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Abstract The main goal of this paper is to propose
a Bayesian based methodology for implementing robot
informed search for objects. The methodology uses con-
volutions between observation likelihoods of secondary
objects and spatial relation masks for estimating the prob-
ability map of the object being searched for, and also a
search procedure that uses this probability map. A method
for computing complex spatial relation masks by using a
basis composed of basic relation masks and a database of
co-occurrences of objects is used. Each basic relation mask
corresponds to a qualitative spatial relation (QSR), such
as: ‘very near’, ‘near’, or ‘far’. The search procedure takes
into account the probability that the main object can be
in different regions on the map and the distance to those
regions. Also, the object search procedure is able to detect
objects and generate new plans while moving. The proposed
methodology is compared with uninformed and alternative
informed search approaches using simulations and real-
world experiments with a service robot. In simulations, the
use of the proposed methodology increases the detection
rate from 28% (direct uninformed search) to 79%, when the
main object can be detected within a maximum distance of 1
meter. In the real world experiments, the use of the proposed
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methodology increases the detection rate from 40% (direct
uninformed search) to 87% when using convolutions with
soft masks, global search, and information on the positive
detection of secondary objects. The detection rates obtained
when using the proposed methodology are also much higher
than those obtained by alternative informed search methods,
both in the simulated and in the real-world experiments.

Keywords Semantic search · Informed search · Active
search · Robot indirect search for objects

1 Introduction

The ability to search for objects in complex environments is
fundamental for mobile service robots. A simple approach
for performing this task consists of generating a set of con-
secutive viewpoints that maximize the probability of finding
the object. This approach requires that the robot explores the
whole environment in searching for the object. If the object
to be detected is small, or if the environment is large, this
exhaustive search approach will require a very large number
of viewpoints for covering the environment.

However, a better searching approach can be applied if
the fact is exploited that some sets of objects have spe-
cific spatial relations, mainly because they are all needed
by humans for performing some defined tasks (e.g. cook-
ing, or cleaning). These objects tend to appear close to each
other as they have a particular semantic relation, making
it possible to infer the presence of an object A, given an
object B. For example, when looking inside a kitchen, it
can be noted that the object ”coffee cup” is often very near
the object “coffee maker”. Thus, when the main searched
object has a known spatial relation with other objects in
the environment based on its use, the detection of these
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intermediate/secondary objects can be used to improve the
search procedure for the primary/main one. Search meth-
ods that are able to use information about secondary objects
for improving their performance are named informed object
search methods. As a particular case, methods that first look
for an intermediate object in order to find a main object are
named indirect search methods. Informed search methods
are able to overcome direct search when spatial relations
between objects are known. Estimation of spatial relations
requires additional work when compared to direct search
methods. Also, errors in estimations or modeling of spa-
tial relations can cause informed search to perform worse
than direct search. Then, informed search methodologies
must consider procedures for estimating the spatial relations
using real-world data.

In this context the main goal of this paper is to propose
a Bayesian based methodology for implementing indirect
search for objects. The methodology uses convolutions
between observation likelihoods of secondary objects and
spatial relation masks for estimating the probability map of
the object being searched for, and a search procedure that
uses this probability map. The methodology is intended to
be used by service robots operating in human environments
where thesemantic relationshipsbetweenobjects can be exploited.

This work makes two main contributions. The first con-
tribution is the development of a family of Bayesian algo-
rithms that enable integrating information about detections
of secondary objects onto the probability map of the main
object by using fast, focalized convolutions. They are based
on the convolution of the observation likelihood of the sec-
ondary object over the map with a spatial relation mask.
The result of the convolution is an observation likelihood
for the main object, which is integrated onto the probabil-
ity map. The masks can represent arbitrary spatial relations.
The second contribution is a region-based global search pro-
cedure for selecting the next viewpoint of the robot, which
takes into account the probability that the main object can
be in different regions on the map and the distance to those
regions. The planning procedure is fast to compute, enabling
the robot to detect objects and reevaluate its navigation goal
while moving.

The proposed methodology is compared with alternative
indirect search approaches using simulations and real-world
experiments with a service robot. Simulations are included
because they allow performing replicable experiments and
analyzing/simulating specific situations.

This work is an extension of that reported in [1, 2]. In
this improved version, new search strategies are proposed; a
more extensive analysis of the proposed methodology is car-
ried out; experiments with a service robot operating in the
real world are included; and a more extensive comparison
with other indirect search methods is presented.

The work is organized as follows: In Section 2, the state-
of-the-art related to the present work is described. In Section 3,
the proposed methodology for indirect object search is exp-
lained. In Sections 4 and 5, a comparison of the proposed
methodology with alternative indirect search approaches in
simulations and in the real world, respectively, is carried out.
Finally, in Section 6 conclusions of this work are drawn.

2 Literature Review

The search for objects in real environments is a complex
task, which has been addressed using different approaches.
In the case of informed search, in which the presence of
secondary objects is considered for guiding the active search
of the primary objects, a semantic modeling of the environment
is also needed. In the following Sections, key papers related
to the representation/modeling of the environment, and the
planning aspects of the object search process are reviewed.

2.1 Representation of the Environment

Techniques used for representing the environment and the
spatial relations among objects are highly diverse. However,
most of the approaches use spatial relations, co-occurrences,
and/or hierarchical structures.

– Spatial relations Objects in indoor environments,
which are related to the same task, tend to appear follow-
ing certain spatial patterns. As an example, keyboards
tend to appear in front of monitors. Spatial relations are
useful for predicting poses of searched objects when
poses of secondary objects are known. In 1976, Garvey
[3], recognized the usefulness of spatial relations for
performing indirect search. Relations enable to constrain
windows containing objects in the image domain using
relations like “above” or “left-of”. However, spatial
relations in the 3D space were not considered. In 2011,
Kasper et al performed a study on spatial relations with
three-dimensional images using a Kinect sensor [4].
They created a database using nine different office space
settings with a total of 168 objects in 35 object classes.
They then calculated the distances between different
objects. Spatial relations are discretized both on distance
and orientation space.

Methods that are able to use common-sense knowl-
edge have been developed in the last years. This approach
is derived from previous works of Randell (1992) [5]
and Cohn (2001) [6], in which qualitative spatial rela-
tions (QSRs) are described as topological relations between
regions representing objects. The approach was extended in
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2014 by Cohn [7] for being able to include orientation infor-
mation inside the qualitative spatial relation framework.
QSRs have the potential to represent spatial relations by
using human-like concepts. However, these works are the-
oretical and is not straightforward to implement them on a
mobile robot.

In 2010, Aydemir et al. [8] developed a method for rep-
resenting qualitative spatial relations in 3D by sampling
positions of possible sought objects from detections of
secondary objects. A model for the spatial relation “on”
was handcrafted and enabled the robot to perform indirect
object search. A SIFT object detector was used for detecting
objects. The system was successful as objects are usually on
horizontal surfaces, with the supporting object being larger
than the supported one. In 2011, Aydemir et al. [9] improve
the system, by using two spatial relations “in” and “on”,
and also improving the action selection process. In 2014,
Kunze et al. [10] used QSRs between a landmark object
and the object to be found. The relations being considered
are directional (left-of, right-of, in-front-of, behind-of ) and
distance relations (close-to and distant-to). Each basic rela-
tion is represented by a Gaussian, and then any arbitrary
relation can be decomposed into a sum of the basic rela-
tions and represented as a sum of Gaussians. The system
assumes that the robot knows: a 2D map, a 3D map, the
set of known landmarks, and the set of QSRs needed by
the system to work. In 2014, Kunze [11] presented a sys-
tem that is able to learn both QSRs from desktop scenes,
and a set of useful landmarks for each object. A dataset of
47 scenes containing 437 object instances and 1,798 labeled
spatial relations is used for learning the QSRs. Then, 500
desks are simulated by selecting sets of objects that are
compatible with the estimated QSRs for data augmentation
purposes. The set of useful landmarks for each object type
is determined by analyzing the entropy of the distribution
representing the relative positions of candidate landmarks
an each object. In 2016, Li [12] proposed a novel system
for learning and describing object relations between objects
in an unsupervised fashion. An object is represented by an
orientated bounding volume with six faces. The centroids
of each face are used for describing the object. By comput-
ing differences between the positions of the centroids of two
different objects, feature vectors describing spatial relations
are computed. By applying clustering to the features, spa-
tial relations can be learnt in an unsupervised way. However,
this work is not yet applied to object search.

In summary, spatial relations are useful for inferring
poses of sought objects from information related to other
objects or locations.

– Co-occurrences A simple form for representing statis-
tics about objects is to count the frequency of pairs of

objects co-occurring in the same images. Also, statistics
about co-occurrences of objects and places can be used.
In 2009, Viswanathan et al. [13] proposed an approach
for learning place models from objects. Co-occurrences
between places and objects are computed by using
marked images from the LabelMe database, designed by
Russell et al. [14]. They train an automatic classifier of
places, based on the presence of the detected objects, to
infer the probability that the other objects are there, and
the kind of place (e.g., kitchen or office) is seen in the
setting. In 2012, Zhou et al. [15] proposed a system able
to acquire commonsense knowledge about object local-
ity (CSOL) by using both web mining (search engine
querying) and a professional database for estimating co-
occurrences between objects and locations. The method
is tested in a real robotic platform. In 2013, Elfring et
al. [16] proposed an active object search method that is
based on co-occurrences of pairs of objects. The sys-
tem is also able to infer chains of intermediate objects
for searching objects inside a room. In 2015, Riazuelo
[17] proposed a cloud platform named RoboEarth. Two
functionalities provided by this system are the ability of
creating semantic maps of the environment and of exe-
cuting search tasks. Co-occurrences between objects and
locations are used for creating object search plans. Thus,
co-occurrences provide simple models that are useful
for performing active search. However, they lack precise
information about the spatial configuration of objects.

– Hierarchical map structures Co-occurrences and spa-
tial relations provide useful information for informed
object search. However, robot’s environment need to
been described as a metrical, topological and/or semanti-
cal representation for enabling the robot to navigate and
then to search for objects. In 2005, Galindo et al. [18]
performed a study based on 2D data, combining metric,
topological, and semantic aspects on a map. In addition,
they proposed a method for learning these semantic rep-
resentations from sensory data. In 2007, Vasudevan et
al. [19] attempted to create a spatial representation in
terms of objects, by encoding typical household objects
and doors within a hierarchical probabilistic framework.
They used a SIFT [20] based object recognition system,
and a door detection system based on lines extracted from
range scans. They also proposed a conceptualization of
different places, based on the objects that were observed
inside them. In 2015, Hanheide et al. [21] proposed a
system that is able to execute plans by organizing the
knowledge of the robot about the task and their envi-
ronment in three layers: an instance knowledge layer, a
default (commonsense) layer, and a diagnostic knowl-
edge layer. Each layer is able to modify lower layers.
The default layer is used for generating plans, which are
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stored in the instance knowledge layer. If the information is
insufficient for deciding actions, assumptions are made
by using information from the default layer. If the
plan fails, the diagnostic knowledge layer modifies the
assumptions in order to generate a new plan. Hierarchical
map structures are useful for storing information about
the environment with different levels of abstraction, rang-
ing from occupancy maps and positions of objects up to
high-level representations like common-sense knowledge
about the environment. They are also useful for enabling
the robot to generate plans involving sequences of actions
needed for reaching a goal.

2.2 Planning for Object Search

Planning for object search is highly dependent on the rep-
resentation used for the environment. Then, each work
considered in the review has a different planning mecha-
nism. However, it is possible to describe aspects involved in
most of the approaches.

The search mechanisms can be classified by the kind
of planning performed. They can be greedy (computing an
optimal viewpoint at each time step) or consider several
future time steps. In this work, greedy planning strategies
are used as the base for performing object search.

In 1976, Garvey [3] proposed the idea of indirect search,
i.e. searching for an intermediate object that maintains a par-
ticular spatial relation, based on their similar use, with the
object being searched for. A greedy strategy was used for
active vision, based on detecting secondary objects in the
image space, and using them for selecting window hypothe-
ses about the sought object. In 1994, Wixson et al. [22]
analyzed theoretically indirect search in a 3D space, using
also a greedy strategy. In 1999, Ye and Tsotsos [23] used
a grid for representing a probability map about presence of
the sought object. This system is based on direct search. In
2009, Viswanathan et al. [13] used a model composed of
a metric map, detected objects, and object clusters. Also,
co-occurrences between places and objects must be avail-
able. The system is able to generate paths for searching
unobserved objects in a greedy fashion. In 2010, Shubina
and Tsotsos [24] proposed an algorithm that considers the
cost and effect of different actions with different types of
prior knowledge. Map initialization can consider or not
the known secondary objects. Planning is performed by
selecting the optimal viewpoint at each time step. In 2010,
Aydemir et al. [8] proposed a system that was able to search
objects by using indirect search, and generating hypothe-
sis about the sought object by sampling the spatial relation
given a detected secondary object. The next viewpoint is
selected by a greedy coverage approach, which is based on
a probability map of the sought object, or in the point cloud
of hypotheses when a secondary object is observed.

2.3 Object Search Algorithms

As mentioned, a wide variety of indirect object search algo-
rithms have been proposed [3, 8, 9, 13, 22–25]. Systems
based on QSRs have proved useful for conducting informed
search. However, the use of these spatial relations is not
straightforward because the probability map and the spatial
relation are represented in different ways. Usually, the prob-
ability map is stored as a grid map, while spatial relations
are represented as functions, by using sums of Gaussians, or
sampling procedures. Then, for using spatial relations, the
distribution needs to be sampled every time it needs to be
used.

The methodology presented in this paper is an exten-
sion of the one proposed by Loncomilla et al. [1, 2]. That
work is able to represent arbitrary spatial relations by using
spatial relation masks. Also, each spatial relation mask can
be decomposed as a combination of basic QSR masks. All
of the information about detections of secondary objects is
stored in a unique probability map, by computing fast, local-
ized convolutions between the likelihood of the detections
of secondary objects and the spatial relation mask. Also, in
that work both object detection and planning are performed
while the robot is moving, then it is not necessary to reach
a goal before re-planning the next actions. Then, that work
presents contributions that are complementary to the state
of the art. In the present work, an improved methodology
provides new search variants (including region-based global
goal computation), more extensive analysis of the proposed
algorithms, and experiments using a service robot searching
for objects in a domestic environment.

3 Methodology

3.1 A Bayesian Framework for Probability Map
Updating

In this work, a spatial relation between two objects is
defined as the probability distribution of the pose of the first
object, πA, given the known pose of the second object, πB :

RelA,B(πA, πB) = p(πA|πB) (1)

Since the relation is treated as a probability distribution,
the sum over all possible poses of A for a fixed pose of B is
equal to 1:

∫

πA

p (πA|πB)dπA = 1 (2)
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If the spatial relation depends only on the relative pose
πA/B , of object A with respect to object B, then the expres-
sion for the probability can be rewritten as:

RelA/B(πA/B) = p
(
πA/B

)
(3)

In the most general case, the pose πA/B used in Eqs. 1
to 3 can be represented as a six-dimensional vector, with
three components for position and three components for
orientation. However, in this work the robot moves in a
two-dimensional space parameterized by using coordinates
(x, y).1 Then, the relative pose is represented as a simple
relative position of the object A described in the refer-
ence system of the object B: πA/B = (x, y). The space is
quantized into square cells, each of size k×k, and parame-
terized by using indexes (i, j). Then, the relative position
can be represented as πA/B = (x, y) = (ki,kj). By using
the index notation, a discretized spatial relation RA/B(i, j)

can be constructed from the continuous spatial relation
RelA/B(x, y) by sampling over the grid:

RA/B(i, j) = Knorm · RelA/B(ki, kj) (4)∑
i

∑
j

RA/B(i, j) = 1 (5)

where Knorm is a normalizing constant. Note that Eqs. 4 and 5
are represented in the reference system of object B.

The term p(ai,j ) represents the probability that the cen-
ter of the main object A is inside the space covered by the
cell (i, j) of object’s map a. Given a pose πS of the robot’s
sensor, an observation zA is performed inside a view cone
dependent on πS. The observation zA consists of the result
of executing a detector for object A over the current image,
which can generate a positive detection zA = true when
object A is found, or a negative detection zA = f alse when
the object A is not found. The view cone corresponds to the
set of cells observable from πS . Both positive and negative
observations zA provide valuable information for the object
search process, and can be used to compute an updated
probability p(ai,j |zA). The probability p(a0) is treated as a
special case, and it represents the probability of the object
being outside the search region. In this work, the search
region consists of a single room. In the case of searching
over multiple rooms, other complementary algorithms like
Aydemir [25] can be used for selecting a room, and then the
methodology proposed here can be used inside that room.

Positive detections zA = true provide information about
the places where object A has a high probability of being, by
means of a likelihood p(zA = true|ai,j ), which is defined
over the cells (i, j). This likelihood p(zA = true|ai,j ) rep-
resents the probability of observing object A from robot

1The angular component of the robot’s pose can also be used. How-
ever, in this work we choose to use only the position component of the
pose.

pose πS assuming that it is in a cell (i, j). When a cell is
visible from pose πS and the object is present in that cell,
the likelihood of detecting the object in that cell is high.
However, when the object is in a cell (i, j), positive object
detections at other cells are necessarily false positives. Then,
the likelihood of detecting the object in a cell not contain-
ing the object is low, and equal to the false positive rate of
the object detector. Then, when the object is detected at a
cell (i,j), the likelihood p(zA = true|ai,j ) has a high value
over the cell (i,j) where the object was detected, and a low
value in the other cells. Negative detections zA = f alse

provide information p(zA = f alse|ai,j ) about the proba-
bility of not observing the object, assuming that it is in a cell
(i, j). Then, cells inside the current view cone have a lower
likelihood than the rest of the cells in the map.

The problem addressed in this work is for the robot to
find a main object, A, by moving appropriately. The robot
search process is applied until an instance of the main object
A is found. In consequence, the search process includes only
negative detections of the main object, A, before the object
is found. An image I is captured at a sensor viewpoint πS ,
then an object detector for object A is executed, and a detec-
tion zA is obtained. Probabilities p(ai,j ) for cells inside the
map, and p(a0) for the cell outside the map can be updated
by using Bayes rule:

p
(
ai,j |zA = f alse

) = p
(
zA = f alse|ai,j

)
p(ai,j )

p(ao) + ∑
i,j

p
(
zA = f alse|ai,j

)
p(ai,j )

(6)

p (a0|zA = f alse) = p(a0)

p(ao) + ∑
i,j

p
(
zA = f alse|ai,j

)
p(ai,j )

(7)

When processing the image I , the object detector for
the object B, can produce positive or negative detections
zB , which can be used to compute an updated probability
p(ai,j ) for cells inside the map, and p(a0) for the cell out-
side the map. Then, a detection of object B can be used for
updating the probability distribution for object A:

p
(
ai,j |zB

) = p
(
zB |ai,j

)
p(ai,j )

p(zB |ao)p(a0) + ∑
u,v

p
(
zB |au,v

)
P(au,v)

(8)

p (a0|zB) = p(zB |ao)p(a0)

p(zB |ao)p(a0) + ∑
u,v

p
(
zB |au,v

)
P(au,v)

(9)

The terms p(zB |ai,j ) and p(zB |a0) will be named cross-
likelihoods, since they relate the detection of a secondary
object, B, with the presence of the main object, A, on
the map. These probabilities can be derived by considering
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probabilities p(bu,v) for the presence of a secondary object,
B, at cells (u, v) in the object’s map b:2

p
(
zB |ai,j

) =
∑
u

∑
v

p
(
zB |bu,v

)
p

(
bu,v|ai,j

)
(10)

p (zB |a0) =
∑
u

∑
v

p
(
zB |bu,v

)
p

(
bu,v|a0

)
(11)

The term p(buv|a0) is considered a constant over (u, v)

whose sum has a value of 1 because an instance of B is sup-
posed to be somewhere on the map. The term p(bu,v |ai,j )

corresponds to the conditional distribution of B’s position
given A’s position. Then, it corresponds also to the spa-
tial relation between the main object, A, at location (i, j)

and a secondary object, B, at location (u, v), as defined in
Eq. 3, with the relative position between B and A being
πB/A = (i, j)-(u, v). By replacing this term with the spa-
tial relation RB/A, there is no need for storing a map for
the secondary object; only the map for the main object and
the likelihoods of the detections of the secondary object are
needed:

p
(
zB |ai,j

)=
∑
u

∑
v

p
(
zB |bu,v

)
RB/A (i− u, j− v) (12)

p (zB |a0) = 1

nUnV

∑
u

∑
v

p(zB |bu,v) (13)

where nU×nV is the size of the map.
Equation 12 can be implemented as a convolution in the

(i, j) space between a likelihood image and a mask RB/A(i,
j) describing the spatial relation between the main and
secondary objects, which will be named a spatial relation
mask:

p
(
zB |ai,j

) = p
(
zB |bi,j

) ∗ RB/A(i, j) (14)

The proposed system is highly versatile because any
translation-invariant spatial relation can be represented by
an appropriate mask representing conditional distribution
of B’s position given A’s position [1, 2]. The procedure
used for updating the probability of the main object from
detections of secondary objects in shown in Fig. 1.

It must be noted that extra secondary objects can be
added to the system by creating additional spatial relation
masks. In case these relations are chained, for example if
object A is near B, and object B is near C, then the mask of
the chained relation can be obtained by convolution of the
original masks:

p
(
zC |ai,j

) = p
(
zC |bi,j

) ∗ RB/A(i, j) (15)

p
(
zC |ai,j

) = p
(
zC |ci,j

) ∗ RC/B(i, j) ∗ RB/A(i, j) (16)

⇒ RC/A = RC/B ∗ RB/A (17)

2Object’s maps a and b are described in the same reference system,
using the same grid resolution.

3.2 Creating Spatial Relation Masks
from Co-occurrences

In this work, spatial relations are represented using masks,
and then the system has a high flexibility for representing
them. Moreover, complex spatial relations between objects
can be also represented as linear combinations of basic
spatial relations, as complex spatial relation masks can
be represented as weighted sums of basic spatial relation
masks. Each basic spatial relation corresponds to a semantic
category meaningful to humans, i.e., to a qualitative spa-
tial relation (QSR). In this work, we focus on four simple
spatial relations: “very near” (VN), “near” (N), “far” (F),
and “very far” (VF). The use of these spatial relations is
appropriate as it enables to estimate a set of basic proba-
bility distributions from samples of relative positions of the
objects in the real world. The masks for each of the spa-
tial relations are defined in two versions: hard masks and
soft masks. Hard masks are ring-shaped and are defined
by two thresholds (a1, a2), and have a rectangular profile,
while soft masks are also ring-shaped but are defined by
four thresholds (a1, a2, a3, a4) and have a trapezoid-shaped
profile, as shown in Fig. 2. Each basic mask is normalized to
sum 1 over all of the cells on the map, thus a normalization
constant is added to the formulas. Hard masks are defined
as:

RB/Ahard(i, j ; a1, a2) = K ∗
{

1 a1 ≤
√

(ki)2 + (kj)2 < a2

0 other

(18)

while soft masks are defined as:

RB/A sof t = K∗

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
(ki)2+(kj)2−a1

a2−a1
a1 ≤ √

(ki)2 + (kj)2 < a2

1 a2 ≤ √
(ki)2 + (kj)2 < a3

a4−
√

(ki)2+(kj)2

a4−a3
a3 ≤ √

(ki)2 + (kj)2 < a4

0 other

(19)

Soft and hard masks and their parameters are exemplified
in Fig. 2.

In this work, basic masks are defined by a circle of radius
u1 in the case of “very near”; a circular ring of radii u1 and
u2 in the case of “near”; a circular ring of radii u2 and u3

in the case of “far”; and a circular ring of internal radius
u3 with an external radius that covers the whole map in the
case of “very far”. Expressions for the hard basic masks are
shown in Eqs. 20 to 23. Also, an extra gap parameter δ is
considered when using soft masks for representing their soft
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Fig. 1 Procedure used for
computing the aposteriori
distribution p(aij |zB) from the
a-priori distribution p(aij ), the
observation likelihood of a
secondary object p(zB |bij ) and
the spatial relation mask
RB/A(ij)

A priori distribution

Observation Likelihood

Spatial relation mask

Cross-likelihood

A posteriori distribution

Convolution

Bayes rule

jiap ,

),(/ jiR AB

)|( , jiB bzp )|( , jiB azp

)|( , Bji zap

borders. Expressions for soft basic masks are shown in Eqs.
24 to 27.

RV N
B/Ahard (i, j) = RB/Ahard (i, j ; 0, u1) (20)

RN
B/Ahard (i, j) = RB/Ahard (i, j ; u1, u2) (21)

RF
B/Ahard (i, j) = RB/Ahard (i, j ; u2, u3) (22)

RV F
B/Ahard (i, j) = RB/Ahard (i, j ; u3, ∞) (23)

RV N
B/Asof t (i, j) = RB/Asof t (i, j ; 0, 0, u1 − δ, u1 + δ) (24)

RN
B/Asof t (i, j) = RB/Asof t (i, j ; u1 − δ, u1 + δ, u2 − δ, u2 + δ) (25)

RF
B/Asof t (i, j) = RB/Asof t (i, j ; u2 − δ, u2 + δ, u3 − δ, u3 + δ) (26)

RV F
B/Asof t (i, j) = RB/Asof t (i, j ; u3 − δ, u3 + δ,∞, ∞) (27)

Radius selection is performed by ensuring that the
obtained basic semantic masks are meaningful for the sec-
ondary objects involved in the object search, by selecting
them to be discriminative for the secondary objects. Then,
pairs of secondary objects are used for computing the radius.
The radius values are selected by considering statistics of
the distances dAB and dAC between two kinds of secondary

objects B and C respect to the main object A, and by model-
ing their selection process as a classification problem. Thus,
the optimal radius value between two categories, e.g., ”near”
and ”far”, is the one that generates the same mean classifica-
tion error in both classes B and C, when using the distances
d from secondary objects to the main object A as the clas-
sification feature. This process is illustrated in a specific
application in Section 4.4.

A complex mask can be created as a weighted sum of
basic hard or soft masks:

RB/A(x, y) = CV N
B/ARV N

B/A(x, y) + CN
B/ARN

B/A(x, y)

+CF
B/ARF

B/A(x, y) + CV F
B/ARV F

B/A(x, y) (28)

The four coefficients CV N
B/A, CN

B/A, CF
B/A and CV F

B/A are
called co-occurrences because they indicate the relative fre-
quency of occurrence of a pair of objects for each spatial
relation. They can be constructed from samples of positions
of both objects by computing the number of occurrences of
each basic spatial relation. If a set of samples is divided into
basic semantic categories, and the count is nV N for ”very

Fig. 2 Basic hard mask (left),
basic soft mask (right) and the
parameters determining their
shape a1

a2

a1

a2

a3

a4
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near”,nN for “near”, nF for “far”, and nV F for ”very far”,
the co-occurrences can be computed as:

CV N
B/A = nV N

nV N + nN + nF + nV F

(29)

CN
B/A = nN

nV N + nN + nF + nV F

(30)

CF
B/A = nF

nV N + nN + nF + nV F

(31)

CV F
B/A = nV F

nV N + nN + nF + nV F

(32)

3.3 Search Strategy

The object search methodology depends on the object
search strategy, but also on the selected world representa-
tion. In this work, the world is represented as a grid map,
with one additional cell for representing the case of objects
outside the map. The probability distribution of the position
of the searched object on the grid map is named a prob-
ability map. The spatial relation between the main object
and a secondary object is represented by combining basic
spatial relation masks into a complex spatial relation mask,
which can be a hard or a soft relation mask. One or several
secondary objects can be used. Object detections, obtained
using the L&R SIFT object detector [26–28], can be posi-
tive (object detected) or negative (object not detected). Both
kinds of detections can be considered for updating the prob-
ability map. Also, an occupancy map is used for planning
and for avoiding collisions, which is named obstacle map.

The search is performed by selecting an optimal robot
pose to be reached and executing a planner for generat-
ing the precise path. Different methodologies for generating
optimal poses to be reached generate different object search
strategies, as they minimize different cost functions defined
by an expected utility, which could consider both the prob-
ability map and the distance between the endpoints of the
trajectory.

In this work, two search strategies are considered: local
search, and global search using regions. In addition, a
third strategy that uses probabilistic object-object relations
is described in Section 3.3.3, because it is used by the
work proposed by Elfring et al. [16], which is used in the
comparisons presented in Sections 4 and 5.

The proposed local and global search strategies have
flavors: (i) they can use soft or hard relation masks, and
(ii) they can use only positive or both positive and nega-
tive information from detections of secondary objects. The
search procedures are able to perform detection and plan-
ning while the robot is moving, then it is not necessary for
the robot to reach a goal before re-planning. When an obsta-
cle map is available, all of the methods are able to use it
for generating only valid trajectories. Also, the use of global

search using regions is a novel, fast procedure for selecting
the goal with the maximum expected utility overall the map.

3.3.1 Local Search

A path for searching for a given object can be created by
generating an optimal viewpoint at each iteration. The opti-
mal viewpoint is generated from a set of random sensor
poses reachable within a fixed time, with the one that maxi-
mizes the probability of finding the object in the visible area
selected [8] as:

arg max
k=1..N

n∑
i=1

n∑
j=1

p(ai,j )V (ai,j , k) (33)

where N is the number of candidate poses, and V (ai,j , k) is
defined as:

V (ai,j , k) =
{

1, if ai,j is inside the kth view cone
0 otherwise

(34)

A new goal pose is recomputed periodically every S

seconds, or when the robot reaches the current goal. Plan
reevaluation enables the robot to use the latest object detec-
tions for the plan, without needing the robot to stop for
detecting objects. In the experiments reported in Sections 4
and 5 we chose to use a simple search strategy in which the
robot, at each iteration, selects the execution of a composed
sequence of movements consisting of one initial rotation,
followed by a translation and a final rotation (N =3). The
parameter’s space associated with this sequence of move-
ments is explored randomly, and the best sequence is chosen
as the one that maximizes the probability of finding the
searched object. When an obstacle map is available, the
movements that cause collision between the robot and the
obstacles are not considered to be valid solutions. Algorithm
1 shows the proposed local object search procedure.

3.3.2 Global Search using Regions

The probability map is divided into regions by using a
coarser grid over the probability map grid. Each of the
regions covers a rectangular area in the probability map.
Each region has a probability that is equal to the sum of the
probabilities of the cells covered by the region. Also, each
region has a centroid that is located at the center of the rect-
angle. In our settings, a region covers 5×5 cells from the
probability map.

When an obstacle map is provided, it is dilated for ensur-
ing that only traversable paths can be considered when using
the map. Sometimes, the centroid of a region can be inside a
non-traversable section of the map. In that case, the nearest
free cell is used for generating a corrected centroid for the
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Algorithm 1 Proposed Informed Local Search Procedure. It
uses Eqs. 6–9, 12–13, 20–28, 33 and 34

1. Initialize probabilities and masks (Eqs. 20 to 28)
2. While the main object is not detected:
3. Run a detector for the main object
4. If the main object is detected, the algorithm

finishes
5. Update the probability map of the main object

(Eqs. 6 and 7)
6. Run a detector for each secondary object
7. For each detected secondary object
8. Compute the cross-likelihood for positive

detections (Eqs. 12 and 13)
9. Update the probability map (Eqs. 8 and 9)

10. For each non-detected secondary object
11. Compute the cross-likelihood for negative

detections (Eqs. 12 and 13)
12. Update the probability map (Eqs. 8 and 9)
13. Every S seconds, compute a new goal by selecting

the optimal viewpoint achievable in a given time. The
optimal viewpoint is the one that has the largest proba-
bility of containing the main object inside its view cone
and that does not cause collisions (Eqs. 33 and 34)

14. Go to 2

region. If the corrected centroid is outside the region, then
that region is discarded.

The robot must select an optimal region to be reached.
Then, the expected utility (EU) is computed for each of
the regions. The formulation of the EU is based on [16].
The EU of a region depends on both the probability of the
region, and on the distance between the current position of
the robot and the centroid of the region. When an obstacle
map is available, the distance is computed over the short-
est valid path that connects the robot and the centroid of the
region, by using a theta-star algorithm [29]. As the origi-
nal obstacle map could have a high resolution, it must be
downsampled before applying the theta-star algorithm for
enabling real-time shortest path computations. For facilitat-
ing computations, the obstacle map is downsampled to the
same resolution used for the probability map. In each frame,
the expected utility for a region is computed as:

EU(R, πR) = Preg(R) + w ∗ 1

atan (dist (πR, R))
(35)

where R is the region, πRis the pose of the robot, Preg(R) is
the sum of the probabilities inside the region R, dist (πR, R)

corresponds to the length (in meters) of the shortest valid
path between the robot and the centroid of the region,
and w is a weight that balances distance and probability.

The region with the largest EU is selected as the naviga-
tion target, and the last pose of the path (that is inside the
region) is selected as the navigation goal. When the robot is
near the centroid of a region, the region is observed and then
considered to have been visited, and then it is deleted from
the region grid. Algorithm 2 summarizes the global search
procedure.

Algorithm 2 Proposed Informed Global Search Procedure.
It uses Eqs. 6–9, 12–13, 20–28 and 35

1. Initialize probabilities and masks (Eqs. 20 to 28)
2. While the main object is not detected:
3. Run a detector for the main object
4. If the main object is detected, the algorithm

finishes
5. Update the probability map of the main object

(Eqs. 6 and 7)
6. Run a detector for each secondary object
7. For each detected secondary object
8. Compute the cross-likelihood for positive

detections (Eqs. 12 and 13)
9. Update the probability map (Eqs. 8 and 9)

10. For each non-detected secondary object
11. Compute the cross-likelihood for negative

detections (Eqs. 12 and 13)
12. Update the probability map (Eqs. 8 and 9)
13. Every S seconds, compute a new goal by select-

ing an optimal pose to be reached. The optimal pose
is defined as the last pose in the path reaching the
centroid of the valid region with the largest expected
utility (EU) (Eq. 35).

14. Go to 2

3.3.3 Search Exploiting Probabilistic Object-Object
Relations

In this search algorithm, described in Elfring et al. [16], a
probability map is not used. Instead, probabilities p(xi |xj )

are computed by counting co-occurrences of xi and xj in
the same image. The algorithm works by updating several
lists of objects: X is the set containing the object’s instances
observed by the robot; F is the set containing objects marked
as dead end; and T is the set containing the (intermediate)
target objects (see the search procedure in Algorithm 3).
For selecting the optimal target object, an expected utility is
computed as:

EU(o, xt ) = p(o|xt ) + w ∗ 1

atan (dist (o, xt ))
(36)

where xt is the object to be found, and o an object in X.
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Algorithm 3 Informed Search Procedure from Elfring et al.
[16]

1. Initialize F=Ø, T ={xt}
2. While the main object is not detected:
3. Run the object detectors and store their detections

in X
4. X = X \F, then determine the pair o∗from X and

x∗from T that maximizes EU(o∗, x∗) in Eq. 36
5. If EU(o∗, x∗) ≥threshold, start navigating

towards object o∗
6. If EU(o∗, x∗) <threshold, the observed objects have no

sufficient relation with the target object and an inter-
mediate object needs to be added. The object xswith the
strongest relation to any of the objects in T according
to Bayes’ law is added to T: T:= T ∪ {xs}. With T
updated, go to step 3

7. If the robot reaches an intermediate object, it is
added to F since it did not lead to the target object. Now
go back to step 3 and try to find a route via another
object. If such a route is not available, start a random
search and update X if new objects are found.

8. Go to 2

4 Simulation Experiments

4.1 Experimental Setup

In order to characterize and validate the proposed object
search methodology, a simulation environment was devel-
oped. This environment is based on the use of the
Player/Stage simulator [30], but it incorporates: (i) statis-
tics about the co-occurrence of the object’s classes in the
real-world to compute the parameters of the spatial rela-
tion masks, (ii) a model for the observation of the objects
in 3D by the robot, and (iii) the use of an object detection
simulation system in 3D, whose performance depends on
the relative pose between the object and the robot’s cam-
era, as well as the object class. Note that motion of the
robot in Player/stage is 2D, but object detection simulation
is performed in 3D.

The simulation environment was developed in order to
obtain replicable experiments and a better characterization
of the proposed object search methodology.

4.2 Modeling the 3D Object’s Observation

Player/Stage is designed to manage 2D environments. Its
fiducial detector defines a 2D field of view, and a mini-
mum and a maximum object detection range. However, for
modeling the observation of objects in a 3D environment,
additional parameters need to be included, like the pose of
the robot’s camera, the height of the object, and its size in

3D. Figure 3 shows the robot and camera configuration used
in this work.

For modeling/simulating the observation obtained by a
robot in a 3D environment, the following transformation
matrix must be used:

⎡
⎣ xcam

ycam

zcam

⎤
⎦ =

⎡
⎣ cos(−ϕ) 0 − sin(−ϕ)

0 −1 0
sin(−ϕ) 0 cos(−ϕ)

⎤
⎦

∗
⎡
⎣ cos(−θ) − sin(−θ) 0

sin(−θ) cos(−θ) 0
0 0 1

⎤
⎦ ∗

⎡
⎣ xobj − xr

yobj − yr

zobj − zr

⎤
⎦ (37)

where ϕ is the pitch angle of the camera, θ is the yaw angle
of the robot on the horizontal axis; (xobj , yobj , zobj ) is the
position of the center of the object; (xr , yr , zr) is the position
of the robot’s camera; and (xcam, ycam, zcam) is the position
of the object in the camera system. Then, the relative pose
of the object is computed as:

rd =
√

x2
cam + y2

cam + z2
cam (38)

θd = atan2(ycam, xcam) (39)

ϕd = atan2(zcam, xcam) (40)

with rd the distance from the object to the camera, θd the
yaw angle of the object in the camera system, and ϕd the
pitch angle of the object in the camera system. A 3D object
can be detected if its center is contained in the robot’s field
of view defined as: rd ∈[rmin, rmax], θd ∈[θmin, θmax] and
ϕd ∈[ϕmin, ϕmax].

The simulation of occlusions between objects in a 2D
environment is different from that in the 3D case (see Fig. 4).
In the 3D case, we model each object as a sphere whose cen-
ter is placed at the center of the object, and whose diameter
ρ depends on the object size. Each pair of spheres contained
in the field of view is projected in the image plane and
whether or not they intersect in the image space is verified.
In case they intersect, an occlusion has been detected, and
only the nearest object is selected as visible. This procedure
is shown in Algorithm 4.

4.3 Object Detection Simulation

In order to simulate the detection of objects, statistics were
calculated on the performance of a specific object detection
system under different camera-object distances and angles.
This data was used to build an object-detection LUT (Look-
Up Table) that stores the detection rates, which are used
by the simulator every time the robot tries to detect an
object placed inside its field of view. Then, when the robot
observes an object inside the simulator, the pose of the
object respect to the robot is used for retrieving a detection
rate from the LUT. A random number between 0 and 1 is
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Fig. 3 Geometric parameters
needed for simulating 3D
detections and determining
occlusions The object is
modeled as a sphere projected
on a pin-hole camera. The
parameters related to the pose of
the sensor respect to the robot
(height of the camera), the
position of the object respect to
the robot (distance, height of the
object) and the diameter ρ of the
sphere need to be estimated

Diameter

Algorithm 4 Procedure for Computing Occlusion of
Objects.

1. For each pair of detected objects:
2. Object 1 is described by: position x1, y1, z1,

diameter ρ1

3. Object 2 is described by: position x2, y2, z2,
diameter ρ2

4. ang proy1 =atan2(ρ1, x1)

5. θ1 =atan2(y1, x1)

6. ϕ1 =atan2(z1, x1)

7. ang proy2 =atan2(ρ2, x2)

8. θ2 =atan2(y2, x2)

9. ϕ2 =atan2(z2, x2)

10. dist = √
(θ2 − θ1)2 + (ϕ1 − ϕ2)2

11. If dist>ang proj1+ang proy2

12. Both obj1and obj2 can be detected
13. Else
14. Occlusion, the farthest object cannot be

detected

generated. If the random number is lower than the detection
rate, a detection of the object is generated.

For computing the detection rates to be stored in the
LUT, an object detection system that uses HOG descriptors
as features and SVMs as classifiers was used in a real-
world setup. A different SVM is used for each object class
and object orientation. Each SVM is trained by computing
HOG descriptors from five sets of 50 labeled images that
show the object under the required orientation for 5 differ-
ent distances, using the setup described in Fig. 5. The SVM
training procedure is described in [31].

The object’s detection statistics are computed using
images captured from 40 different viewpoints. As shown in
Fig. 5, the viewpoints correspond to camera-object distances
of 80, 120, 160, 200 and 250 centimeters, and camera-object
yaw angles of 0, 45, 90, 135, 180, 225, 270, and 315 degrees

(pitch and roll camera-angles are not considered). For each
viewpoint, 100 images of each object are captured by mov-
ing the camera while keeping it in a pose compatible with
the current viewpoint. In total 4,000 images of each object
are obtained. A detection probability is computed by count-
ing the number of detections in the 100 available images
for each viewpoint and each object. Four objects are con-
sidered: “monitor,” “keyboard,” “system unit,” and “router”.
The detection probabilities are summarized in Table 1, and
coded into the object-detection LUT.

4.4 Creation of Co-occurrence Matrices

A set containing a total of 243 manually labeled images
obtained from both the LabelMe [14] and the Flickr web-
sites was used for generating co-occurrence matrices. In
each image, instances of the objects, “monitor,” “system
unit,” “keyboard,” and “router”, were labeled by manually
selecting four corners on the image. Since the sizes of the
objects and the parameters of the camera were known, it
was possible to estimate the position of each object in space
by using a homography. This procedure was validated by
using a Kinect camera, using 31 monitor images, and 25
keyboard images. The errors obtained when predicting the
depth from the homography were all below 12 centimeters,
and then lower than the thresholds used for creating the

Fig. 4 Visualization of Occlusion in a 2D (left) that is not a real
occlusion in 3D (right)
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Fig. 5 Viewpoints with different distances and different angles

spatial relation masks. Also, as object instances are man-
ually labeled, images containing small objects that are far
between can be used. Several instances of the objects on
the set of images and their poses were used to construct co-
occurrence matrices for the categories “very near,” “near,”
“far,” and “very far” for each of the objects with respect
to the others. As described in Section 3.2, the radius val-
ues are selected by considering statistics of the distances
between two kinds of secondary objects respect to the main
object, and by modeling their selection process as a clas-
sification problem. Thus, the optimal radius value between
two categories, e.g., ”near” and ”far”, is the one that gener-
ates the same mean classification error in both classes when
using only the distances from secondary objects to the main
object for classifying the secondary objects. For the radius
that separate “very near” from “near”, distances keyboard-
monitor v/s cpu-monitor are considered. For the radius that
separate “near” from “far”, cpu-monitor v/s router-monitor
are considered. Finally, the radius that separate “far” from
“very far” is the maximum distance from monitors (the
main object) to routers in the available database. Note that
the threshold values used for delimiting the spatial rela-
tions are computed automatically from collected real-world
data, by trying to maximize the discriminative/descriptive
power of the resulting spatial relations. Then, the procedure
for determining the thresholds is data-driven, but computed
offline.

Given the poses of a pair of objects, a distance was com-
puted and used for selecting whether the sample belongs to
the categories “very near,” “near,” or “far”. If an object is
detected alone in an image, the sample belongs to the cat-
egory “very far”.3 Only the depth and horizontal axis were
used to compute the distances, since differences in the ver-
tical direction do not affect the position of the object when
it is transferred onto the 2D grid. As an example, the final

3Objects that are normally very far from each other usually do not
appear in the same image. Therefore, instead of using the term “uncor-
related” for this kind of objects, we prefer to use the category “very
far”.

co-occurrences for the object “monitor,” as the main object,
are shown in Table 2.

The basic hard and soft masks are defined by Eqs. 18–22
and 23–27, respectively. The thresholds that separate the
categories, “very near,” “near,” “far,” and “very far” are
u1 = 60[cm], u2 = 100[cm], and u3 = 150[cm]. The gap
parameter for the soft masks is d = 20[cm].

4.5 Experiments

Experiments were performed on maps containing four
objects. Each map contains a main object, named A (moni-
tor), to be searched for, and three secondary objects, named
B (keyboard), C (system unit), and D (router). The size of
each map is 6[mt] x 6[mt]. A total of 20 maps was created
by picking a random position for the main object, A, and
then picking random positions for the objects B, C, and D
following a distribution that represents their co-occurrences.
Exemplar configurations are shown in Fig. 6.

Objects were placed at 0.5[mt] from the floor, and the
height of the camera is 1[mt]. The orientations of the objects
in each map were selected randomly as multiples of 45
degrees. The 20 maps were used to perform the experi-
ments, each map being used the same number of times as the
others. A laser sensor from Player/Stage was used for avoid-
ing collisions. Observations of the objects were obtained
by using a semantic camera, i.e. the 3D observation system
described in Section 4.2. The field of view of the sensor has
a horizontal range of 75 degrees, a vertical range of 45.6
degrees, a minimum depth of 0.3[mt], and a maximum depth
of 2.5[mt]. The probability map was initialized with a uni-
form distribution. It has to be noted that, while player/stage
is 2D, the detection of objects is simulated in 3D space, con-
sidering possible occlusions between objects. The simulated
semantic camera can run at 3 fps, considering that the SIFT
detector used in the real robot is able to run at that speed.

In each experiment the goal is to find the main object A
in less than 5 minutes. In the search process, only negative
detections of the main object need to be processed because
a positive detection causes the search process to end. Eleven
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Table 1 Object detection Probability (%) for: (a) System Unit, (b) Monitor, (c) Router and (d) Keyboard

% Det System Unit: Distance [cm] Monitor: Distance [cm] Router: Distance [cm] Keyboard: Distance [cm]

Angles 80 120 160 200 250 80 120 160 200 250 80 120 160 200 250 80 120 160 200 250

0◦ 81 76 69 42 21 33 40 57 67 84 51 67 54 32 0 34 62 80 64 59

45◦ 15 31 45 39 22 12 38 40 85 89 24 39 62 41 17 52 85 82 79 45

90◦ 66 76 80 69 29 49 57 67 76 81 56 65 47 29 0 5 28 26 64 79

135◦ 12 35 49 31 24 17 75 70 76 74 52 49 39 33 15 36 80 42 38 36

180◦ 88 94 78 55 26 45 48 58 59 67 43 75 54 27 0 41 43 64 50 33

225◦ 11 39 40 35 19 07 95 74 78 72 48 46 37 33 13 60 82 86 63 52

270◦ 68 78 82 69 46 38 55 64 71 84 55 57 45 34 0 06 15 25 63 75

315◦ 20 32 44 38 25 10 56 45 65 60 47 58 48 43 14 44 86 62 58 68

different object search methods are tested on the available
set of maps: a baseline method (UIS) which uses direct
search instead of informed search; the method proposed
by Aydemir [8] (ISUP); the method proposed by Elfring
[16] (AOSEOOR); and eight different variants of the pro-
posed methodology which use local search or global search
(ISC:Informed Search using Convolutions versus ISCG:
ISC Global), hard or soft masks (HM: Hard Masks versus
SM: Soft Masks), and positive and negative information on
the detection of secondary objects, or just positive informa-
tion (PN: Positive&Negative versus OP: Only Positive). The
methods are the following:

1. UIS: Uninformed/direct local search (the baseline
method). A probability map p(ai,j ) for object A is
estimated by using negative detections of that object,
and then object A is searched for by finding viewpoints
that maximize the probability of containing A.

2. ISUP: Informed search using particles. The method of
Aydemir [8] is used for constructing a probability map
p(ai,j ) for object A by using negative detections of
that object. Then object A is searched for by finding
near viewpoints that maximize the probability of con-
taining A. When a secondary object, B, is detected, a
set of 500 particles is generated around the detection
inside the current view cone. Each particle represents
a hypothesis about the location of object A, given the

Table 2 Final co-occurrences of objects around the object “monitor”

Semantic categories Secondary objects

Keyboard System unit Router

Very Near 0.773 0.178 0.061

Near 0.143 0.491 0.151

Far 0.046 0.258 0.485

Very Far 0.038 0.074 0.303

known position of object B in the map. The spatial
relation between objects A and B induces a probabil-
ity distribution of the presence of A, given the position
of B, that has a maximum value over the map. The
particles with associated probability value of equal, or
greater than half of the maximum probability are used
to select the next optimal viewpoint by maximizing the
number of accepted particles inside the view cone.

3. AOSEOOR: Active object search exploiting object-
object relations: The method of Elfring [16] is used
for creating lists of observed objects. The target object
with the highest expected utility is selected for gener-
ating the next navigation goal. The search procedure
described in Algorithm 3 is used.

4. ISC-PN-HM: Informed Search using Convolutions
with positive and negative information and hard rela-
tion masks. A probability map p(ai,j ) for the main
object A is estimated by using positive and negative
detections of objects B, C, and D, negative detections
of object A, and hard spatial relation masks. Then
object A is searched for by finding near viewpoints
that maximize the probability of containing it. The
local search procedure described in Algorithm 1 is used.

5. ISC-OP-HM: Informed Search using Convolutions
with only positive information and hard relation
masks: Similar to method 4, but in this case only
positive detections of objects B, C, and D are used.

6. ISC-PN-SM: Informed Search using Convolutions
with positive and negative information and soft rela-
tion masks. Similar to method 4, but in this case soft
spatial relation masks are used.

7. ISC-OP-SM: Informed Search using Convolutions
with only positive information and soft relation masks.
Similar to method 5, but in this case soft spatial
relation masks are used.

8. ISCG-PN-HM: Informed Global Search using Con-
volutions with positive and negative information and
hard relation masks: similar to method 4, but in this
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Fig. 6 Examples of initial configurations of objects following the estimated spatial relations. The robot is represented in red, the main object
(CPU) is represented in blue, and secondary objects are represented in green (monitor), orange (keyboard) and yellow (router)

case region-based global search is used. The global
search procedure described in Algorithm 2 is used.

9. ISCG-OP-HM: Informed Global Search using Con-
volutions with only positive information and hard
relation masks: similar to method 5, but in this case
region-based global search is used.

10. ISCG-PN-SM: Informed Global Search using Convo-
lutions with positive and negative information and soft
relation masks: similar to method 6, but in this case
region-based global search is used.

11. ISCG-OP-SM: Informed Global Search using Convo-
lutions with only positive information and soft relation
masks: similar to method 7, but in this case region-
based global search is used.

In all of the methods that require computing an EU
(methods 3, 8, 9, 10, 11), the weight parameter for the EU
is set to w = 0.1 in Eqs. 35 and 36.

In addition, different view scales are tested. A view scale
corresponds to the maximum distance in meters at which
the main object can be detected. In Table 3 this maximum
distance varies between 1 and 2.5 meters. The secondary
objects can always be detected at a fixed distance of 2.5
meters. 200 experimental trials were performed for each
method and view scale. Then, a total of 15,400 experimental
instances were executed for characterizing the performance
of the methods. It must be noted that in all view scales, the

same distance thresholds for creating the masks are used,
i.e., they are not dependent on the view scale.

The results for the object detection experiments for dif-
ferent view scales are shown in Table 3.

Table 3 shows clearly that the methods using informed
search outperform the baseline method that uses unin-
formed/direct search (UIS). It can also be seen that six of the
indirect search methods built using the proposed method-
ology obtain better performance than those of Aydemir
(ISUP) and Elfring (AOSEOOR) for all view scales. In fact,
ISCG-PN-SM obtains the best performance; its detection
rate is much higher than those of ISUP and AOSEOOR (at
a scale of 1 meter: 79% versus 31% and 51%; at a scale of
2.5 meters: 95% versus 70% and 83%). The proposed meth-
ods perform better because they have the ability to store
detections of secondary objects in the probability map. On
the other hand, ISUP is reactive in the sense that it requires
the secondary object to be observed in the current frame for
hypothesizing the pose of the main object. AOSEOOR does
not use a probability map, then it behaves randomly before
it detects a secondary object. Then, the proposed methods
are the only able to store all of the information about pos-
itive and negative detections of all of the objects, and use
them for planning paths.

The results also show that (i) the use of convolutions with
soft masks outperforms the use of hard masks, (ii) the use
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Table 3 Search success rate
(%) for several view scales
(maximum detection distance
of the sensor for the main
object) for each of the tested
methods in simulations

Methods View scale in meters

1.0 1.25 1.5 1.75 2.0 2.25 2.5

UIS 28 26 38 50 58 65 65

ISUP 31 38 46 53 67 70 70

AOSEOOR 51 63 71 76 73 78 83

ISC-PN-HM 49 60 63 64 77 79 85

ISC-OP-HM 41 42 44 44 59 65 67

ISC-PN-SM 53 64 68 71 77 80 88

ISC-OP-SM 42 42 48 55 62 67 69

ISCG-PN-HM 77 75 77 87 89 90 93

ISCG-OP-HM 70 70 76 84 84 87 89

ISCG-PN-SM 79 74 86 87 88 94 95

ISCG-OP-SM 74 76 82 82 87 88 91

of both positive and negative information of the detection of
secondary objects is better than using just the positive infor-
mation, and (iii) the use of global search improves the search
success rate of the methods, and it is able to work even with
small view scales. The fact that soft masks work better is
explained because hard masks generate a rough quantiza-
tion of the spatial relations, and cause the probability map to
be pixelated. A pixelated map causes zones that are near to
have very different values when evaluating an optimal view-
point, then obtaining worse results than when using a softer
map. The fact that using both positive and negative infor-
mation in simulations improves the success rate is explained
because the non-detection of secondary objects gives infor-
mation about absence of the main object in the current view
cone. However, use of negative information requires hav-
ing a good observation model. The fact that global search
improves the results occurs because local search strategies
could be trapped in areas with obstacles, and only a global
search is able to generate new views outside the trapping
zone.

Finally, it can be observed that the search success rate of
all methods increases with the scale (i.e. distance) at which
the objects can be detected. This is to be expected since if
the objects can be detected at a greater distance, then the
rate of the search process improves. Also, results show that
object search procedures are stable against variations in the
size of the objects.

4.6 Scaling of Processing Time with the Number
of Objects

The processing time of the proposed informed search
algorithms can be optimized by observing that the cross-
likelihood images are constant, except around the detection
area in the case of positive detections, and around the view
cone in the case of negative detections. This occurs because

the spatial relation between two objects is constant when
the distance between them is large enough. Considering that
the computation of convolutions in constant value areas is
not needed, focalized convolutions can be applied only in
the non-constant areas. The non-constant region inside the
cross-likelihood p(zB |bi,j ) is denoted by L, and its size (lx ,
ly). If the relation mask has a size (mx , my), then the region
L must be enlarged for enabling a full computation of the
convolution with the mask. Then, the required number of
multiplications nmul is quadratic respect to the size of the
mask:

nmul = (lx + mx) ∗ (ly + my) ∗ mx ∗ my (41)

The number of multiplications in the convolution is not
dependent on the full size of the map (ix , iy) because the
convolution is focalized around the detection, and then large
maps could be used. Note also that the number of multi-
plications nmul in Eq. 41 is bounded by the convolution in
Eq. 14. In other words, if computing (14) is faster than com-
puting (41) because of a very small map, then (14) can be
used instead.

When using both positive and negative information, the
computation of the cross-likelihoods is required for each
of the objects, even if they are not detected, and then the
processing time (PT) increases linearly with the number of
secondary objects. However, if only positive detections are
processed, the number of cross-likelihoods to be computed
depends on the number of currently detected secondary
objects, and then the required processing time remains
almost constant.

In the performed experiments, a small map (100x100)
and mask (32x32) were used for representing a 6[mt] x
6[mt] environment. In this case, the convolutions can be
computed quickly and the PT of the informed search process
is lower than the PT of the object detection process.
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5 Real Experiments Results

5.1 Experimental Setup

Real world experiments using a service robot (Bender [32,
33]; see Fig. 7) and a domestic home-like environment
were carried out. The robot, which has participated in sev-
eral service robotics competitions (e.g. RoboCup@Home),
is equipped with a Pioneer base, two Hokuyo laser sen-
sors, an RGB-D camera (ASUS sensor), a tablet computer
which provides a user-friendly interface, and an Alienware
notebook used for running computer vision algorithms. The
experiments were carried out in a domestic home-like envi-
ronment containing walls, furniture (e.g. tables) and several
objects normally found in domestic environments. The envi-
ronment has a size of 6.6[mt] x 9.4[mt], and its layout is
shown in Fig. 8.

In the reported search experiments the pose of the robot is
not known in advance, and the robot needs to self-localize.
The robot is provided with an obstacle map of the environ-
ment, and standard ROS-based modules for self-localization
(amcl) and navigation (navfn + base local planner) are used.
Objects are detected by using the L&R SIFT object detector
[26–28] with its parameters optimized for this particular prob-
lem. In Fig. 9 is shown an example of a pair of detected objects.

5.2 Experiments

Seven different object search methods were tested: the
baseline direct search method (UIS), the method proposed
by Aydemir [8] (ISUP), the method proposed by Elfring
[16] (AOSEOOR), and four different variants of the pro-
posed methodology. We did not consider the use of hard
masks because of their consistently lower performance in
the simulation experiments.

The environment contains two surrogate objects, A
(main) and B (secondary), which have the same spatial rela-
tion as the “monitor” and “keyboard” objects, but are easily

Fig. 7 Robot (Bender) used in the real world experiments

Fig. 8 Layout used for the Real World Experiments. As an example
of a possible configuration of the robot and the objects, the initial robot
position is illustrated by the arrow, and the placements of the main and
secondary objects are shown by the red and blue circles respectively.
Note that this map is built by using a LIDAR sensor placed parallel to
the ground, at 28 cm above the ground level. Then, furniture like tables
(covered by tablecloths) is also represented as gray areas

detectable by using the L&R SIFT object detector [26–
28], that is able to find object instances of each specific
object. Then, the same relation masks used for the simulated
experiments are also used for the real ones (same thresh-
olds for separating the semantic categories “very near,”
“near,” “far” and “very far”). Objects are placed over a desk,
with their positions according the spatial relations estimated
before. Detections are performed by using the RGB-D cam-
era (ASUS sensor). The positions of the detected objects

Fig. 9 Objects detected by using the L&R SIFT detector
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with respect to the robot base can be estimated reliably using
the ASUS range data. The maximum distance at which the
objects can be recognized depends on the SIFT recognizer,
i.e., no hard-coded maximum detection distance is used.
However, empirical maximum detection distances are close
to the ones used in simulations (1 meter for the main object,
2.5 meters for the secondary object) because of the selected
sizes of the objects (the main object is smaller than the
secondary ones).

The probability map was initialized with a uniform dis-
tribution. The task to perform consists of finding the main
object in the room within a maximum allowable searching
time of 5 minutes. Each method is able to re-plan a new
goal for the navigation module every 6 seconds. Also, object
detection is performed while the robot is moving. For each
method, 15 instances of the experiment are performed (Set
1). The results of the experiments are shown in Table 4 (right
column) in terms of the detection rate (%). For comparative
purposes, the detection rates obtained in simulations, at a
similar view scale, are also shown (left column).

From the results shown in Table 4 it can be noted
that, as in the case of the simulation experiments, all
informed search methods outperform the baseline (UIS:
uninformed/direct search). Interestingly, in the real-world
experiments ISUP achieves a higher performance than
AOSEOOR. ISUP performs well, but its detection rate is
limited by the fact that it is reactive, i.e., it has no memory
of the secondary objects seen previously. On the other hand,
AOSEOOR uses the information on the secondary objects
that have been observed, but it does not store a probabil-
ity map. As a probability map for the main object is not
available, and if no secondary objects are yet available as
targets, the system follows a sub-optimal random path when
searching for the main object.

The methods built using the methodology proposed here
have a mixed performance, mainly because the use of nega-
tive information about the detection of the secondary object
decreases the performance. The two methods that use just
the positive information about the detection of the secondary
object obtain the highest performance, ISCG-OP-SM being
the best, with a 87% detection rate, meaning that the robot,
when using this method, was able to detect the main object

in 87% of the cases in less than 5 minutes. This performance
is much higher than those of AOSEOOR and ISUP, which
were 60% and 73%, respectively.

A very important observation is that the use of nega-
tive information increases the detection rate in the simulated
experiments, but in the real world, it causes loss of per-
formance. There are two main factors that explain this
difference in performance. The first factor is that nega-
tive detections are very sensitive to some parameters in
the model, like the maximum distance at which the object
can be observed, and the probability of detecting the object
when it is present. This fact can cause that perfect nega-
tive detection modeling in the simulator do not translate to
a good model in the real world. Also, motion blur results
in the maximum detection distance being variable and not
a constant. The second factor is that the estimation of the
pose of the robot is based on self-localization; so then inac-
curacies in the pose of the robot can generate blurring in
the probability map. And since the blurring tends to expand
areas with low probability in the map, the use of negative
detections of secondary objects, which have large detection
cones, can diminish the result if they are further expanded.
In consequence, the search algorithms work better in prac-
tice when negative information about secondary objects
(that is hard to model) is not used. Also, this results in a
faster algorithm, as convolutions need to be computed only
when an object is detected.

In order to strength the previous results, an extra set of
experiments (Set 2) was performed. The four methods that
obtained the best results in the prior experiments (ISUP,
AOSEEOR, ISC-OP-SM and ISG-O-SM) were selected,
and 15 extra experiment trials were performed for each method.
The results of the new experiments are shown in Table 5.

From the results shown in Table 5, it can be noted that
ISCG-OP-SM is still the best method, obtaining an 87%
detection rate. ISUP achieves a 53% detection rate, which
is slightly better than ISC-OP-SM, which achieves a 47%
detection rate. AOSEOOR is still the worst performing
method, achieving a 27% detection rate. Although the detec-
tion rates suffered variations from Set 1 to Set 2, they are
still comparable as the best and worst performing methods
are preserved.

Table 4 Detection rates (%)
for several methods for both
simulation and for real world
experiments

Method Simulated Experiments with View Scale = 1.0 Real World Experiments (Set 1)

UIS 28 40

ISUP 31 73

AOSEOOR 51 60

ISC-PN-SM 53 47

ISC-OP-SM 42 80

ISCG-PN-SM 79 53

ISCG-OP-SM 74 87
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Table 5 Detection rates (%) for the second set of real world experi-
ments (Set 2)

Method Real World Experiments (Set 2)

ISUP 53

AOSEOOR 27

ISC-OP-SM 47

ISCG-OP-SM 87

Then, from the analysis of both sets of experiments,
the method ISCG-OP-SM is recommended when searching
objects using the methodologies described in the present
work. Note that both the simulations and the real exper-
iments are complementary, as them shows both that the
proposed methods improve over the preexistent ones, and
that by improving the model of the perception process,
negative information could become useful in real settings.

6 Conclusions

In this work, a Bayesian based methodology for performing
informed object search was proposed. The methodology is
based on integrating detections of secondary objects onto
a main object probability map by using convolutions with
spatial relation masks. A method for computing complex
spatial relation masks by using a base composed of basic
relation masks, and a database of co-occurrences of objects
is used. Each basic relation mask corresponds to a spatial
semantic category, such as ‘very near’, ‘near’, or ‘far’. In
addition, a novel global search approach based on regions
was proposed.

The proposed variants were compared both to a base-
line (uninformed search), and with the systems of Aydemir
et al. [8] (ISUP) and Elfring et al. [16] (AOSEOOR) in
simulations and in the real world. Simulations allow per-
forming replicable experiments and analyzing/simulating
specific situations such as occlusions between objects, and
misdetections that depend on the viewpoint of the simulated
sensor with respect to the object. In simulations, the use of
the proposed methodology increases the detection rate from
28% (uninformed search) to 79% (ISCG-PN-SM), when the
main object can be detected at a maximum distance of 1
meter. This detection rate is also much higher than those
obtained by ISUP (31%) and AOSEOOR (51%).

Real world experiments were performed by using a
service robot in a domestic home-like environment. In
the first set of real world experiments, the use of the
proposed methodology increased the detection rate from
40% (uninformed search) to 87% (ISCG-OP-SM) when
using convolutions, soft masks, global search, and informa-
tion of only positive detection of secondary objects. The

use of negative detections of secondary objects increased
the detection rate in simulations but not in the real world,
because detection model inaccuracies, motion blur and inac-
curacies in localization change the behavior of the final
probabilistic model. However, both in simulations and real
experiments, the proposed methods consistently performed
better than preexistent alternatives. A second set of exper-
iments was performed for the best four algorithms. The
detection rate obtained by ISCG-OP-SM is much higher
than those obtained by ISUP and AOSEOOR in both sets
of experiments, then it is the method recommended for
performing search in the real world.

Future work for our system include performing more
exhaustive real world experiments considering more
objects, and using complementary features from the state of
the art, like using object detectors based on convolutional
neural networks, using voxels instead of grids, managing
false detections, managing motion and map blur, using addi-
tional semantic categories/basic masks, improving the prior
distribution by exploiting information about the environ-
ment, such as the presence of tables (they have a larger prior
probability of containing an object than the floor), as well
as modeling furniture as secondary objects. In this way, a
table that is detected and is not present in the original map
could be used as a secondary object, generating an incre-
ment in the probability distribution around it. Adaptation of
spatial relations over time (e.g. by modifying their parame-
ters adaptively) is another possible research topic. Also, as
convolutions are performed on cells inside the viewpoint of
the robot, all cells not yet observed by the robot have the
same probability value. Then, the use of compressed rep-
resentations like quadtrees/octrees could enable the robot
to manage larger environments by using low-resolution
representations on unvisited zones, and high-resolution rep-
resentations on visited ones.
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K., Aydemir, A., Jensfelt, P., Gretton, C., Dearden, R., Janicek, M.,
Zender, H., Kruijff, G., Hawes, N., Wyatt, J.L.: Robot task plan-
ning and explanation in open and uncertain worlds. Artif. Intell.
247, 119–150 (2015)

22. Wixson, L., Ballard, D.: Using intermediate object to improve effi-
ciency of visual search. Int. J. Comput. Vis. 18 3, 209–230 (1994)

23. Ye, Y., Tsotsos, J.K.: Sensor planning for 3D object search.
Comput. Vis. Image Underst. 73–2, 145–168 (1999)

24. Shubina, K., Tsotsos, J.: Visual search for an object in a 3d envi-
ronment using a mobile robot. Comput. Vis. Image Underst. 114
5, 535–547 (2010)

25. Aydemir, A., Pronobis, A., Gobelbecker, M., Jensfelt, P.: Active
visual object search in unknown environments using uncertain
semantics. IEEE Trans. Robot. 29(4) (2013)

26. Ruiz-del-Solar, J., Loncomilla, P.: Robot head pose detection and
gaze direction determination using local invariant features. Adv.
Robot. 23(2009), 305–328 (2009)

27. Martinez, L., Loncomilla, P., Ruiz del Solar, J.: Object recognition
for manipulation tasks in real domestic settings: A comparative
study. In: RoboCup 2014: Robot World Cup XVIII, pp. 207–219
(2015)

28. Loncomilla, P., Ruiz-del-Solar, J., Martinez, L.: Object recog-
nition using local invariant features for robotic applications: A
survey. Pattern Recog. 60, 499–514 (2016)

29. Nash, A., Daniel, K., Koenig, S., Felner, A.: Theta*: Any-angle path
planning on grids. In: AAAI’07 Proceedings of the 22nd National
Conference on Artificial Intelligence, vol. 2, pp. 1177–1183
(2007)

30. Vaughan, R.T., Gerkey, B.P.: Reusable robot code and the
player/stage project. In: Brugali, D. (ed.) Software Engineering
for Experimental Robotics, ser. Springer Tracts on Advanced
Robotics, pp. 267–289. Springer (2007)

31. Ludwig, O., Delgado, D., Goncalves, V., Nunes, U.: Trainable
classifier-fusion schemes: an application to pedestrian detection.
In: Proc. of the 12th Int. IEEE Conf. on Intell. Transportation
Systems, vol. 1, pp. 432–437. St. Louis (2009)

32. Ruiz-del-Solar, J., Correa, M., Verschae, R., Bernuy, F., Lon-
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