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Abstract. We studied the temporal evolution of fractality
for geomagnetic activity, by calculating fractal dimensions
from the Dst data and from a magnetohydrodynamic shell
model for turbulent magnetized plasma, which may be a use-
ful model to study geomagnetic activity under solar wind
forcing. We show that the shell model is able to reproduce
the relationship between the fractal dimension and the oc-
currence of dissipative events, but only in a certain region
of viscosity and resistivity values. We also present prelimi-
nary results of the application of these ideas to the study of
the magnetic field time series in the solar wind during mag-
netic clouds, which suggest that it is possible, by means of
the fractal dimension, to characterize the complexity of the
magnetic cloud structure.

1 Introduction

There is a nontrivial magnetic interaction between Sun and
Earth, coupled by the solar wind, leading to a rich variety of
phenomena, which has attracted interest to the study of space
plasmas for decades, and more recently to the possibility of
forecasting space weather, an issue of large relevance in our
increasingly technology-dependent society.

Various models and techniques have been developed to
study the plasma behavior in the Sun–Earth system. Of these,
the study of complexity has been of great interest, as it is

capable of providing new insights regarding universal be-
havior related to geomagnetic activity, turbulence in labora-
tory plasmas or the solar wind, to name a few (Dendy et al.,
2007; Klimas et al., 2000; Takalo et al., 1999; Chang and
Wu, 2008; Valdivia et al., 1988). In particular, it has been
suggested that various magnetized plasma systems are in a
self-organized critical state, exhibiting fractal and multifrac-
tal features which relate them to a broader class of complex
systems. This has been the case in studies on the Earth’s
magnetosphere (Chang, 1999; Valdivia et al., 2005, 2003,
2006, 2013), the solar wind (Macek, 2010), the solar pho-
tosphere, and solar corona (Berger and Asgari-Targhi, 2009;
Dimitropoulou et al., 2009). Some authors have discussed
the relationship between the fractal dimension and physi-
cal processes in magnetized plasmas in the Sun–Earth sys-
tem, including the possibility of forecasting geomagnetic ac-
tivity (Aschwanden and Aschwanden, 2008; Uritsky et al.,
2006; Georgoulis, 2012; McAteer et al., 2005, 2010; Dim-
itropoulou et al., 2009; Conlon et al., 2008; Chapman et al.,
2008; Kiyani et al., 2007).

In our work we use the box-counting fractal dimen-
sion (Addison, 1997), which is a simple measure of com-
plexity, and which has an intuitive meaning. Certainly, a
single fractal dimension cannot provide all information on
complexity for systems in general. Moreover, most systems
of interest also have multifractal features, such as the mag-
netospheric system (Chang, 1999), models of turbulence
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(Kadanoff et al., 1995; Pisarenko et al., 1993), and the so-
lar wind (Chapman et al., 2008); but it is interesting to note
that it does describe some relevant features of these time se-
ries’ complexity, as it has been successfully used in previ-
ous works relevant to the Sun–Earth system (Osella et al.,
1997; Kozelov, 2003; Gallagher et al., 1998; Georgoulis,
2012; Lawrence et al., 1993; Cadavid et al., 1994; McAteer
et al., 2005). We will thus use the box-counting as a fast ap-
proach and a first step to detect universal features worth fur-
ther study. In addition, we will calculate fractal dimensions
based on a scatter diagram (see e.g., Witte and Witte, 2009),
unlike some previous studies, where different methods or
data (Kozelov, 2003; Uritsky et al., 2006; Balasis et al., 2006;
Dias and Papa, 2010) were used.

These ideas were implemented by us in Domínguez et al.
(2014) to study the Dst time series and solar magnetograms
and the possible correlation between solar and geomagnetic
activities as evidenced by the box-counting fractal dimen-
sion. Individual events, complete years of high geomagnetic
activity, and the full 23rd solar cycle were studied with this
technique, successfully finding that the fractal dimension,
and more specifically its evolution, has – despite its simplic-
ity – relevant information on the complex behavior of these
systems and their eventual correlation.

The results mentioned above were robust, in the sense that
they were observed across a wide range of timescales, which
suggests that any model describing the dynamics of geo-
magnetic activity should reproduce a similar fractal behavior.
This is our motivation to study a shell model for magnetohy-
drodynamic (MHD) turbulence within this framework.

Evidence of turbulence in the Earth’s magnetosphere has
been found by various spacecraft observations (Nykyri et al.,
2006; Sundkvist et al., 2005; Zimbardo et al., 2008), and sev-
eral authors have studied magnetospheric MHD turbulence
(see, e.g., Borovsky, 2004; Hwang et al., 2011; El-Alaoui
et al., 2012). However, given the large number of degrees
of freedom, simulation of turbulent systems has a large com-
putational cost, which has led to the development of analyti-
cal models, which, while sharing statistical properties of the
systems under study, depend only on a few degrees of free-
dom (Chapman et al., 1998; Valdivia et al., 2006).

At an intermediate level between these models and first-
principles approaches we find shell models, consisting of a
set of coupled equations which are similar to the spectral
Navier–Stokes equation, but which are also low dimensional
models. They have been successfully used to describe tur-
bulence in magnetized fluids, being able to deal with large
Reynolds numbers without the associated computational cost
of simulations based on first principles and nonlinear fluid
equations (Ditlevsen, 2011), and describing the main statisti-
cal properties of MHD turbulence (Chapman et al., 2008).

In fact, it has been shown that dissipative events in shell
models can be taken to represent solar flares and that their
distribution follows the same power-law statistics as ob-
served in turbulent magnetized plasmas (Boffetta et al., 1999;

Lepreti et al., 2004; Carbone et al., 2002). As suggested in
Lepreti et al. (2004), flares and geomagnetic activity could
be the results of dissipation bursts within a turbulent envi-
ronment.

In a previous work (Domínguez et al., 2017), we have ap-
plied the box-counting fractal dimension to study the com-
plexity in an MHD shell model, analyzing the correlation be-
tween it and the energy dissipation rate, showing that, for
certain values of the viscosity and the magnetic diffusivity,
the fractal dimension exhibits correlation with the occurrence
of bursts, similar to what had been found with geomagnetic
data (Domínguez et al., 2014). This suggests that shell mod-
els do not only reproduce the power-law statistics of dissipa-
tive events in turbulent plasmas but also some features of its
fractal behavior.

In this paper we review our results in this field, where com-
plexity in magnetic field time series is measured by means of
the fractal dimension. Thus, we characterize events such as
geomagnetic storms by means of analyzing the Dst time se-
ries on various timescales (described in Sects. 2–3, and dis-
cussed previously in more detail in Domínguez et al., 2014)
and the occurrence of dissipative events in an MHD shell
model simulation (Sect. 4; see Domínguez et al., 2017 for
more details). We also present preliminary results dealing
with spacecraft data for the solar wind, related to the appear-
ance of magnetic clouds (Sect. 5).

2 Fractal dimension

We are interested in estimating the fractal dimension to
various time series for magnetic data. We now explain
the method, using the hourly Dst time series as an exam-
ple (World Data Center for Geomagnetism, http://wdc.kugi.
kyoto-u.ac.jp/caplot/index.html).

Fractal dimensions can be defined in various ways in gen-
eral, and for a specific time series in particular ways as
well (Addison, 1997; Theiler, 1990). In general it can be said
that they are numbers, which can be noninteger, measuring
the complexity of a data set. In this work, we estimate the
fractal dimension using the box-counting method (Addison,
1997) as shown below. First, a scatter diagram is obtained
from each Dst time series, by plotting each datum versus the
next one (see Fig. 1).

Then, the scatter diagram is divided into square cells of a
certain size ε. By decreasing ε, we eventually find a region
where the number of cells containing points scales as a power
law with ε:

N(ε)∝ ε−D, (1)

whereD is the scatter plot box-counting dimension. We esti-
mate the error inD through the least-squares fit for the slope.

Further details and discussion on the method can be found
in Domínguez et al. (2014).
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Figure 1. Scatter diagram for Dst time series, using data from 6
to 20 March 1989, containing a large geomagnetic storm. (Taken
from Domínguez et al., 2014.)

The method as stated above was applied to the Dst time
series where, given the width of the data windows used (the
criterion is discussed in Sect. 3) and the time resolution of
the data (one point per hour), it only made sense to build the
scatter plot with consecutive data points.

However, when resolution is larger, as is the case with sim-
ulation and solar wind data, it is possible to consider different
time delays. Thus, the scatter plot can be built by plotting the
ith data in the set, versus the (i+j)th data, with j ≥ 1 in gen-
eral, and then the fractal dimension calculated depends on j ,
Dj . This was the approach in Domínguez et al. (2017), and
it is presented here in Sects. 4 and 5.

3 Dst time series

Some studies (Balasis et al., 2009; Papa and Sosman, 2008)
have suggested that there is a relationship between the inten-
sity and the complexity of the Dst time series. Here, we will
first apply the technique discussed in Sect. 2 to investigate
whether there is a connection between the level of geomag-
netic activity and the fractal dimension of the Dst index.

Following Domínguez et al. (2014), we are interested in
testing the usefulness of the method by first studying strong,
clear events. Thus, we identify “storm states” and “quiet
states” by locating Dst peaks, such that Dst<−220 nT,
which corresponds to intense magnetic storms. A storm state
is defined by a 2-week window centered on the minimum Dst
value. This is done considering the typical timescale of a ge-
omagnetic storm (Tsurutani and Gonzalez, 1994; Gonzalez
et al., 1994). Quiet states simply correspond to the time win-
dow between consecutive storm states. This is illustrated in
Fig. 2, corresponding to the year 1989, where four peaks are
found.

In the following, states within a year are labeled by integer
numbers starting from 1. A fractal dimension is then calcu-
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Figure 2. Storm and quiet states in the Dst time series for 1989,
also indicating the average value of the Dst index (horizontal line),
and the threshold used to identify storms (dashed line). Red (black)
arrows indicate storm (quiet) states. (Taken from Domínguez et al.,
2014.)
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Figure 3. Box-counting dimension D for storm and quiet states for
the year 1989. Labels in the horizontal axis represent consecutive
states as mentioned in Sect. 3. Storm states are marked with red
circles, whereas errors are taken from the least-squares linear fit.
(Taken from Domínguez et al., 2014.)

lated for each storm and each quiet state in the same year.
Results for 1989 are shown in Fig. 3.

Similar plots for 5 years of high geomagnetic activity were
obtained (Domínguez et al., 2014). In general, storm states
are found to have a smaller fractal dimension than quiet
states immediately before and after them, although there does
not seem to be a clear correlation with the value of Dst it-
self (Domínguez et al., 2014). Thus, our statement on the
decrease of the fractal dimension is an argument about its
variation, rather than about its actual value. These results are
consistent with Balasis et al. (2009), where it is shown that
the Tsallis entropy of the Dst time series decreases during
intense magnetic storms (Dst<−150 nT in their case).

We have also studied variable width windows around a
storm and moving windows across storms, and results have
been consistent with the findings discussed.

In effect, as a window is widened around a storm, more
“quiet” data are considered, and thus the fractal dimension
of the data inside the window should increase. This is actu-
ally the case, as shown for instance in Fig. 4, where results
for four storms are taken, selected because they are isolated
enough to allow enlargement of the window around them
without overlapping with neighboring storms (Domínguez
et al., 2014).
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Figure 4. Box-counting dimensionD for a storm state, as a function of window width. Lines correspond to storms on 1 April 1960, 13 March
1989, 6 April 2000, and 30 March 2001. (Taken from Domínguez et al., 2014.)
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Figure 5. Box-counting dimension D (blue) and Dst index (red)
for the 13 March 1989 geomagnetic storm. D decreases before
the storm in the windows within the vertical lines. (Taken from
Domínguez et al., 2014.)

Regarding the moving windows analysis, results are illus-
trated for the 13 March 1989 storm in Fig. 5, comparing it
with the Dst index.

As shown in Domínguez et al. (2014), the box-counting di-
mension of the Dst index decreases as the storm approaches
for all cases studied. Moreover, this decrease occurs before
the window includes the geomagnetic storm, as marked by
the vertical lines in Fig. 5. Whether this is relevant for fore-
casting geomagnetic storms needs further study, as it may
simply be due to an increase of the intermittency in the time
series, unrelated to the upcoming dissipative event.

In Domínguez et al. (2014), systematic calculations of
cross correlation between Dst and D were performed using
year-long data for 1960, 1989, 2000, 2001, and 2003, sug-
gesting that the decrease of the box-counting dimension is a
robust feature.

4 MHD shell model

Given the intrinsic difficulties in using direct numerical sim-
ulations to describe turbulent flows, especially for large
Reynolds numbers, shell models have been used for years in
order to reproduce the nonlinear dynamics of fluid systems
in large dynamical ranges, but with fewer degrees of free-
dom (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani,
1988). An MHD shell model (Boffetta et al., 1999), in par-
ticular, is a dynamical system which aims to reproduce the

main features of MHD turbulence. The model corresponds
to a simplified version of the Navier–Stokes or MHD equa-
tions for turbulence, which conserves some of its invariants
in the limit of no dissipation.

In this work, we use the MHD shell model proposed by
Gledzer, Okhitani, and Yamada (GOY shell model), which
describes the dynamics of the energy cascade in MHD tur-
bulence (Lepreti et al., 2004). The model is built up by di-
viding the wave-vector space (k-space) in N discrete shells
of radius kn = k02n (n= 0,1, . . .,N ). Then, two complex dy-
namical variables un(t) and bn(t), representing velocity and
magnetic field increments on an eddy scale l ∼ k−1

n , are as-
signed to each shell.

The model consists of the following set of ordinary differ-
ential equations:

dun
dt
= − νk2

nun+ ikn (un+1un+2− bn+1bn+2)

− ikn

{
1
4
(un−1un+1− bn−1bn+1)

+
1
8
(un−2bn−1− bn−2un−1)

}∗
+ fn, (2)

dbn
dt
= − ηk2

nbn+ ikn
1
6
(un+1bn+2− bn+1un+2)

− ikn
1
6
{(un−1bn+1− bn−1un+1)

+(un−2bn−1− bn−2un−1)}
∗
+ gn, (3)

where ν and η are, respectively, the kinematic viscosity and
the resistivity; fn and gn are external forcing terms acting,
respectively, on the velocity and magnetic fluctuations. The
symbol ∗ represents a complex conjugate quantity. The non-
linear terms have been obtained by imposing quadratic non-
linear coupling between neighboring shells and the conser-
vation of three MHD ideal invariants (Gloaguen et al., 1985;
Lepreti et al., 2004).

The forcing terms are calculated according to the Langevin
equation

df̃n
dt
=−

f̃n

τ0
+ µ̃, (4)
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where f̃n = fn or gn, τ0 is a characteristic time of the largest
shell, and µ̃ is a Gaussian white noise of width σ .

The magnetic energy dissipation rate is defined as

εb(t)= η

N∑
n=1

k2
n

∣∣∣b2
n

∣∣∣ . (5)

In our simulation, we set σ = 0.01, τ0 = 0.25, take N =
19 shells, and force the system on the largest shell (f1,g1 6=

0). Similar parameters have been considered in previous
studies using this model for the modeling of solar flares’
statistics (Boffetta et al., 1999; Lepreti et al., 2004; Nigro
et al., 2004).

We numerically integrate the shell model Eqs. (2)–(3) for
various values of ν and η, and then we calculate the magnetic
energy dissipation rate εb(t) (Eq. 5).

Figure 6 shows a typical time behavior for εb(t).
Previous works have compared the statistics of bursts in

turbulent systems with the statistics of dissipative events in
the shell model (Boffetta et al., 1999; Lepreti et al., 2004;
Carbone et al., 2002). There, peaks in the εb(t) time series
have been associated with dissipative events in the magne-
tized plasma. Following the ideas in Sect. 3 regarding the size
of events considered, we focus only on the largest peaks in
the εb(t) time series, specifically, on dissipative events where
the maximum value is larger than 〈εb〉+nσ̃ where 〈εb〉 is the
average value of εb over all simulation time, σ̃ is the stan-
dard deviation of the εb time series in that window, and n
is a certain integer. In this paper we discuss only results for
n= 10, but in Domínguez et al. (2017) n= 5 was also con-
sidered, in order to assess the robustness of the results. Our
aim is to study the dependence of the conclusions on ν and η
in Eqs. (2) and (3).

We now apply the same techniques used to study the Dst
index, as described in Sects. 2–3, to the εb(t) time series.

We first notice that, in general, setting parameters ν and
η with arbitrary values yields εb(t) series, which do not have
the necessary intermittency level to resemble the Dst time se-
ries. Compare, for instance, the different panels in Fig. 16 in
Domínguez et al. (2017), which show that Pm= 0.2 leads to
a very noisy output, unlike simulations with Pm= 1.0 or 2.0,
where individual, large peaks can be easily identified from
the background. In fact, previous studies have shown that the
statistics of bursts follows a power law for Pm= 1 (Boffetta
et al., 1999; Lepreti et al., 2004; Carbone et al., 2002), and
for this reason we start by taking Pm= ν/η = 1.

Now, we need to define “active states” and quiet states.
For the Dst case (Domínguez et al., 2014) there are natural
timescales which were used to define the occurrence and the
duration of a geomagnetic storm. However this is not avail-
able for the output of the shell model, and our approach was
to inspect the data to gain intuition on this. As described in
detail in Domínguez et al. (2017), we take Pm= ν/η = 1
as fixed, and then a wide range of values of ν, in the inter-
val 10−12

≤ ν ≤ 10−1. For each parameter set, we solve the
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Time
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Figure 6. Time series of εb(t), Eq. (5), with ν = η = 10−4 in the
shell model. The red and blue regions inside the dashed box corre-
spond to an active state, as explained later in the text. (Taken from
Domínguez et al., 2017.)

shell model equations using a time step of dt = 10−4 and for
7×108 iterations. We conclude that n= 10 is enough to filter
most events, except for the largest ones.

Regarding the width of an active state, Fig. 6 is, among
the various simulations we performed, the only case where
two clear dissipative events were both close and distinguish-
able from each other. Thus we take this as a reference run,
and since the separation between both peaks is 96 000 time
steps, we define an active state in the shell model output as
a window of 96 000 time steps, centered around a peak in
the magnetic energy dissipation. Therefore, Fig. 6 shows two
adjacent active states.

We now analyze the output of the simulation for given val-
ues of ν and n, identify active and quiet states, and calculate
the scatter box-counting dimension for each state for vari-
ous values of the sampling j . Figure 7 shows the results for
ν = η = 10−3, n= 10. Integer numbers label states across
the simulation, as previously explained in Sect. 3. In Fig. 7,
active states correspond to labels “2” and “4”. Errors in D
are calculated from the least-squares linear fit.

For all values of j , we notice that active states have smaller
fractal dimensions than neighboring quiet ones, although the
difference between quiet and active states decreases for lower
values of j . In fact, it can be seen that the fractal dimension
depends on the value of the sampling parameter j , which
suggests multifractal features of the data (Kadanoff et al.,
1995; Pisarenko et al., 1993). We follow this idea by plot-
ting the fractal dimension of each state as a function of j
(see Fig. 8).

Notice that for the smallest value of j (j = 1), the scatter
plot is a straight line; thus its fractal dimension is D = 1. On
the other hand, as j increases and is larger than the number
of data points, D = 0, since such a sampling leaves only one
point in the curve. Both limits are satisfied for all curves in
Fig. 8. The nontrivial dependence of D for intermediate val-
ues of j reflects, as mentioned above, a multifractal nature of
the εb(t) times series, since the fractal dimension depends on
the sampling timescale.
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Figure 7. Box-counting fractal dimension for εb(t) during quiet
and active states for n= 10, with µ= 3. Active states correspond
to states labeled “2” and “4”. (Taken from Domínguez et al., 2017.)
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Figure 8. Box-counting fractal dimension for quiet and active
states, as a function of j , with µ= 3. Numbers for each curve label
the states. We added an “(s)” in the legends, in order to highlight the
active states. (Taken from Domínguez et al., 2017.)

As observed in Fig. 7, in Fig. 8 we also find lower frac-
tal dimensions for active states than for quiet states. How-
ever, this does not hold for arbitrarily large values of j (see
Figs. 6 and 7 in Domínguez et al., 2017). We only find it for
j > 1, but for values that are not too large, suggesting that
it is within this range of values of j where the box-counting
fractal dimension has statistical information on the dissipa-
tive events in the time series. This, in turn, suggests that the
findings in Sect. 3 and Domínguez et al. (2014) are not triv-
ial.

In Domínguez et al. (2017) a more detailed analysis is car-
ried out on the shell model results, exploring other simulation
parameters (ν, η, magnetic Prandtl number), another crite-
rion for defining active states (n= 5), and a systematic study
of the correlations between the fractal dimension and the oc-
currence of dissipative events by means of the Student’s t-
test. Results suggest that the intermittency level of the output
time series is relevant, which has led us to perform the anal-
yses for the shell model within a certain range of values of
the magnetic Prandtl number, as well as of the viscosity and
resistivity.

5 Magnetic clouds

As a way to illustrate how the ideas described so far could be
used to characterize structures in space plasmas, we apply the
method to study the time series for the magnetic field during
magnetic clouds (Burlaga et al., 1981), as found in ACE in-
terplanetary magnetic field data (ACE Science Center, http:
//www.srl.caltech.edu/ACE/ASC/index.html) and measured
in the proximity of the L1 Lagrangian point. Magnetic clouds
are transient structures ejected from the Sun, characterized
by a large and smooth rotation of the magnetic field. Typi-
cally, a magnetic cloud event can be identified from single
spacecraft measurements by studying the evolution of the
observed fields. During a given event, various stages can be
identified: first, observation of solar wind prior to the cloud’s
arrival, then a sheath of compressed solar wind plasma im-
mediately preceding a flux rope, where the magnetic field
varies smoothly, and finally the background solar wind again.
Note that slower moving clouds traveling at speeds compara-
ble to that of the ambient solar wind will not display promi-
nent sheath regions.

Two events were selected: an event occurring on 12 July
2012 (MC1) and another on 11 July 2013 (MC2). Resolu-
tion for the magnetic field time series for these events is 16 s,
covering a time span of 8 days for MC1 and 6 days for MC2,
of which about 2 days correspond to the cloud events them-
selves.

Figure 9 shows the time series corresponding to the two
events analyzed, with the various stages marked.

It is found that the calculated fractal dimension evolves in
a distinctive way through the various stages of the event as
it passes by the spacecraft (namely surrounding solar wind,
sheath, and flux rope). Given the high resolution of the data,
it is possible to calculate the box-counting dimension for sev-
eral delays, given by j , as was shown in Figs. 7 and 8 for the
shell model analysis. In Fig. 10 the fractal dimension is cal-
culated for each magnetic cloud stage, and various values of
the sampling j are considered.

It can be noted that the fractal dimension, as calculated
here, is indeed able to characterize magnetic cloud struc-
tures. The sheath state has a large dispersion of fractal dimen-
sion values as j is varied, consistent with its more turbulent
regime; on the other hand, the quieter and more organized
flux rope state exhibits a very low variation with j , basically
a single fractal dimension at all timescales explored. As for
the surrounding solar wind, it shows dispersion ofDj , which
is between the dispersion of values in the sheath and the flux
rope.

The results above suggest that, from the point of view
of the time series, the level of multifractality is large in
the sheath, consistent with its more turbulent nature, inter-
mediate in the solar wind, and that the flux rope magnetic
field is essentially monofractal, consistent with the orga-
nized, smoother structure of the magnetic field expected in
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Figure 9. Time series for the magnetic field for the two magnetic cloud events analyzed. The different stages in the data are identified: solar
wind (SW), sheath (S), and flux rope (FR). (a) MC1 event: 12 July 2012; (b) MC2 event: 11 July 2013.
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Figure 10. Box-counting fractal dimension for two magnetic cloud events during the four stages of the time series: first the solar wind, then
the sheath, then the flux rope, and finally the solar wind again. Several values for data sampling j are used.

this region. We plan to carry out other multifractal analyses
to complement these findings in a future publication.

Also, these results suggest that the fractal approach dis-
cussed in this paper may be useful to characterize the various
stages of magnetic clouds, and in particular to set up a sys-
tem to automatically identify similar magnetic structures in
spacecraft data.

6 Conclusions

In this paper, we have reviewed recent results obtained by
us, regarding the evolution of complexity in magnetized plas-
mas, as described by geomagnetic data, simulation results for
MHD turbulence, and spacecraft data in the solar wind.

This has been done by calculating a box-counting fractal
dimension for time series of magnetic field data for the Dst
geomagnetic index (Domínguez et al., 2014), the GOY shell
model (Domínguez et al., 2017), and ACE data for two mag-
netic cloud events.

In general, it is found that the fractal dimension D de-
creases during dissipative events. In the case of the Dst time
series this was verified for three different types of time win-
dows: fixed width and stationary, variable width, and mov-
ing windows (Sect. 3). And it was also found across sev-
eral timescales, namely individual storms, full years, and the
complete 23rd solar cycle, as detailed in Domínguez et al.
(2014).
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A similar behavior is found for the MHD shell model
(Sect. 4). Thanks to the larger resolution of the simulation
data as compared with the Dst data, several values of the
time delay for data sampling could be found, showing that
the results found in Domínguez et al. (2014) are nontrivial,
in the sense that not all samplings yield similar results. Only
intermediate values of the time delay that are not too large (as
represented by the value of j in Sect. 2) are able to clearly
distinguish between active and quiet states. But, within the
useful range of values for j , the fractal dimension of the ac-
tive states is consistently smaller than the dimension of quiet
states, and is always lower than 1, whereas the active states
always have a dimension larger than 1. The dependence on
j of the fractal dimension is interesting in itself, as it sug-
gests that data have a multifractal structure, which is consis-
tent with suggestions and findings by other authors studying
space plasmas (Chapman et al., 2008, 1998; Valdivia et al.,
2005).

Also, a more systematic test for the correlation between
burst events in the shell model and the decrease in fractal
dimension was performed, by means of the Student’s t-test,
as well as a more detailed exploration of the parameter space
for the simulation. These results can be found in Domínguez
et al. (2017).

As an application of these ideas, we take two magnetic
cloud events in the solar wind, and use the techniques de-
scribed here to study the corresponding magnetic field time
series. Our results, although preliminary, suggest that this
method can characterize the various stages of the magnetic
cloud structure.

Given the rich and complex dynamics governing the evo-
lution of magnetized plasmas, we would not expect that a
single index would be able to capture all their relevant in-
formation. In fact, multifractal analysis should be conducted
in order to represent the dynamics of the systems studied
more accurately, and such an analysis is currently being pre-
pared for future publication. However, the findings summa-
rized here suggest that some relevant correlations can be ob-
served, and that the dimension used here, although simple,
may give some insight into the evolution of complexity of
plasmas in the Sun–Earth system and MHD turbulent states.

Data availability. Dst data can be downloaded from the website of
the World Data Center for Geomagnetism, http://wdc.kugi.kyoto-u.
ac.jp/caplot/index.html (World Data Center for Geomagnetism,
2018). ACE data can be downloaded from the ACE Science Cen-
ter website, http://www.srl.caltech.edu/ACE/ASC/index.html (ACE
Science Center, 2018).
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