Least-Present-Value-of-Revenue Auctions and Highway Franchising

Eduardo M. R. A. Engel
Yale University, Universidad de Chile, and National Bureau of Economic Research

Ronald D. Fischer and Alexander Galetovic
Universidad de Chile

In this paper we show that fixed-term contracts, which are commonly used to franchise highways, do not allocate demand risk optimally. We characterize the optimal risk-sharing contract and show that it can be implemented with a fairly straightforward mechanism—a least-present-value-of-revenue auction. Instead of bidding on tolls (or franchise lengths), as in the case of fixed-term franchises, in an LPVR auction the bidding variable is the present value of toll revenues. The lowest bid wins and the franchise ends when that amount has been collected. We also show that the welfare gains that can be attained by replacing fixed-term auctions with LPVR auctions are substantial.

The greater part of such public works may easily be so managed, as to afford a particular revenue sufficient for

Financial support from Fondecyt (grants 1980658 and 1981188); the Dirección de Investigación, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile; and institutional grants to the Centro de Economía Aplicada from the Mellon and Hewlett Foundations are gratefully acknowledged. This paper benefited from comments by James Hines, Jean Tirole, the editor (Sherwin Rosen), an anonymous referee, and seminar participants and discussants at the Econometric Society meetings in Seattle (2000) and Cancún (1999); the International Economic Association meeting in Buenos Aires (1999); London School of Economics; Massachusetts Institute of Technology; Harvard, Hebrew, and Stanford Universities; Universities of California (Santa Cruz), Chile, Michigan, Paris (Centre d’Enseignement et de Recherche en Analyse Socioéconomique), Pompeu Fabra, and Toulouse.
defraying their own expence, without bringing any burden upon the general revenue of society. … When high roads … are in this manner made and supported by the commerce which is carried on by means of them, they can be made only where that commerce requires them …. Their expence too, their grandeur and magnificence, must be suited to what that commerce can afford to pay. … A magnificent high road cannot be made … merely because it happens to lead to the country villa of the intendant of the province, or to that of some great lord to whom the intendant finds it convenient to make his court. [Adam Smith, The Wealth of Nations, bk. V, chap. I, pt. III, article 1]

I. Introduction

There is widespread agreement that most developing countries urgently need massive programs for highway construction (see, e.g., Irwin et al. 1997). Highways have traditionally been viewed as public goods that should be built, financed, and operated by the public sector. However, in recent decades chronic budgetary problems have led governments to neglect the upkeep of existing roads while traffic has grown well ahead of their capacity. The task of rebuilding and making new roads is beyond the capabilities of most governments, so that it has become increasingly accepted that private firms should build, finance, and operate highways and that users should pay for their cost.¹

In recent years many countries have started massive highway franchising programs via so-called build-operate-and-transfer contracts.² Under such a contract, a private firm builds and finances the highway and then collects tolls for a long period, usually between 10 and 30 years. When the franchise ends, the road reverts to the state.

The first franchises were usually conferred in bilateral negotiations, but increasingly, competitive auctions are being used to award them. Many highways are natural monopolies,³ and the premise that underlies the use of auctions is that they lead to efficient outcomes: competition for the field as a good substitute for competition in the field, an idea that goes back to Chadwick (1859) and was popularized by Demsetz (1968). Typically, the regulator fixes the franchise term, and the road

¹ According to the Economist, “As many countries have neither the finances nor the managerial resources for the task …, private companies will have to do much of the job” (February 1, 1997, p. 63).
² See Gómez-Ibáñez and Meyer (1993) for a thorough discussion of the international experience.
³ Mexico was an interesting exception, where the franchised highways were built parallel to free (but congested) public highways. Perhaps coincidentally, most of these projects had to be rescued by the government.
highway franchising

is awarded to the firm that bids the lowest toll; alternatively, the regulator fixes the toll, and the winner is the firm that bids the shortest franchise term. Both are fixed-term franchises; that is, the franchise term is fixed before the franchise begins.

In this paper we show that fixed-term franchises can be improved on significantly by allowing the franchise term to adjust with demand realizations. We first characterize the full-information optimal contract. This contract optimally trades off the distortions caused by tolls against the revenue uncertainty faced by the risk-averse franchise holder. A key characteristic of this contract is that franchises last longer when demand turns out to be low. We next show that the optimal contract can be implemented with a simple competitive auction, where firms bid on the present value of toll revenue they want to obtain over the lifetime of the franchise—a least-present-value-of-revenue (LPVR) auction. Finally, we develop a simple methodology to estimate the benefits from moving from fixed-term to LPVR auctions. These calculations suggest that the gains are significant: approximately one-third of investment costs when parameter values typical for developing countries are used.

Highway franchises have several distinctive features. First, a large fraction of the costs of the franchise are sunk when the road is built and before demand becomes known; operating and maintenance costs are comparatively small and are therefore ignored. Second, in order to alleviate strained budgets, roads have to be financed by tolls on users. For this reason we introduce a “self-financing constraint,” which implies that tolls may have to be set above those that induce drivers to internalize congestion optimally (henceforth congestion tolls). Third, it has often been overlooked that medium- and long-term traffic forecasts are very imprecise. This leads to considerable demand uncertainty, most of it beyond the control of the franchise holder. Since it appears that firms are often unable to fully diversify idiosyncratic risks, we assume risk-averse firms. As in principal-agent models, the less risk-averse party—in our case the planner—is assumed to be risk-neutral.

Our strategy is to characterize the full-information optimal contract and then to show that it can be implemented with an LPVR auction. The intuition behind our main results is simplest in the case of a high-

4 For example, in the case of the privately owned Dulles Greenway toll road, joining Dulles Airport near Washington, D.C., to Leesburg, Va., two independent traffic consultant companies predicted a daily flow of 35,000 vehicles for an average toll of $1.75. Actual traffic turned out to be 8,500.

5 It is a well-established fact that private firms and financiers usually refuse to participate unless governments pledge guarantees against commercial risks. If project-related risks could be diversified, there would be no demand for guarantees. See Irwin et al. (1997) for an extensive discussion of government guarantees in private infrastructure projects and app. D in Engel, Fischer, and Galetovic (1998) for an example in which agency problems prevent an entrepreneur from diversifying risks.
demand road, that is, a road that can be financed in all states of the world charging the congestion toll. Then the optimal contract is one in which the firm collects tolls until the present value of revenue equals the up-front investment. After this time, the road reverts to the state. Hence the firm bears no risk, congestion tolls are charged in all states of demand, the franchise lasts longer when demand is low, and the self-financing constraint is not binding.

This contract can be implemented via a simple auction in which participants bid a sum representing the present value of toll revenues they would want, assuming that the government will set the congestion toll in each state of demand. The franchise lasts until the franchise holder collects its desired revenue and then reverts to the state, which continues to charge the congestion toll. If all bidders have the same technology, the winning bid equals the investment required to build the road and rents are dissipated by competition. Hence, the franchise term varies across states of demand whereas revenues collected by the firm remain constant in present value. This means that the auction replicates the full-information optimal contract.

Also note that in the high-demand case described above, an LPVR auction provides full insurance to the franchise holder and there are no toll-induced distortions. By contrast, in the standard infrastructure auction in which the franchise is awarded on the basis of the minimum toll for a fixed term, the franchise holder receives different amounts of revenue in different states of the world. A risk-averse franchise holder will require an additional return in order to bear this risk, leading to a suboptimal outcome.

An LPVR auction is also optimal when the congestion toll is not sufficient to finance the road in all states of demand. To get the intuition in this case, assume that there is one (henceforth the low-demand) state in which the present value of congestion toll revenues is insufficient to pay for the road even if the franchise were to last forever. An analogy to static Ramsey pricing suggests that the planner should set distortionary tolls not only in the low-demand state but also in the remaining (henceforth high-demand) states in order to smooth income across demand realizations for a risk-averse firm. In the present case, however, the time dimension adds an additional degree of freedom since revenue in high-demand states can be raised by lengthening the franchise without introducing distorting tolls. This fact implies that the optimal contract has a simple structure.

First, in all high-demand states, the present value of tolls collected by the franchise holder is the same, congestion tolls are charged, and

6 Recall that the congestion toll is the toll that induces drivers to internalize congestion optimally in the absence of a self-financing constraint.
franchise terms are finite. Second, it is optimal to distort tolls in the low-demand state since a small distortion leads to a first-order welfare gain via risk reduction and only a second-order welfare loss due to toll distortion. Third, since it is better to introduce small distortions for a long time than to introduce large distortions for short periods, in low-demand states the franchise lasts forever. Finally, revenue in each high-demand state is higher than in the low-demand state (and also higher than investment), and the franchise holder bears some risk.

The characteristics described above enable the planner to implement the optimal contract with an LPVR auction. First, the winning bid will equal the present value of revenue common to all high-demand states. Second, the winning bid provides the planner with the information necessary to set the tolls from the optimal contract both in high- and low-demand states. Third, in a high-demand state the franchise lasts until revenues equal to the winning bid are collected; in low-demand states it lasts forever.

An LPVR auction exploits the fact that the present value of revenue is the only one-dimensional bidding variable that enables the regulator to implement the optimal contract. By contrast, if firms bid on the toll, the resulting contract will have a toll that is constant across states of demand and therefore cannot be optimal. Alternatively, if the regulator sets state-contingent tolls and firms compete on the shortest franchise term, the resulting contract cannot be optimal either since its length does not vary with demand realizations.

In order to implement the contract described above, the planner must be able to resist the temptation to help the franchise holder in those states of demand in which it makes losses. We call this the optimal commitment contract. Experience suggests that contracts are often renegotiated when demand turns out to be lower than expected. For this reason we also study the case in which the planner sets tolls that guarantee the franchise holder a normal return in all states of demand; that is, it provides full insurance. We call this the optimal no-commitment contract. We derive the optimal full-information contract and show that it can

7 For example, in Spain, 12 concessions were awarded before 1973. In several of them, building costs were four to five times higher than projected, and traffic was about one-third of original projections. As a result, three firms went bankrupt, two were absorbed by stronger franchise holders, and toll increases and term extensions were granted by the government (see Gómez-Ibáñez and Meyer 1993, chaps. 8, 9, 10). As another example, Mexico franchised the construction and operation of more than 3,000 miles of highways in the late 1980s and early 1990s. Virtually all concessions were renegotiated after cost overruns and low revenues, with a (declared) cost to the government of U.S.$6 billion. This amount does not include the cost to users due to term extensions, since in several cases the terms more than doubled (see El Mercurio, June 17, 1996, p. A8, "Apertura vial lleva a desastre económico," an article reproduced from the Los Angeles Times, and the article in the Mexican weekly Proceso of February 12, 1996).
also be implemented with an LPVR auction and that it differs from fixed-term contracts.

The planner’s problem can be viewed as an extension of the standard Ramsey problem, where the length of a franchise is an additional choice variable. This paper is also related to the literature on franchise bidding pioneered by Chadwick (1859) and Demsetz (1968) (see also Stigler [1968], Posner [1972], and Riordan and Sappington [1987]; see Williamson [1976, 1985] for a critique). Following this literature, we show how competition for the franchise can be used to regulate a monopoly. Our contribution is to study how demand risk affects the optimal contract, considering explicitly the intertemporal nature of franchise contracts. Finally, this paper is also related to the literature on the optimal regulation of natural monopolies (see, e.g., Laffont and Tirole 1993).

The rest of the paper is organized as follows. In Section II we present the model and the planner’s problem. The latter is solved in Section III. In Section IV we show that an LPVR auction implements the social optimum. Moreover, we show that a fixed-term auction generically cannot implement the optimum. In Section V we make a quantitative comparison between LPVR and fixed-term auctions. Section VI presents conclusions and discusses extensions. An Appendix follows.

II. The Model and the Planner’s Problem

A benevolent social planner wants to hire a private firm to build a highway whose technical characteristics are exogenous. The firm can be compensated only with toll revenues, since we assume that other sorts of compensation, such as monetary transfers from the planner to the firm, are not allowed. The planner’s objective is to maximize the expected present value of driver welfare subject to finding a firm willing to build the road. The road is franchised for a period during which the franchise holder collects tolls. When the franchise ends, the road reverts to the state and any future tolls are returned to drivers as a lump sum.

There are \(n \) possible states of demand. In state \(i \), which occurs with probability \(\pi_i > 0 \), the marginal benefit of an additional trip when \(Q \) trips are made is \(B_i(Q) \). We assume that the state of demand becomes known immediately after the road is built, so that demand remains constant through time. The toll charged for using the road in state \(i \) is

\[B_i(Q) \]

Thus, in this paper we do not study the problem of choosing the optimal scale and timing of the project.

This objective function assumes that the income of users is uncorrelated with the benefit of using the road, so that if users spend a small fraction of their incomes on tolls they will value the benefits produced by the road as though they were risk-neutral (see Arrow and Lind 1970).
$P \geq 0$, and the time cost of using the road when Q vehicles are on it is $c(Q)$, which is independent of the state. Then $P + c(Q)$ is the generalized travel cost, and the number of cars on the road in state i is determined by

$$B_i(Q_i) = P_i + c(Q_i).$$

We impose some technical restrictions on the marginal benefit and cost functions:

$$B_i(q) > 0, \quad B_i'(q) < 0, \quad B_i''(q) \leq 0$$

for $0 \leq q < \bar{q}_i$, with $B_i(\bar{q}_i) = 0$, $B_i(0) > c(0);$ (2)

$$c, \ c', \ c'' \geq 0.$$ (3)

That is, in all states the marginal benefit function is strictly positive, strictly decreasing, and concave and the time cost function is increasing and convex in the number of drivers on the road.\(^{10}\)

It will be useful to work with a demand function $Q_i(P)$ that is determined from the equilibrium condition (1). It is straightforward to show that this demand function is well defined, concave, and strictly decreasing (i.e., $Q'_i(P) < 0$ and $Q''_i(P) \leq 0$). Moreover, the demand elasticity $\eta(P)$ is strictly decreasing with $\eta(0) = 0$ and $\eta(P_1) = -1$, where P_1 is the monopoly toll in state i.\(^{11}\)

In state i consumer surplus is given by

$$CS_i(P) = \int_0^{Q_i(P)} B_i(q) dq - Q_i(P)[P + c(Q_i(P))],$$ (4)

which, given assumptions (2) and (3), is finite. Since tolls paid by drivers redistribute income between drivers and the franchise holder, the net instantaneous social surplus is

$$G_i(P) = CS_i(P) + PQ_i(P).$$ (5)

The function G_i is strictly concave by conditions (2) and (3) (see Engel et al. 1998, app. A). It follows that when congestion costs are unimportant, $G_i(P)$ is decreasing for all P and therefore attains its maximum at $P^*_i = 0$. On the other hand, when congestion costs are considerable, $G_i(P)$ has a unique interior maximum at $P^*_i > 0$. It is evident that when $P_i = P^*_i$, users internalize the congestion externality they create (lemma A.3 in Engel et al. [1998] provides a proof). Thus we denote by P^*_i the congestion toll in state i.\(^{10}\)

\(^{10}\) Thus we are assuming that there is no hypercongestion.

\(^{11}\) For proofs of these results, see Engel et al. (1998, app. A).
For each possible state of demand the planner chooses two tolls: the one that users pay to the franchise holder during the life of the franchise and a second toll that is collected by the planner after the end of the franchise. The revenue from the latter is returned to users as a lump sum. The tolls in state i are denoted by P^F_i and P^A_i, where the superscripts F and A stand for franchise and after, respectively. The length of the franchise in state i is denoted by T_i.

Since we are not interested in the uncertainty of construction costs, we assume that there are many identical firms that can build the highway at cost $I > 0$. There are no maintenance costs, and the road does not depreciate. 12 Firms are risk-averse expected utility maximizers, with twice continuously differentiable utility functions u defined over net revenue $PVR_i - I$, where

$$PVR_i = \int_0^{T_i} P^F_i Q(P^F_i) e^{-rt} dt$$

is the present value of the franchise holder’s income in demand state i, discounted at the risk-free interest rate, r. Each firm has an outside option that yields utility $u(0)$.

We assume that a dollar in the hands of users is socially more valuable than in the pocket of the franchise holder (as in Laffont and Tirole [1993]). 13 Given this assumption, it is easy to show that there is no loss of generality in assuming that the objective function of the planner does not include the rents accruing to the franchise holder. 14 Thus the planner wants to extract all rents from the franchise holder, and the firm’s participation constraint holds with equality:

$$\sum_{i=1}^n \pi_i u(PVR_i - I) = u(0). \quad (6)$$

Since the planner returns to users, as a lump sum, the revenue he receives after the franchise ends, we may write his payoff in state i as

12 With a minor change in notation, all results in this paper can be shown to hold when maintenance costs are proportional to the number of vehicles using the road. The engineering literature on this issue suggests that, except for low-quality roads, deterioration depends mainly on use, not on time (see Small, Winston, and Evans 1989).

13 One justification could be social preferences on the distribution of income; another could be that, particularly in developing countries, many foreign firms participate in the highway business.

14 In fact, LPVR is still optimal when franchise rents are as valuable as consumer surplus.
which, after some rewriting and defining $L_i = e^{-	au_i}$, is equal to
\[
\frac{G(P^c)}{r} \left(1 - L_i\right) + \frac{G(P^A)}{r} L_i - \text{PVR}_{\tau_i}. \tag{7}
\]

The planner chooses a toll and franchise period schedule $(P^c_i, P^A_i, L_i)_{i=1}^n$ to maximize the expected value of (7) subject to the firm’s participation constraint (6).\(^{15}\)

If the planner could make monetary transfers to the franchise holder, she would choose P^c_i and P^A_i equal to the congestion toll $P^c\ast$.\(^{16}\) Since the participation constraint is no longer relevant at the end of the franchise, the planner always sets $P^A_i = P^c\ast$. Nevertheless, in order to raise revenue and satisfy the participation constraint, the planner may need to distort tolls during the franchise. The optimal toll in state i during the franchise, which we denote by $P^c\ast_{\tau_i}$,\(^{17}\) satisfies
\[
P^c\ast_{\tau_i} \leq P^{c\ast} \leq P^{m\ast}. \tag{8}
\]

That is, the optimal toll lies between the congestion toll and the monopoly toll.\(^{18}\) In the remainder of the paper, the following definitions and notation will be useful. First, if
\[
\frac{PQ(P)}{r} \geq I,
\]
we say that the road is self-financing in state i charging toll P. Second,
\[
\text{PVR}_{\tau_i} = \frac{P^\ast Q(P^\ast)}{r} \tag{9}
\]

\(^{15}\) The objective function (7) assumes a benevolent planner, which may be somewhat contradictory with imposing a self-financing constraint. A benevolent planner should be given free hand to use subsidies to maximize welfare. We follow the regulation literature in studying the normative Ramsey-Boiteaux problem given the self-financing constraint. See also the discussion in Laffont and Tirole (1993, chap. 3.4).

\(^{16}\) As taxes are usually distortionary, actually the optimal toll should be slightly above the congestion toll.

\(^{17}\) Henceforth the superscript O will denote the optimal value of a variable during the franchise period.

\(^{18}\) To rule out $P^c\ast < P^c\ast$, note that raising $P^c\ast$ increases welfare (since G is concave and attains its maximum at $P^c\ast$) and increases revenue (since demand is relatively inelastic). A similar argument rules out $P^c\ast > P^{m\ast}$.
is the present value of revenue collected if the franchise lasts forever and the toll equals the congestion toll. Analogously, define \(\text{PVR}_i \) by substituting \(P_i^M \) for \(P_i^* \) in (9). Finally,

\[
\text{PVR}_i \equiv \frac{P_i^0 Q_i(P_i^0)}{r} (1 - L_i^0)
\]

is the present value of revenue collected by the franchise holder if tolls and franchise terms are chosen optimally.\(^{19}\) Now we can study the planner’s problem.

III. The Planner’s Solution

In this section we find the contract that solves the planner’s problem and develop a simple classification of roads based on this contract.

A. The Commitment Case

Most highway franchises have been awarded under a contract that fixes a state-independent toll and franchise term before the road is built; that is, for all \(i, j \), \(P_i^t = P_j^t = P \) and \(T_i = T_j = T \). In such fixed-term contracts the government has committed in principle (though often not in practice) to changing neither tolls nor the franchise period. This is a special case of a more general contract in which the planner commits to a toll and franchise term schedule \((P_i^t, P_i^s, L_i)_{i=1}^n \) before the realization of demand. In this subsection we characterize the optimal contract within this class.

From (7) we have that the planner solves

\[
\max_{(P_i^t, P_i^s, L_i)_{i=1}^n} \sum \pi_i \left[\frac{G(P_i^s)}{r} (1 - L_i) + \frac{G(P_i^t)}{r} L_i - \text{PVR}_i \right]
\]

subject to the firm’s participation constraint (6). Suppose that \(\sum \pi_i u(\text{PVR}_i^M - I) \geq u(0) \), that is, that the road is self-financing under monopoly tolls. Then there exists a solution for this problem.\(^{20}\) The assumption of commitment implies that the planner can compel the franchise holder to accept losses in some states and guarantee to compensate him with profits in other states; that is, \(u(\text{PVR}_i - I) = u(0) \) need hold only on average, not in every state of demand. Commitment gives the planner the possibility of distorting less in low-demand states and compensating the franchise holder with a longer franchise in high-demand states, thereby trading off user distortions against the risk borne by the franchise holder.

\(^{19}\) Recall that \(L_i^0 = \exp (-r T_i^o) \), where \(T_i^o \) is the optimal franchise term in state \(i \).

\(^{20}\) See proposition A1 in the Appendix for a proof.
The planner’s problem may be viewed as a Ramsey pricing problem. The state-contingent tolls can be viewed as the prices of the different goods, and the firm’s participation constraint corresponds to the budget constraint. Two aspects of our problem differ from standard Ramsey problems. First, the firm is risk-averse with respect to income. Second, and more important, the planner has twice as many instruments at his disposal: he can set a toll and also choose the franchise length for each state of demand. As we show shortly, it is the possibility of exploiting the time dimension that underlies the main results in this paper.

We start with an important lemma that characterizes the trade-off between toll distortions and risk forced on the franchise holder.

Lemma 1. (a) For all states i, $P_i^{o} > 0$ and $T_i^{o} > 0$ (i.e., $I_i < 1$). (b) The following term is independent of the state i:

$$\frac{Q(P_i^{o})[1 + \eta(P_i^{o})]}{Q(P_i^{o})[1 + \eta(P_i^{o})] - G_i(P_i^{o})} u' = u'. \quad (11)$$

Proof. See theorem A1 in the Appendix.

Part a of the lemma says that the franchise holder receives positive revenues in all states. Part b summarizes the insurance-distortion trade-off. In the planner’s solution, the term in (11) is smaller in those states in which the firm’s revenue is larger (since the expression is increasing in u', which is decreasing in revenue) and when tolls are higher (as reflected by both $\eta(P_i^{o})$ and $G_i(P_i^{o})$, both of which have an absolute value that increases with P_i^{o}).

Even though (11) characterizes the solution in the commitment case, it does not provide much intuition on the form of the optimal franchise contract, nor does it suggest how to design an auction that implements the planner’s solution. For this reason we use (11) to derive a series of propositions that provide a simple description of the optimal contract and serve as a basis to derive its implementation via a competitive auction. The first proposition shows that if in all states of demand the road is self-financing charging congestion tolls ($PVR_i^* \geq I$ for all i), then the optimal contract sets the congestion toll in all states, the participation constraint holds in every state of demand, and the franchise holder receives full insurance.

Proposition 1. Full insurance.—Let $PVR_i^* \geq I$ for all i. Then the optimal franchise contract is one in which, for all states i, $P_i^* = P_i^{o}$ and $PVR_i^{o} = I$.

Proof. Since $PVR_i^* \geq I$, the solution is feasible and meets the participation constraint. If $P_i^* = P_i^{o}$, then $G_i(P_i^*) = 0$, and from lemma 1 we

21 In Engel et al. (1997a) we prove this result assuming perfectly inelastic demands, no congestion, and no demand-contingent tolls.
have that \(u'_i = u'_j \) for all \(i, j \), so that \(\text{PVR}^o_i = \text{PVR}^o_j \). Finally, \(\text{PVR}^o_i = I \) minimizes the transfer to the franchise holder. Q.E.D.

The intuition behind this proposition is quite straightforward. First, if the road is self-financing when the congestion toll is charged in all states of demand, there is no need to distort in order to satisfy the participation constraint. Second, since the franchise holder is risk-averse, the transfer is minimized when he is given full insurance. Finally, since in general \(\text{PVR}^* \neq \text{PVR}^o \), the franchise term is variable: the franchise lasts longer when demand is low.

Proposition 1 is not general because nothing ensures that \(\text{PVR}^* \geq I \) for all \(i \). For roads such that \(\text{PVR}^* < I \) in at least some state \(i \), the planner must trade off the benefit of insuring the franchise holder (i.e., that reduced risk implies a smaller transfer to the franchise holder) against the costs of raising tolls and creating a distortion. In what follows we characterize this trade-off.

When \(\text{PVR}^* < I \) in at least some state \(i \), states of demand can be classified into two categories: those in which the planner sets congestion tolls and those in which the planner, optimally, chooses to distort tolls by setting \(P^o_i > P^* \). We begin by studying tolls in a state \(i \) in which the planner optimally sets \(P^o_i > P^* \). Suppose that, for the optimal contract, the franchise holder’s revenue in state \(i \) is \(\text{PVR}^o_i \). In principle the planner faces the following trade-off: given \(\text{PVR}^o_i \), a lower toll means a smaller instantaneous distortion, but for a longer term. The next proposition shows that the concavity of \(\text{Gi} \) implies that the planner has a preference for toll smoothing, so that it is optimal to charge forever the lowest possible toll consistent with \(\text{PVR}^o_i \).

Proposition 2. Toll smoothing.—For all states \(i \) such that \(P^o_i > P^* \), \(T^o_i = \infty \).

Proof. Given the concavity of \(\text{Gi} \), the proof is similar to that of standard insurance results. See Engel et al. (1998) for details.

Next we characterize revenues in those states in which congestion tolls are charged.

Proposition 3. For all states \(i, j \) such that \(P^o_i = P^* \) and \(P^o_j = P^*_j \), \(\text{PVR}^o_i = \text{PVR}^o_j \).

Proof. Note that \(G_i(P^*_i) = G_j(P^*_j) = 0 \). From lemma 1, \(u'_i = u'_j \); hence \(\text{PVR}^o_i = \text{PVR}^o_j \). Q.E.D.

The intuition behind this result is quite simple, at least in the case in which the optimal franchise length in both states is finite. Consider two states \(i, j \) in which \(P^o_i = P^* \) and \(P^o_j = P^*_j \) but \(\text{PVR}^o_i < \text{PVR}^o_j \). Then if we extend the franchise a bit in state \(i \) and shorten it in state \(j \) so that expected revenue does not change, the planner’s objective function does not change and the firm’s participation constraint becomes slack. Hence, the franchise terms in \(i \) and \(j \) were suboptimal.

The next proposition shows that the franchise holder will collect more
Proposition 4. For all states \(i, j \) such that \(P_i^o > P_j^* \) and \(P_i^o = P_j^* \), \(PVR_i^o < PVR_j^o \).

Proof. Suppose that \(P_i^o > P_j^* \) and \(P_i^o = P_j^* \). Since \(G_i(P^o) = 0 \), by lemma 1 we have that

\[
\frac{Q_i(P_i^o)[1 + \eta_i(P_i^o)]}{Q_i(P_i^o)[1 + \eta_i(P_i^o)] - G_i(P_i^o)} u_i' = u_j'.
\]

Since \(G_i(P_i^o) < 0 \) and \(\eta_i(P_i^o) \geq -1 \), the fraction on the left-hand side is smaller than one. Thus \(u_i' > u_j' \) and hence, by concavity of \(u \), \(PVR_i^o < PVR_j^o \). Q.E.D.

Note that propositions 3 and 4 imply that if there exists at least one state in which optimal tolls are distortionary, then in those states in which congestion tolls are charged, we have \(PVR_i^o > I \); that is, the franchise holder makes a profit. It follows that if \(PVR_i^o < I \), then \(P_i^o > P_j^* \). Moreover, since the participation constraint must bind, the franchise holder must lose money in some states.

To conclude, we show that if in a given state it is optimal to charge the congestion toll, then in all states with higher \(PVR^o \) it is also optimal to charge the corresponding congestion toll.

Proposition 5. If \(PVR_i^o \leq PVR_j^o \) and \(P_i^o = P_j^* \), then \(P_i^o = P_j^* \).

Proof. See appendix A in Engel et al. (1998).

Proposition 5 allows us to order states of demand in a simple way. Without loss of generality, assume that \(PVR_1^o \leq PVR_2^o \leq \cdots \leq PVR_n^o \) (we shall keep this convention in the rest of the paper). It follows that if \(P_i^o = P_j^* \), then \(P_{i-1}^o = P_{i-1}^* \), \(\ldots \), \(P_n^o = P_n^* \). Conversely, if \(P_i^o > P_j^* \), then \(P_{i-1}^o > P_{i-1}^* \), \(\ldots \), \(P_n^o > P_n^* \).

In summary, the preceding results show that when the planner can commit, the structure of the optimal contract \((P_i^o, L_i)_{i=1}^n\) is quite simple. First, either tolls are distorted and the franchise lasts forever or congestion tolls are set and the franchise lasts until a given present value of revenue is collected (propositions 2 and 3). Second, the revenues of the franchise holder are higher in those states in which congestion tolls are optimal (proposition 4). Finally, if it is optimal to charge the congestion toll in a particular state of demand \(i \), then it is optimal to set congestion tolls in all states \(j \) that collect at least as much revenue as \(i \) when congestion tolls are set (proposition 5).

\(^{22}\) The converse is not true: if \(PVR_i^o \geq I \) it does not follow that \(P_i^o = P_j^* \).
B. The No-Commitment Case

As mentioned in the Introduction, in the real world it is common for franchise contracts to be renegotiated in those states of demand in which the franchise holder loses money under the original contract (see n. 7 for evidence). For political economy reasons, once it becomes apparent that the franchise holder will suffer losses, governments seem unable to resist pressures to renegotiate. Since the franchise holder will lose money in those states of demand \(i \) in which it follows that in

\[P_{i1}^r < I_i, \]

many cases it may be unrealistic to expect governments to implement the optimal contract. However, as in the case of utilities, the government may be able to precommit to allow the franchise holder a normal rate of return in every state of demand; that is, after the road is built, for all states \(i \), tolls are set such that \(P_{i1}Q(P_i) = rI_i \). In that case, for all \(i \), the planner solves

\[
\max \left\{ \frac{G(P_i^F)}{r} (1 - L_i) + \frac{G(P_i^H)}{r} L_i - PVR_i \right\} \quad (12)
\]

subject to \(PVR_i = I_i \).

The following proposition characterizes the optimum.

Proposition 6. Assume that, for all states \(i \), \(PVR_i^o \geq I_i \). Then (a) if \(PVR_i^r \geq I_i \), then \(P_i^r = P_i^* = P^r \) and \(T_i \) is set so as to satisfy \(PVR_i = I_i \); and (b) if \(PVR_i < I_i \), then \(T_i = \infty \) and the optimal toll is determined by

\[
\frac{P_i^oQ(P_i^r)}{r} = I_i.
\]

Proof. In case (a), the maximum is attained at \(P_i^r = P_i^* = P^r \) and the self-financing constraint determines the franchise length \(T_i \). The proof of part (b) is similar to that of proposition 2. Q.E.D.

Just as in the previous commitment case, states of demand can be ordered in a simple way: if \(P_i^o = P_i^* \), then \(P_i^o = P_i^* = P_i^o \) and \(T_i \) is set so as to satisfy \(PVR_i = I_i \); and conversely, if \(P_i^o > P_i^* \), then \(P_i^o > P_i^* = P_i^o \). Contrary to the case of commitment, however, the optimal no-commitment contract always gives full insurance to the franchise holder. Consequently, when \(PVR_i^r \geq I_i \) in all states, the solution to problem (12) is identical to the commitment contract: in all states the franchise ends when \(PVR_i = I_i \).

But when \(PVR_i^r < I_i \) in at least one state of demand, the optimal contract is inferior to the commitment contract. First, the participation constraint must hold not only on average but in every state of demand. Thus insurance and distorted tolls cannot be traded off, and this contract gives too much insurance and distorts tolls too much. Second, roads for which \(PVR_i^o < I_i \) in at least one state of demand will never be built, independently of their profitability in other states, whereas they might have been built under the optimal commitment contract.
Note that the optimal no-commitment contract is analogous in spirit
to traditional rate of return regulation, which seeks to set the price of
the service so that the public utility earns a normal rate of return con-
tingent on the particular realization of demand and cost parameters. The
main difference is that the franchise period is limited, a conse-
quence of the assumption that all investments are sunk and need to be
made only once.

C. Additional Results

It is interesting to relate the optimal contracts with Ramsey pricing. We
first note that the commitment case corresponds to the Ramsey as-
sumption of a single budget constraint, whereas the no-commitment
case considers a budget constraint "per service."

Next we describe how, in the case with commitment, optimal tolls
and franchise lengths vary as the construction cost \(I \) increases. We start
with a sufficiently low value of \(I \), so that in all states of demand the road
can be financed with congestion tolls in finite time. As \(I \) increases in
this range, the optimal franchise length increases, with no change in
tolls, since additional revenue can be collected in all states of demand
without distorting tolls. In contrast to standard Ramsey problems, the
additional instrument available in our case, namely the franchise length,
makes it possible to collect more revenue without creating distortions.

Once \(I \) exceeds \(\text{PVR}^*_1 \), the optimal toll in state 1 will be above the
corresponding congestion toll, \(P^*_1 \). When trading off toll distortions and
the risk premium, the planner always chooses a positive level of toll
distortion, since the associated welfare cost is second-order whereas that
associated with increasing the risk premium is first-order. As \(I \) continues
increasing, the franchise lengths in states 2 through \(n \) continue increas-
ing. By contrast, in state 1 it is the toll that increases, so as to keep a
balance between the toll distortion this creates and the risk premium
associated with the lower present value of revenue that the franchise
holder receives in this state. Eventually \(I \) reaches a threshold at which
the franchise length in state 2 is infinite. Values of \(I \) above this threshold
lead to distortionary tolls in states 1 and 2.

As \(I \) continues increasing, distortionary tolls (and indefinite franchise
lengths) set in, consecutively, in states 3, 4, and so on. By the time \(I >

\[\text{PVR}^*_1 \leq \text{PVR}^*_i \text{ for } i < j, \text{ this is equivalent to } \text{PVR}^*_i > I. \]

\[\text{PVR}^*_1 > I. \]
PVR*, distortionary tolls (and indefinite franchise lengths) are required in all states of demand.

It follows from our discussion above that for a particular state \(k \), the present value of revenue collected during the franchise increases monotonically with \(I \). For small values of \(I \), it is an increasing franchise length that accounts for this increase; for larger values the franchise length is indefinite, and additional revenue is collected by increasing the toll.

The results described above can be summarized in the following proposition.

Proposition 7. Increasing revenue as a function of \(I \).—The present value of revenue collected in a given state of demand by the optimal contract is a strictly increasing function of the construction cost \(I \), in both cases with and without commitment.

Proof. See Engel et al. (1998).

The digression above motivates a classification of roads according to whether the optimal contract requires toll distortions:

1. High-demand road: In all states of demand the optimal toll is equal to the congestion toll; that is, there are no distorted states.\(^{26}\)

2. Intermediate-demand road: There exists an index \(k \) between 2 and \(n \) such that the optimal contract’s toll in state \(i \) is above the corresponding congestion toll for all \(i < k \) and equal to the congestion toll for all \(i \geq k \). That is, there are some states with distortionary tolls.

3. Low-demand road: In all states the optimal toll is higher than the congestion toll.

IV. LPVR Auctions

In this section we show how the optimal contract derived in Section III can be implemented with a competitive auction. Auctioning a highway franchise requires designing the franchise contract and choosing a bidding variable. Since the auction takes place before demand is realized, the bidding variable cannot be state-contingent. Implementing the optimal contract via a competitive auction therefore requires finding a bidding variable that does not vary across states of demand and that can replicate the optimal franchise lengths and tolls, both of which vary with demand.

If the regulator sets the franchise term and firms compete on the lowest toll, the resulting contract has a toll that is equal to the winning bid and therefore constant across states of demand. Such a contract cannot be optimal. This holds even if the length of the franchise is

\(^{26}\) It is interesting to note that urban highways are likely to be high-demand roads.
demand-contingent. Similarly, if the regulator sets state-contingent tolls and firms compete on the shortest franchise term, the resulting contract cannot be optimal since its length does not vary with demand realizations.

In this section we show that the bidding variable that solves the problem described above is the present value of toll revenue. The corresponding auction proceeds as follows: First, the regulator announces the discount rate and the toll that the franchise holder will be allowed to charge in each state of demand. This toll is the optimal contract toll in each state of demand. Second, firms bid on the present value of toll revenue, and the lowest bid wins the franchise contract. The road is built, and the planner observes the state of demand and sets the corresponding optimal toll. The franchise holder collects tolls until the present value of tolls equals the winning bid, and then the road is transferred to the state. If the sum is never collected, the franchise lasts forever. In this section, we show that this LPVR auction implements the optimal contract. We consider separately the cases of high-, intermediate-, and low-demand roads.

A. High-Demand Road

It follows from Section III that in this case the optimal contract involves the same present value of revenue, I, in all states of demand (this holds for cases both with and without commitment). It is also easy to see that the winner’s expected utility is an increasing function of her (winning) bid. Also, a bid equal to I achieves the break-even point. Thus Nash competition between identical firms implies that the winner will bid I. If state k occurs, the franchise term, T_k, is such that the present value of toll revenue during the franchise is equal to I. Thus T_k is determined from

$$\int_0^{T_k} P_k^a Q_k(P_k^a) e^{-\gamma t} dt = I,$$

which is precisely the condition for the optimal contract’s franchise length, T_k°. It follows that the LPVR auction implements the optimal contract.

It is interesting to note that in the case of a high-demand road, the regulator does not need to know the probability distribution of states of demand or firms’ utility functions in order to implement the optimal contract. The only information she needs is the optimal congestion tolls.

In the case of intermediate- and low-demand roads, an analogous argument shows that an LPVR auction implements the optimal contract.
in the case of no commitment. The case with commitment is more difficult, and we turn to it next.

B. Intermediate- and Low-Demand Roads

We begin with an intermediate-demand road. For \(i \geq k \) the optimal contract sets congestion tolls, whereas in the remaining states \((i < k) \) it sets distortionary tolls and the franchise lasts forever.

It is obvious that in an LPVR auction the franchise holder’s expected utility is an increasing function of her (winning) bid. Next we show that her participation constraint holds with equality when she bids the present value of revenue common to all states in which the optimal contract sets congestion tolls (that such a value exists follows from proposition 3). This, combined with the fact that the winning bid leads to the same franchise length as the optimal contract in all states of demand, implies that Nash competition between identical firms replicates the optimal contract.

Since the present value of revenue is higher in states with congestion tolls than in states with distortionary tolls (proposition 4), the franchise lasts indefinitely when one of the lower-demand states occurs, as is the case under the optimal contract. In high-demand states, the argument of subsection A shows that the LPVR and the optimal contract coincide.

Denote by \(\text{PVR}^0_i \) the present value of revenue collected by the franchise holder with the optimal contract in state \(i \). An LPVR auction implements the optimum because a firm bidding \(\text{max} \text{PVR}^0_i \) will collect \(\text{PVR}^0_i \) in state \(i \) as long as the regulator sets the optimal toll corresponding to state \(i \). In the case of a high-demand road, all the \(\text{PVR}^0_i \)'s are equal to \(I \). By contrast, in the case of an intermediate-demand road, \(\text{max} \text{PVR}^0_i \) is equal to the common revenue obtained in all those states in which the optimal toll equals the corresponding congestion toll. Note that the winning bid will also be \(\text{max} \text{PVR}^0 \). Then an argument similar to the one given for an intermediate-demand road can be used to show that an LPVR auction is optimal for a low-demand road.

C. Informational Requirements

The informational requirements needed to implement the optimum are quite formidable in the case of an intermediate- or low-demand road with commitment. The regulator needs to know construction costs \(I \), the probability distribution of demand states, \(\pi \), and the demand schedules, \(Q_i \), \(i = 1, \ldots, n \). By contrast, we showed that in the case of a high-demand road the regulator does not need to know either \(I \) or the \(\pi \)'s since knowing the congestion tolls suffices in this case.

Since the winning bid, \(\text{max} \text{PVR}^0 \), is (strictly) increasing in \(I \) (see
proposition 7), the regulator can use this relation to infer \(I \) from the winning bid. Thus knowledge of \(I \) is not necessary to implement the optimal contract not only in the case of high-demand roads but also in the case of intermediate- and low-demand roads. This holds in both cases with and without commitment.

The results derived in this section are summarized in the following proposition.

Proposition 8. Denote by \(\max_O \text{PVR}(I) \) the maximum, over all states of demand, of the present value of revenue collected under the optimal contract when construction costs equal \(I \). Then an LPVR auction implements the social optimum if the regulator announces that for a winning bid of \(b \) the toll schedule will be the optimal state-contingent tolls associated with the value of \(I \) that satisfies \(\max_O \text{PVR}(I) = 28 \). This holds for both cases with and without commitment.

Proof. The main elements of the proof were discussed in this section. A more formal approach is provided in Engel et al. (1998).

Having established the optimality of LPVR auctions, we note that fixed-term auctions, which are the standard highway auction mechanisms throughout the world, are optimal only if \(PVR^* \) is the same across all states of demand and the common value is larger than \(I \). Thus generically fixed-term auctions are suboptimal.29 Furthermore, as we show in the next section, not only are LPVR auctions better than their fixed-term counterparts, but welfare differences are important.

V. **LPVR and Fixed-Term Franchises Compared**

As we mentioned before, most highways that have been franchised around the world have been awarded under a fixed-term contract. In this section we develop a procedure to quantitatively compare LPVR auctions with fixed-term auctions and apply it to data from Chilean highways to obtain estimates of the savings involved in using an LPVR auction (a massive highway franchising program is currently under way in Chile; see Engel et al. [1996]). Since we do not have data to estimate demand elasticities, we work with a simplified version of the model in which demand in each state is perfectly inelastic. Uncertainty comes from the fact that demand depends on user income, whose growth is stochastic. Given that tolls play no allocational role in this setting, we also assume that in all states of demand the toll is the same and is high enough to finance the road.

27 In Engel et al. (1998), we derive the range of possible values of \(I \) for the cases with and without commitment.

28 That such a value of \(I \) exists and is unique follows from proposition 7.

29 For a formal proof, see Engel et al. (1998, app. C).
A. Model

In a fixed-term auction, either the planner can set the franchise term \(T \) and the auction is won by the firm that bids the lowest toll, or it can fix a toll \(P \) and the auction is won by the firm that bids the shortest franchise term. In both cases, Nash competition implies that the following identity must hold in equilibrium:

\[
\sum_i p_i u(P \cdot PVQ_i(T) - I) = u(0),
\]
(13)

where \(PVQ_i(T) \) denotes the present value of traffic flow in state of demand \(i \), and \(P \cdot PVQ_i \). Note that if the term of the franchise is fixed, \(PVQ_i \) varies with the state of demand. Thus with a fixed-term franchise, the franchise holder cannot be offered full insurance. By contrast, an LPVR auction gives full insurance to the franchise holder.

Let \(\bar{z}(T) \equiv E[PVQ(T)] \) be the expected present value of traffic flows if the term of the franchise is \(T \), and let \(\sigma^2(T) \equiv \text{var}[PVQ(T)] \) denote the corresponding variance. The following proposition calculates the risk premium charged by the franchise holder in a fixed-term auction.

Proposition 9. To a first-order approximation, the risk premium charged by the franchise holder in a fixed-term franchise is

\[
\left(\frac{CV \sqrt{A/2}}{1 - CV \sqrt{A/2}} \right) I,
\]
(14)

where \(A \) denotes the coefficient of relative risk aversion (evaluated at \(P\bar{z} - I \)) and \(CV \equiv \sigma/\bar{z} \) denotes the coefficient of variation of the present value of traffic flows.

Proof. Given \(T \) or \(P \), equilibrium tolls or franchise terms are determined by condition (13). A first-order Taylor expansion of the right-hand side of (13) and a second-order Taylor expansion of the left-hand side, both around the risk premium \(P\bar{z}(T) - I \), lead to

\[
\sum_i \pi_i [\bar{u} + P(PVQ_i - \bar{z}) \bar{u}' + \frac{1}{2} P^2(PVQ_i - \bar{z})^2 \bar{u}''] \equiv \bar{u} - (P\bar{z} - I)\bar{u}',
\]

where \(\bar{u} \equiv u(P\bar{z}(T) - I) \), \(\bar{u}' \equiv u'(P\bar{z}(T) - I) \), and \(\bar{u}'' \equiv u''(P\bar{z}(T) - I) \). It follows that \(-\frac{1}{2}P\sigma^2(\bar{u}'/\bar{u}) \equiv P\bar{z} - I \), and hence, if we multiply both sides by \(P\bar{z} - I \),

\[
\frac{1}{2}P\sigma^2 A \equiv (P\bar{z} - I)^2,
\]
(15)

which leads to

\(^{30}\) Note that \(Q \) is no longer a function of \(P \). Also note that, in contrast with the preceding sections, we do not assume that uncertainty is resolved in the first period.
TABLE 1
SAVINGS AS A PERCENTAGE OF ORIGINAL INVESTMENT

<table>
<thead>
<tr>
<th>Coefficient of Variation of Q</th>
<th>Coefficient of Relative Risk Aversion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.0</td>
</tr>
<tr>
<td>.05</td>
<td>16.6</td>
</tr>
<tr>
<td>.10</td>
<td>18.4</td>
</tr>
<tr>
<td>.15</td>
<td>21.2</td>
</tr>
<tr>
<td>.20</td>
<td>24.8</td>
</tr>
<tr>
<td>.25</td>
<td>29.3</td>
</tr>
</tbody>
</table>

Substituting P back into (15) and taking the square root yields (14), which completes the proof. Q.E.D.

Now consider an LPVR auction. If tolls are set high enough to make the road self-financing in all states, then the following corollary follows trivially.

Corollary 1. If the toll P is fixed so that the road is self-financing in all states, then expression (14) is also the expected value of the reduction in toll income in a competitive auction.

B. Empirical Implementation

We calculate risk premia for values of A between 1.0 and 3.0 (see table 1). We obtain the coefficient of variation as follows. We assume that traffic flows increase according to and define

$$\text{PVQ} = \sum_{t=0}^{T-1} e^{rt}Q_t.$$

There are two sources of uncertainty: the annual growth rates of the traffic flow, g, and the initial traffic flow, Q_0. We assume that annual growth rates are independently distributed and satisfy

$$g_t \equiv (\eta_t + \epsilon_t^g)(g_0 + \epsilon_t^M + \epsilon_t^e),$$

where η_t denotes the average income elasticity of traffic flows, ϵ_t^g are random shocks that affect this elasticity, g_0 is the average growth rate of gross domestic product, and ϵ_t^M and ϵ_t^e are, respectively, the variations in this rate due to macro- and microeconomic factors. The parameter

31 Since demand is inelastic, general equilibrium considerations ignored throughout this paper suggest that the toll should be set equal to road users’ reservation toll.

32 These values are representative of those estimated in the literature.
is taken as 1.6, the estimated income elasticity of traffic flows in Chile in the period 1985–95; \(g \) is set equal to 0.06, the average rate of growth of Chile’s GDP over the same period; \(\epsilon_i^m \), \(\epsilon_i^n \), and \(\epsilon_i^n \) are assumed to be mutually independent and uncorrelated over time, following a normal distribution with zero mean and standard deviations of, respectively, 0.2, 0.02, and 0.04. The standard deviations assumed for macro- and microeconomic risk are consistent with the growth rates of national and regional GDP in Chile over the 1985–95 period. The variation of \(Q_0 \) cannot be estimated from actual data. Thus, as in the case of the coefficient of relative risk aversion, we calculate risk premia for values of the coefficient of variation of initial traffic between 0.05 and 0.25.

If the length of the franchise (\(T \)), the discount rate (\(r \)), the relative risk aversion coefficient (\(A \)), and the coefficient of variation of \(Q_0 \) are all given, the coefficient of variation of the sum (16) can be estimated by simulating paths for \(g \). We assume that \(T = 20 \) years (several highways in Chile were franchised with that term) and \(r = 0.06 \) (this has been close to the average real rate paid by a 20-year bond issued by the Central Bank during the 1990s). The coefficient of variation can be calculated assuming that traffic growth rates are independent from the initial level and holding constant the coefficient of variation of \(Q_0 \).

Table 1 shows the savings to users as a percentage of the initial investment, for alternative combinations of the coefficient of variation of \(Q_0 \) and the relative risk aversion coefficient, \(A \).

It can be read from table 1 that if the coefficient of risk aversion of firms is 2 and the coefficient of variation of \(Q_0 \) is 0.15, then the risk premium charged by the franchise holder if the term is fixed is approximately one-third (32.9 percent) of the initial investment. The median of the values in the table is 32.6 percent; the mean is even higher. With a discount rate of 8 percent instead of 6 percent, the median is 31.1 percent.

33 The standard deviations for \(\epsilon_i^m \) and \(\epsilon_i^n \) are obtained decomposing yearly regional GDP growth rates into the sum of a common component (equal to the average growth rate across regions) and an idiosyncratic component (the residual). The standard deviation of the common component is 1.82 percent; the standard deviation of idiosyncratic shocks varies between 2.79 percent (1989–90) and 5.75 percent (1993–94), with an average of 4.21 percent over the period considered. We thank Raimundo Soto for providing the regional GDP data.

34 Here we use the result that relates the coefficient of variation of the product of two independent variables, \(X \) and \(Y \), to the coefficient of variation of the individual variables:

\[CV_{XY} = CV_X^2 + CV_Y^2 + CV_X^2 \cdot CV_Y^2. \]

35 Each value in this table is based on a coefficient of variation of the sum (16) obtained from 25,000 simulations. This leads to a relative approximation error smaller than 0.4 percent.
VI. Conclusion

In this paper we have shown that fixed-term contracts, which are commonly used to franchise highways, do not allocate demand risk optimally. We characterized the optimal risk-sharing contract and showed that it can be implemented with a fairly straightforward mechanism—an LPVR auction. Instead of bidding on a toll (or a franchise length), as in the case of fixed-term franchises, in an LPVR auction the regulator sets a toll schedule and bidders announce present values of toll revenues. The lowest bid wins, and the franchise ends when that amount has been collected. Finally, we showed that the welfare gains that can be attained by replacing fixed-term auctions with LPVR auctions are substantial.

Throughout the paper we focused on the risk-sharing properties of alternative highway franchising contracts. Worldwide evidence with highway franchising suggests that there are additional characteristics of these contracts that should be considered. We comment on them briefly.36

Since the franchise term adjusts to demand realizations, LPVR auctions are much less sensitive to demand information and thus more cost-oriented than fixed-term franchises. For example, if we allow for heterogeneity in construction costs and assume that all bidders can recoup their building costs with congestion tolls, then in a second-price LPVR auction, all firms will bid their construction cost, no resources will be spent on estimating demand, and the winner will be the most efficient firm. By contrast, in the case of a fixed-term franchise, demand realizations affect bidders’ profits, so that bidders have incentives to spend resources on estimating demand. Furthermore, in this case it is likely that the winner will not be the firm with lowest construction costs, since bids will also reflect differences in demand forecasts.

The actual experience of countries that have franchised highways to the private sector has often been unhappy. Two problems have been prominent: private firms and financiers usually refuse to participate unless governments pledge guarantees against commercial risks;37 and franchise holders are generally able to renegotiate and shift losses to taxpayers and users whenever they get into financial trouble (see n. 7). As we have argued elsewhere (see Engel et al. 1997b), government guarantees and renegotiations are undesirable because they are not accounted for in the budget, blunt the incentives to be efficient, encourage firms with experience in lobbying to lowball in the expectation of a

36 The presentation is at an intuitive level since we are currently working on formalizing these insights.
37 For example, for nine out of 10 highways franchised in recent years in Chile, the government provided a guarantee that the revenue would equal 70 percent of construction and maintenance costs. See Irwin et al. (1997) for more examples.
future renegotiation, and make white elephants more likely. By reducing demand risks, they reduce the demand for guarantees. Moreover, the fact that each firm’s bid reveals the income required to earn a normal profit reduces the scope for postcontract opportunistic renegotiations, since any wealth transfer by the government must take the form of a cash transfer whose amount can be readily understood by the public and compared with the initial winning bid. For the same reason, it should be politically more difficult for the government to exploit the franchise holder by changing the original contract, since the winning bid is a clear and observable benchmark that makes it easy to value any wealth expropriation.

Least-present-value-of-revenue auctions also are more flexible than their fixed-term counterparts. For example, if for some reason the franchise needs to be terminated ahead of time, a fair compensation for the franchise owner is the difference between the winning bid and revenue collected thus far. This should be contrasted with fixed-term franchises, where compensations based on estimates of expected profits during the remainder of the franchise are subject to dispute. Underlying this intuition is the fact that an LPVR franchise is an incomplete contract in which one of the parties (the franchise holder) has little to fear if the other party (the regulator) is given full ex post control (in the Grossman-Hart-Moore sense). The government can react to unforeseen circumstances in a variety of ways without affecting the franchise holder’s profits, since the franchise holder cares only about eventually recovering the up-front investment. This implies that under LPVR, the government has more flexibility to react to demand realizations than under a fixed-term scheme.

The main caveat regarding LPVR auctions is that they provide insufficient incentives to exert effort in demand- and quality-enhancing activities (e.g., building a road of the right standard, providing adequate maintenance without supervision, or providing expeditious service at tollbooths). For example, potholes reduce demand for the road, yet the franchise owner has few incentives to maintain the road adequately, since the associated revenue shortfall will be made up through a longer

38 By “white elephant” we mean a road with negative net present social value.
39 And are therefore more robust to Williamson’s (1976, 1985) critique of franchise bidding.
40 We have ignored maintenance costs throughout this paper. If they are added, an estimate for savings associated with these costs should be subtracted.
41 In early 1997 the government of Argentina announced that it wanted to end airport franchises in order to reauction them under new terms. These were fixed-term franchises. Estimates of adequate compensation for franchise holders varied between U.S.$400 million (government estimates) and U.S.$40 million (former Economics Minister Domingo Cavallo’s estimates). See El Mercurio, February 6, 1997.
franchise length. Throughout the paper we have assumed that demand was exogenous, thereby ignoring the insurance-quality trade-off. In the case of monopoly highways, there appear to be few demand-enhancing activities, so omitting the effects of incentives appears reasonable. Nevertheless, as Tirole (1997) has stressed, this suggests that LPVR contracts should be complemented with other regulatory innovations, such as third parties who verify minimum quality standards and appropriate fines for noncompliance. In the case of highway franchises, this should not be a major problem since objective measures for road and service quality can be defined and verified at a low cost. Yet this sets limits to the application of LPVR auctions to other types of infrastructure projects.

Finally, it is interesting to mention that LPVR auctions are not only a theoretical construct. An LPVR auction was used in February 1998 in Chile to franchise the Santiago-Valparaíso–Viña del Mar concession. The project contemplates major improvements and extensions of the 100-mile highway and the construction of three tunnels, with estimated costs of almost U.S.$400 million. The toll schedule was fixed in advance (in real terms), as was the discount rate. Five firms participated in the auction, and the present value of toll revenue demanded by the winner turned out to be below estimated construction and maintenance costs. One possible explanation for this outcome is that, given the relatively low risk associated with LPVR auctions, the discount rate set by the regulator—equal to the risk-free rate plus 4 percent—was higher than the discount rate used by firms. Also, firms were given the option to buy government insurance against demand risks, but the winner declined the offer.

Appendix

PROPOSITION A1. There exists a solution for the social planner’s problem with commitment.

Proof. The implicit function theorem and (6) can be used to express P^r_i as a function of the remaining P^r’s and of the L_i’s. This expression can be used to rewrite the planner’s problem as an unconstrained maximization problem over all L_i’s and $P^r_1, P^r_2, \ldots, P^r_n$. From (8) we then have that the planner is maximizing a continuous function over a compact set. Existence of a solution follows. Q.E.D.

As will become clear shortly, the following functions are closely related to the degree to which the self-financing constraint leads to distortions in a particular state of demand.

DEFINITION A1. Distortion functions.—We define

$$H_i(P_i) = \frac{Q_i(P_i)[1 + \eta_i(P_i)]}{Q_i(P_i)[1 + \eta_i(P_i)] - G_i(P_i)},$$

$$\nu_i(P, L) = H_i(P)u'(PVR_i(P, L) - I).$$

(A1)
where

\[
PVR_i(P, L) = \frac{PQ_i(P)}{r_i}(1 - L_i).
\]

Lemma A1. The functions \(H_i(P)\) satisfy \(H_i(P) < 1\) for all \(P > P^*_i\).

Proof. The result follows from the fact that \(G_i\) is concave and attains its maximum at \(P^*_i\). Q.E.D.

Theorem A1. Optimality conditions.—The planner’s solution to the problem with commitment satisfies \(P^*_{r_i} > 0\) and \(T^*_{r_i} > 0\) for all states \(i\). Also, for any pair of states \(k\) and \(l\), we have

\[
v_i(P^*_{r_i}, L^*_r) = v_i(P^*_{r_k}, L^*_r)
\]

or, equivalently,

\[
H_i(P^*_{r_i})u_i' = H_i(P^*_{r_k})u_i'
\]

where \(v_i(P, L)\) is defined in (A1) and \(u_i' = u'(PVR^*_i - I)\).

Proof. We divide the states of demand into two groups. The first group includes those states in which \(L^*_r < 1\) (or, equivalently, \(T^*_r > 0\)) and \(P^*_{r_i} > 0\). The second group includes all the remaining states, that is, those in which either \(L^*_r = 1\) or \(P^*_{r_i} = 0\). Note that \(P^*_{r_i}\) can take any value when \(L^*_r = 1\) since \(T^*_r = 0\) in this case. Thus we may assume, without loss of generality, that \(P^*_{r_i} = 0\) and \(L^*_r < 1\) for all states in the second category.

The first group of states has to be nonempty, since otherwise the firm’s participation constraint cannot be satisfied (all states in the second group provide no revenue for the firm). The initial statement of the proposition is that all states belong to the first group.

The remainder of the proof proceeds as follows. We first prove (A2) for any pair of states in the first category. Next we show that no state can belong to the second group.

The Lagrangian corresponding to the social planner’s problem is

\[
L = \frac{1}{r} \sum_{i=1}^{n} \pi_i [G_i(P^*_{r_i}) - P^*_{r_i}Q_i(P^*_{r_i})](1 - L_i) + G_i(P^*_{r_i})L_i
\]

\[
+ \lambda \sum_{i=1}^{n} \pi_i u_i(PVR_i - I).
\]

The first-order condition in \(P^*_{r_i}\) for a state in the first category implies

\[
v_i(P^*_{r_i}, L^*_r) = \frac{1}{\lambda}.
\]

so that (A2) holds for any pair of states \(i\) and \(k\) in this category.

If state \(k\) belonged to the second category, we would have

\[
v_i(P^*_{r_k}, L^*_r) \leq \frac{1}{\lambda}.
\]

From corollary A1 in Engel et al. (1998) and (8), we have that \(P^*_{r_i} = 0\) and \(c(Q)\) is constant. Thus lemma A1 in Engel et al. (1998) implies that \(G_i(P^*_{r_i}) = 0\) and hence \(H_i(P^*_{r_i}) = 1\). It follows from (A3), (A4), and (48) in Engel et al. (1998) that
where \(l \) is a state in the first category. Concavity of \(u \) and the two preceding inequalities imply that the revenue obtained by the firm in state \(k \) is larger than or equal to that obtained in state \(l \). Since the former is zero, the latter is also zero. This contradicts the firms’ participation constraint, thus showing that there exist no states in the second category. Q.E.D.

Corollary A1. If \(PVR_i^o \leq PVR_i^* \) and \(P_i^o = P_i^* \), then \(P_i^o = P_i^* \).

Proof. We assume that \(P_i^o > P_i^* \) and arrive at a contradiction.

If \(P_i^o > P_i^* \), then \(T_i^o = \infty \) (proposition 2). Since \(H_t(P_i^o) < 1 \) and \(H_t(P_i^o) = 1 \) (lemma B1 in Engel et al. [1998]), from theorem A1 it follows that \(u_i' < u_i' \), and therefore

\[
PVR_i^o > PVR_i^*.
\]

(A5)

On the other hand, since demand is relatively inelastic (see proposition A2 in Engel et al. [1998] for a formal proof) and in view of condition (8), it follows that

\[
PVR_i^o > PVR_i^*.
\]

(A6)

Also, trivially (since the optimal toll is \(P_i^* \)) we have

\[
PVR_i^o \leq PVR_i^*.
\]

(A7)

From (A7), (A5), and (A6), \(PVR_i^o \geq PVR_i^o > PVR_i^o > PVR_i^* \), and therefore \(PVR_i^* > PVR_i^* \), contradicting one of our assumptions. Q.E.D.

References

Stigler, George J. *The Organization of Industry.* Homewood, Ill.: Irwin, 1968.

Williamson, Oliver E. “Franchise Bidding for Natural Monopolies—in General and with Respect to CATV.” *Bell J. Econ.* 7 (Spring 1976): 73–104.