Contents

1 Introduction .. 1
 1.1 Hypothesis .. 2
 1.2 Structure of the thesis 2

2 Wavelet Packet Analysis 4
 2.1 WP Bases: A Tree-Structured Collection 4
 2.2 Filter-Bank Implementation and the WP Sub-Space Frequency Decomposition ... 7
 2.3 Tree Indexing ... 11

3 The Multiple Hypothesis Problem for Image Retrieval 12

4 Wavelet Packet Texture Retrieval 14

5 Wavelet Packet Basis Selection 16
 5.1 Minimum Cost-Tree Pruning Algorithm 17

6 Experimental Analysis .. 19
 6.1 Synthetic Scenario 19
 6.2 Texture Databases 21
 6.3 Analysis of the Sub-Band Model Fitting 25
 6.4 Wavelet Packets Retrieval Performances 25
 6.5 Analysis of the Optimal Tree Structure of WPs 28

7 Conclusions and Future Work 30

8 Appendix ... 31
 8.1 The Gray Code .. 31
 8.2 Weighted divergence and Stein’s Lemma 32

Bibliography .. 35
List of Tables

6.1 Best Retrieval Performance ... 28
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Wavelet Packet Tree-structured Sub-space decomposition</td>
<td>6</td>
</tr>
<tr>
<td>2.2</td>
<td>Wavelet Packet filter-bank implementation</td>
<td>6</td>
</tr>
<tr>
<td>2.3</td>
<td>The system view process to determine the transform coefficients of the sub-space U^p_j, presented in Proposition 2.1. The aggregated down-sampler is by $K = 2^{j-L}$</td>
<td>7</td>
</tr>
<tr>
<td>2.4</td>
<td>Illustration of the frequency division of Wavelet Packet bases for two tree-structures. The ideal Shannon conjugate filter pair is considered, which provides perfect dyadic partitions of the interval $[-\pi, \pi] \times [-\pi, \pi]$. Scenario (2.4a-2.4c) shows a iteration of $H_0(z_1)H_0(z_2)$ (Wavelet type), and scenario (2.4b-2.4d) presents a balanced tree structure (uniform frequency resolution)</td>
<td>9</td>
</tr>
<tr>
<td>2.5</td>
<td>The same scenario as in Figure 2.4. Scenario (2.5a-2.5c) shows a double iteration of $H_0(z_1)H_1(z_2)$. Meanwhile, scenario (2.5b-2.5d) is a iteration of $H_0(z_1)H_1(z_2)$ and $H_0(z_1)H_0(z_2)$ filters</td>
<td>10</td>
</tr>
<tr>
<td>6.1</td>
<td>Examples of synthetic textures</td>
<td>20</td>
</tr>
<tr>
<td>6.2</td>
<td>These maps shows the weighted divergence and energy term indexed by a sub-band in the WP decomposition</td>
<td>20</td>
</tr>
<tr>
<td>6.3</td>
<td>Texture images VisTex used for the experiments. Bark0, Bark6, Bark8, Bark9, Brick1, Brick4, Brick5, Buildings9, Fabric0, Fabric4, Fabric7, Fabric9, Fabric11, Fabric14, Fabric15, Fabric17, Fabric18, Flowers5, Food0, Food5, Food8, Grass1, Leaves8, Leaves10, Leaves11, Leaves12, Leaves16, Metal0, Metal2, Misc2, Sand0, Stone1, Stone4, Terrain10, Tile1, Tile4, Tile7, Water5, Wood1 y Wood2</td>
<td>22</td>
</tr>
<tr>
<td>6.4</td>
<td>Texture images Brodatz used for the experiments. D102, D103, D105, D11, D16, D19, D21, D24, D29, D3, D34, D36, D4, D52, D53, D55, D57, D6, D65, D68, D74, D77, D78, D79, D82, D83, D84, D9, D92 y D95</td>
<td>22</td>
</tr>
</tbody>
</table>
6.6 Example of texture images ALOT used for the experiments. Fruit sprinkles, couscous, toilet paper, spearmint, bread (wholewheat), silver foil (heavily cramped), soya beans, wool knitwear, sand (wet), ricotta rice, sage, cotton (color orange), terry cloth (orange), rock salt, cork, mustard seed (yellow) ribbed cotton (yellow), pine seeds, scourer (rough side), lef (brown), poppy seed, rosemary leaves, stones (gray level), fake fur, moss (green), vitamin C pills (roter), flan (apple), snail poison, reed (plumes), lego (plates yellow and blue), lace, spaghetii (regularly ordered), ribbed cardboard, carpet (blue), wallpaper (beige motive), chamois (punched), carpet (beige), cotton (blue and purples stripes), sand paper (roughness 40), and rabbit food.

6.7 Histograms and ML fitting of the WP sub-band coefficients associated with the nodes indexed by \((2, 4), (2, 5), (2, 6), (2, 7), (2, 12), (2, 13), (2, 14), (2, 15)\).
The Generalized Gaussian Model in Eq. (4.2) is used for the histogram fitting. The image 20_c1l1 from ALOT database is used for illustration.

6.8 Retrieval performance for the family of Wavelet Packets solutions of the regularized problem in Eq. (5.1) using the weighted divergence, the divergence and the energy as fidelity measures. Results are presented independently for the databases: VisTex, Brodatz, Full STex, Full ALOT, Reduced STex and Reduced ALOT.

6.9 First column shows the frequency partitions induced by the best WP solution, which is represented by the tree in the second column.

6.10 First column shows the frequency partitions induced by the best WP solution, which is represented by the tree in the second column.