effect of composite properties in biocompatibility

As is shown in Figure 6, cell viability in PLA is lower than control because of the hydrophobic nature of PLA (Fig. 2), reducing the adhesion of the extracellular matrix (ECM) proteins, avoiding cells stick on the surface.\(^20\) Noteworthy, by adding low amount of TrGO (<1 wt %) and GO in the whole range studied, the samples increase the cell viability. For composites with low amount of TrGO, the increment in cell viability could be due to the increased surface roughness,\(^28\) as reported by Pinto et al.\(^20\) However, this positive effect was vanished at high TrGO content due to the negative effect associated with the increment of the surface hydrophobicity (Fig. 2) hindering cell adhesion.\(^16,20,38\) PLA/GO nanocomposites otherwise have more hydrophilic surfaces (Fig. 2), enhancing ECM protein absorption and consequently cell adhesion, as reported previously.\(^19,21\)

Mechanical properties

Mechanical behavior is an important aim in designing biomaterials, particularly biocomposites. As was mentioned, GD produces a reinforcing effect in polymer matrices.\(^74\) As can be seen in Figures 7 and 8, the mechanical behavior depended of the filler used, where both nanoparticles produced a decrease in strain at break (Fig. 8). However, GO particles produced higher values of Young moduli than TrGO (Fig. 7). This tendency can be associated with a better dispersion of GO sheets in the PLA matrix.\(^24,25,49\) Moreover, a good adhesion between GO and PLA because of hydrogen bonds should further be considered in the analysis.\(^50\) However, our results of FTIR analysis (Supporting Information, Fig. S1) do not indicate the formation of chemical bonding between GO and PLA. In this case, the reinforcement of the polymer matrix could be due to the increase in crystallinity, as is indicated by the increase of the peak at 922 cm\(^{-1}\) (Supporting Information, Fig. S2).\(^35\)

To analyze our results, the experimental Young modulus were compared with theoretical values predicted by the Halpin-tsai model, assuming random distribution of both GO and TrGO fillers in the PLA matrix.\(^51\) This model is...
expressed by the values and equations stated in Supplementary Information. Varying the aspect ratio, \(x \), to the required value fittings the experimental data (Fig. 7), it was shown that for PLA/TrGO composites, \(x \) gets the value of 60 meanwhile in PLA/GO this value increased to 500, meaning completely separated GO sheets. In this way, change in the filler aspect ratio can explain the findings observed in Figure 7.

CONCLUSION

 Incorporation of graphene derivatives into a PLA matrix can add some functionalities to the polymer matrix that are relevant for future bioapplications. In particular, changes in the wettability of the surface of the composites were obtained with a surface more either hydrophilic for PLA/GO composites or hydrophobic for PLA/TrGO composites, as compared with pristine PLA. The addition of GO inhibited the proliferation of bacteria at a concentration of 5 wt % of GO, while improving 40% the cell adhesion as compared with PLA, showing no cytotoxic effects. Additionally, by applying an electrical stimulus the antibacterial behavior in PLA/TrGO composites was dramatically enhanced. Cell adhesion in PLA/TrGO composites did not show a significant difference with PLA. Both GO and TrGO present an improvement of Young’s modulus, with the former being a better reinforcement for the PLA matrix. In this way, this investigation shows good results of PLA/graphene derivatives composites for their potential use in biomedical applications.

CONFLICT OF INTEREST

The authors declare no competing financial interest.

REFERENCES