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A B S T R A C T

Traditionally, EEG is understood as originating from the synchronous activation of neuronal populations that generate rhythmic oscillations in specific frequency
bands. Recently, new neuronal dynamics regimes have been identified (e.g. neuronal avalanches) characterized by irregular or arrhythmic activity. In addition, it is
starting to be acknowledged that broadband properties of EEG spectrum (following a 1=f law) are tightly linked to brain function. Nevertheless, there is still no
theoretical framework accommodating the coexistence of these two EEG phenomenologies: rhythmic/narrowband and arrhythmic/broadband. To address this
problem, we present a new framework for EEG analysis based on the relation between the Gaussianity and the envelope of a given signal. EEG Gaussianity is a relevant
assessment because if EEG emerges from the superposition of uncorrelated sources, it should exhibit properties of a Gaussian process, otherwise, as in the case of
neural synchronization, deviations from Gaussianity should be observed. We use analytical results demonstrating that the coefficient of variation of the envelope (CVE)

of Gaussian noise (or any of its filtered sub-bands) is the constant
ffiffiffiffiffiffiffiffiffiffiffi
4
π � 1

q
� 0:523, thus enabling CVE to be a useful metric to assess EEG Gaussianity. Furthermore, a

new and highly informative analysis space (envelope characterization space) is generated by combining the CVE and the envelope average amplitude. We use this space
to analyze rat EEG recordings during sleep-wake cycles. Our results show that delta, theta and sigma bands approach Gaussianity at the lowest EEG amplitudes while
exhibiting significant deviations at high EEG amplitudes. Deviations to low-CVE appeared prominently during REM sleep, associated with theta rhythm, a regime
consistent with the dynamics shown by the synchronization of weakly coupled oscillators. On the other hand, deviations to high-CVE, appearing mostly during NREM
sleep associated with EEG phasic activity and high-amplitude Gaussian waves, can be interpreted as the arrhythmic superposition of transient neural synchronization
events. These two different manifestations of neural synchrony (low-CVE/high-CVE) explain the well-known spectral differences between REM and NREM sleep, while
also illuminating the origin of the EEG 1=f spectrum.
Introduction

In the early days of electroencephalograms (EEG), Adrian and Mat-
thews proposed neural synchrony as the origin of Berger's rhythm
(Adrian and Matthews, 1934). Nowadays, it is widely accepted that
synchrony is one of the main mechanisms underlying EEG (Buzs�aki et al.,
2012) as well as being a crucial process in neural dynamics (Singer and
Gray, 1995; Varela et al., 2001; von der Malsburg, 2000). The corner-
stone of Adrian and Matthews' EEG seminal interpretation is that alpha
rhythms appear when neurons beat synchronously, and that non syn-
chronous neuronal activity abolishes prominent rhythms, causing instead
an irregular activity of lower amplitude. This notion relating synchrony
with EEG changes, in both amplitude and morphology, seems so obvious
that it is accepted almost without effort. Nevertheless, the neuronal dy-
namics underlying these processes are still poorly understood (Nunez and
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Srinivasan, 2006). Thus, despite the very well-known relations between
EEG patterns and brain states (Stern and Engel, 2005), a comprehensive
theory accounting for all these patterns is not yet available.

Formal analysis shows that the amplitude for EEG arising from fully
synchronized neuronal oscillators should be proportional to N (number
of oscillators involved), while the expected amplitude for the EEG arising
from an asynchronous neuronal population should instead be propor-
tional to

ffiffiffiffi
N

p
(Elul, 1971; Díaz et al., 2007). Nevertheless, real world EEG

signals present more complex possible scenarios than complete syn-
chronization or full desynchronization. Synchronous neuronal pop-
ulations may only encompass an unknown fraction of the total number of
neurons contributing to EEG (Elul, 1971), and synchronized populations
could be dynamically modulated with varying coupling constants
(Breakspear et al., 2010; Schmidt et al., 2015). However, it is common to
associate observable EEG amplitude fluctuations with neural synchrony
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fluctuations. For example sleep EEG is traditionaly considered a syn-
chronized state, while wake EEG is considered a desynchronized state
(Steriade et al., 1990; Harris and Thiele, 2011). Moreover, due to modern
ideas about neural plasticity (hebbian mechanisms, metaplasticity, and
structural plasticity), EEG generation is seen as the result of the interplay
of transient neural assemblies whose activities are network controlled by
dynamically changing synaptic weights (Buzs�aki, 2010; Buzs�aki et al.,
2012).

Alongside these mainstream ideas, alternative views concerning the
origin of EEG appeared early in EEG research. Koiti Motokawa chal-
lenged Adrian's hypothesis about alpha rhythm origin (Motokawa and
Mita, 1942), suggesting the superposition of uncorrelated oscillators
explained alpha wave irregular patterns. Motokawa's paper was written
in German during WWII and published in a Japanese journal making it
difficult to track (Rao and Edwards, 2008). Similar results stressing the
random component of alpha rhythms continued to resurface in the next
decades (Sato, 1957; Saunders, 1963). A related statistical viewpoint can
be found in the work of Elul who described the Gaussian behaviour of EEG
as generated by the summation of independent oscillators in accordance
with the central limit theorem (Elul, 1969). Other studies have focused
on the arrhythmic nature of EEG, related to the characteristic 1=f -noise
spectrum found in neural signals (Linkenkaer-Hansen et al., 2001;
Freeman, 2006; He et al., 2010). More recently Biyu He has argued about
the necessity to have a common theoretical framework to understand the
interactions between rhythms and scale-free EEG activities (He, 2014).
Another arrhythmic-related phenomenon is neuronal avalanches which
correspond to a recently recognized class of neuronal dynamics (Beggs
and Plenz, 2004) whose relation with scale-free activity is yet to be
determined (He, 2014). Thus, even as the EEG nears its 100th anniver-
sary, there are open questions at the very core of EEG research high-
lighted in a recent review entitled “Where does the EEG come from and
what does it mean?” (Cohen, 2017).

In a previous report, we introduced an analysis of the envelope of
neuronal signals that refuted the simple model linking synchrony with
high amplitude oscillations. We showed that a purportedly good example
of neuronal synchrony —the prominent oscillations observable in the
olfactory epithelium of some vertebrates— could be better explained as
the superposition of asynchronous neuronal activity (Díaz et al., 2007).
In our results, the coefficient of variation of the envelope (CVE) of that

neuronal wave was close to the fingerprint of randomness
ffiffiffiffiffiffiffiffiffiffiffi
4
π � 1

q
. We

also predicted, considering two synchrony models (Matthews et al.,
1991; Strogatz, 2000), that a neuronal wave originating from synchro-
nous oscillators should exhibit a significantly lower CVE. Furthermore,
we found the CVE is highly correlated with relevant aspects of signal
morphology and can be used as a practical feature extraction method for
neural signals and other bio-signals (Díaz et al., 2014).

Here, starting from rat EEG, we introduce a neural dynamic model
that joins synchronous oscillations and arrhythmic EEG activities in a
common framework using the envelope of EEG signals.

Methods

Animals and surgery. Experiments were performed in 7 Sprague-
Dawley male rats (250-300 g) where at least 3� 24 hour continuous
recordings were done per rat, totaling 35 recording days. In each rat,
subdural EEG and EMG electrodes were inserted under ketamine anes-
thesia surgical details in (Castro-Faúndez et al., 2016).

EEG and EMG recordings. Three days after surgery rats were placed in
a 30� 30� 25 [cm] cage suspended within an 80� 80 x 80 [cm]
acoustically-isolated and temperature controlled (C) recording chamber
under an artificial 12:12 light:dark cycle with lights-on (500 Lux) from
07:00 to 19:00 local time. Electrophysiological signals were amplified
(2000 � for EEG and 5000 � for EMG), digitized (at 12 bits, 250 Hz per
channel) and streamed to digital storage for off-line analysis. All data
analysis, simulations and data visualization procedures were done using
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the R language (https://www.R-project.org/).
Data Analysis: Signal path, envelope construction and envelope-based

calculations. As this work analyzes EEG based on signal envelopes, it is
important to detail the mathematical steps applied to raw EEG signals (S).
Each EEG trace, already divided in 24 h segments in phase with the
Zeitgeber (starting at 7:00 AM), was digitally filtered to obtain its delta
(δ: 0.5–4 Hz), theta (θ: 4-10 Hz) and sigma (σ: 11-16 Hz) bands using IIR
fourth order Butterworth bandpass filters implemented in the R language
(signal package – http://r-forge.r-project.org/projects/signal/). These
three filtered signals (Sf ¼ Sδ; Sθ and Sσ) were cut into 24-s epochs (with
6000 samples per epoch). The Hilbert transform (H ) was then calculated
for each epoch and for each band. The envelope of Sf was obtained using

the standard result env ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2f þ H ðSf Þ2

q
. To avoid spurious results due to

end effects, 2 s buffer segments at both ends were excised after envelope
computation producing a 20 s epoch which was slided by 10 s, totaling
8640 epochs/day. The mean and standard deviation of env were calcu-
lated to obtain the coefficient of variation of the envelope ðCVE ¼
sdðenvÞ=meanðenvÞÞ for delta, theta and sigma bands (CVEδ, CVEθ, CVEσ).

Surrogate data models for Gaussianity. Vectors of length 6000 filled
with Gaussian random values (� Nð0; 1Þ) were generated. As in real data,
a 0.04 s sampling interval (equivalent to 250 Hz sampling rate) was
assumed. These artificial 24-s epochs were filtered for delta, theta and
sigma bands as indicated for the experimental data, and the envelope for
these epochs was also obtained. At this point, the first and last 2 s (500
points from each end) were removed to eliminate end effects caused by
digital filtering and envelope computation. For these trimmed 20-s
epochs, CVEδ, CVEθ and CVEσ were calculated for 106 epochs. Then, the
probability density functions (PDF), as well as the cumulative density
functions (CDF) were calculated and the 0.005 and 0.995 quantiles were
determined to define the lower and upper limits of the 99% confidence
interval for testing the H0 hypothesis: EEG epoch resembles filtered white
Gaussian noise. As EEG epochs have non-flat and dynamically changing
power spectra we also explored the use of Fourier transform phase
randomization (FTPR) epoch surrogates, as describes in (Galka, 2000).
To obtain a PDF from FTPR epochs we used 116 phase randomized in-
stances of 8640 epochs corresponding to a single day (equal to 1002240
epochs).

Expert WAKE/SLEEP cycle states scoring. The raw EEG data segmented
into 10-s epochs was classified by a human scorer into Wake, NREM and
REM states according to well-established rules for rat EEGs (Robert et al.,
1999).

EMG activity processing. EMG signals were filtered (between 70 and
90 Hz) and cut into 20 s epochs (10 s overlap). For each epoch its RMS
value was calculated producing a vector (with 8640 elements) repre-
senting the full 24 h cycle. To compare data from different rats, the RMS
vector was normalized to mean ¼ 0 and sd ¼ 1.

Multitaper spectrogram. Time-frequency analysis was applied to EEG
signals, divided in 20-s epochs and 10 s overlapping, according to (Prerau
et al., 2016) using the dpss function in the multitaper R package with the
following parameters: time-bandwidth¼ 10 and number of tapers¼ 20
(yielding a frequency resolution 0f 0.5 Hz). Frequencies higher than
20 Hz were discarded and the resulting spectral power, excluding the 2%
minimal and maximal outliers, was log scaled and color coded (dark blue
< cyan < orange < dark red).

Envelope characterization space (scatterplots and density maps). This
phase space involves the CVE and the normalizaton (mean ¼ 0 and
sd ¼ 1) of the logarithm of the envelope mean (as a parameter of EEG
amplitude), both evaluated at the epoch level. This space was analyzed
using scatterplots and density maps. These density maps were drawn by
constructing 2D histograms on a 500� 500 matrix. The rows and col-
umns of these histograms were smoothed by 51-coefficient binomial
kernels and visualized by using an alternating white/grey color palette
that produces a contour-plot-like visualization of the histogram density.

CVE of artificial signals produced by pulse superposition. Artificial signals
were constructed by the superposition of a variable number (in the

https://www.R-project.org/
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Fig. 1. Properties of the Coefficient of Variation of the Envelope (CVE) for
Gaussian noise and derived bands. (A) A 10 s computer generated Gaussian
noise (grey trace) and its corresponding envelope (black trace), obtained using
the Hilbert Transform, in this case CVE ¼ 0:524. (B) The same noise was
bandpass filtered for the sigma (11-16 Hz) band (grey trace) and its envelope
was calculated (black trace) producing a CVE ¼ 0:513. (C) A similar proced-
ure for the theta (4-10 Hz) band gives a CVE ¼ 0:528. (D) Epoch length affects
CVE. The CVE for 106 simulated 6Hz bandwidth filtered noise epochs of
5;10;20;40 s was calculated and distributions were determined. These
empirical distributions are approximately Gaussian and their mode tends to
0.523 (as expected from theory). (E) Bandwidth affects CVE. The CVE for 106

simulated 20 s filtered noise epochs 3;6;12;24 Hz bandwidth was calculated
and distributions were determined. These empirical distributions are also
approximately Gaussian and their mode tends to 0.523 (dashed line).
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sequence ð2nÞ13n¼5) of Poisson distributed exponential decaying pulses
(piðtÞ ¼ Ai⋅e�λti ) with Ai randomly taken from an exponential distribution
and λi uniformly distributed in the interval ½0:1� 100� s-1. The Fourier
spectra of these signals were calculated as well as the CVE of the delta
band component (0:5� 4 Hz). One thousand instances of simulated
signals were used to obtain the average CVE, while the average spectral
profile was obtained from 1000 instances of the summation of 210 ¼
1024 Poisson distributed pulses (similar results were generated with
different numbers of pulses). Similarly, artificial signals were also
generated by using as elementary events the following Alpha function
(Rall, 1967) widely used to model synaptic conductance (gsyn). We
adopted the equation from (De Schutter, 2010)
(gsynðtÞ ¼ gsyn ⋅

t�t0
τ ⋅e1�ðt�t0Þ=τ), where gsyn is a scale factor determining

the peak amplitude, t0 is the event's starting time and τ is the time con-
stant controlling the exponential decay. We simulate two conditions
where λi (τ ¼ 1=λ) was uniformly distributed in the intervals ½0:1� 100�
s-1 and ½0:1� 10� s-1.

Bioethics statement. These experiments complied with American
Physiological Society policies and were supervised by the Bioethics
Committee of the Facultad de Medicina of the University of Chile.

Results

CVE for Gaussian noise. Before presenting our experimental data
concerning the CVE of rat EEG, we must give some basic properties of the
envelopes and their CVE for filtered white Gaussian noise (Fig. 1).
Although it can be mathematically proven that the CVE for infinite
Gaussian noise (as well as for any of its filtered sub-bands) is a constant

equal to
ffiffiffiffiffiffiffiffiffiffiffi
4
π � 1

q
� 0:523 (Schwartz et al., 1966), no closed-form result

exists for discrete noise signals of arbitrary length. For example, 10 s
segments of artificially constructed noise have individual CVE hovering
near the 0.523 value (Fig. 1A); the same is true for its filtered bands
(Fig. 1B and C). Thus, using computer simulation, we obtained the
probability density distributions for CVE from filtered white Gaussian
noise under different conditions of duration (5, 10, 20 and 40 s) and filter
bandwidths (3, 6, 12 and 24Hz). These probability density distributions
for CVE are Gaussian-like, with a mode and a mean close to 0.523 and
with a dispersion and skewness, depending on duration and bandwidth
(Fig. 1D and E). As expected from analytical results, the CVE tends to
Fig. 2. CVE distributions for raw rat EEG and simu-
lated data. (A) CVE distributions for 20 s epochs (50%
overlap) of EEG delta band (CVEδ) of a representative
continuous 24 h period (black trace) totaling 8640
epochs, and from filtered Gaussian noise (grey trace)
totaling 106 epochs. The same analysis for (B) theta
and (C) sigma bands. For all panels the central dotted
line shows the theoretical value of 0.523. Gaussianity
confidence intervals (99%), for each case, are
delimited by vertical dashes (delta: [0.442–0.607];
theta: [0.460–0.588]; sigma: [0.453–0.595]). These
limits defined three intervals for the CVE range (low-
CVE, mid-CVE, high-CVE). For experimental data, the
frequency of occurrence inside the three CVE intervals
is given by the corresponding percentages. CVEθ is
skewed towards low values, while CVEδ and CVEσ are
skewed towards high values. (D) Scatter-plot between
CVEθ (x-axis) and CVEθ for corresponding FTPR sur-
rogate epochs (y-axis). Phase randomization collapses
the broad and skewed empirical CVEθ distribution
(dark line in X-axis, same as in (B)) into a narrow and
symmetrical distribution (dark line in Y-axis) con-
taining 97.7% of its values inside the 99% confidence
interval defined from theta filtered Gaussian noise
(dashed lines).
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narrower distributions, centered around 0.523 as the duration and
bandwidth increase but as bandwidths, on the other hand becomes
narrower the dispersion for CVE values increases while the mean and
median departs significantly from 0.523. Thus, heavily filtered epoched
signals should be avoided for CVE analysis.

Confidence intervals for CVE. As one of the aims of this work is to
analyze how the classical delta, theta and sigma bands can be charac-
terized by their CVE, we determined confidence intervals for testing the
Gaussianity of observed EEG epochs. Taking into account the results
Fig. 3. Relationship between CVE and signal morphology. Eleven 20 s EEG
segments (a-k) filtered in delta, theta and sigma bands are depicted (grey
traces) with their respective envelopes (black traces) superimposed. The right
column shows their associated CVE. Framed CVE values (a, g and i) indicate
segments with CVE close to 0.523 while CVE values marked with ‘*’ indicate
segments outside mid-CVE interval. CVE values in the low-CVE interval
correspond to epochs with very regular (i.e. quasi-sinusoidal) activity,
revealing a rhythm only occurring in the theta band (d-f). CVE values in the
high-CVE interval describe epochs with phasic activity (burst or spindle like
profiles). Traces are scaled so that their mean amplitude is the same.
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shown in Fig. 1D, we chose for our analysis an epoch length of 20 s which
provides good temporal resolution while avoiding large CVE variations
inherent in small data samples. We calculated CVE distribution for 106

instances of 20 s intervals of Gaussian noise filtered in three bands of
interest: 0:5� 4 Hz (delta), 4� 10 Hz (theta) and 11� 16 Hz (sigma).
From these distributions we obtained the 99% confidence intervals for
the EEG Gaussianity hypothesis (H0) for delta [0.442–0.607], theta
[0.460–0.588] and sigma [0.453–0.595] respectively, defining three
intervals: low-CVE,mid-CVE, and high-CVE (Fig. 2). Thus, for example, if a
given epoch has a CVE inside themid-CVE interval, we consider it to be, at
the 99% level, indistinguishable from a Gaussian signal. The CVE prob-
ability density distributions for epochs from actual EEG bands (obtained
from a 24 h EEG illustrative recording) share some properties with
respect to their Gaussian model counterparts, such as their unimodal
profiles and having their modes near the 0.523 value. CVE for delta
(CVEδ) and sigma (CVEσ) bands show positive skewness and their CVE
values are always in mid-CVE or high-CVE intervals. Interestingly CVE for
theta (CVEθ) band shows a negative skewness, exhibiting 29:7% of its
values in the low-CVE interval and only 13:4% in the high-CVE interval
(Fig. 2).
Fig. 4. Relations between sleep-wake states, EEG time-frequency represen-
tation, EMG and CVE. These six panels, from top to bottom: hypnogram,
multitaper spectrogram, CVEδ, CVEθ, CVEσ , and EMG show how these vari-
ables co-vary during a 0.5 h period exhibiting the three major behavioural
states: wake, NREM and REM. REM sleep is clearly correlated with low CVEθ
and low EMG, while exhibiting a prominent theta peak (� 7 Hz). NREM bouts
have CVEθ fluctuating in the mid-CVE and high-CVE intervals while exhibiting
low EMG as well as a 1=f power spectrogram lacking clear localized peaks.
Wake bouts have CVEθ values straddling the boundary between low-CVE and
mid-CVE while showing high EMG and a discernible, but variable, spectral
theta power. For all CVE panels, central dotted line¼ 0.523, dashed lines¼
99% confidence interval for the corresponding Gaussianity model.
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We also explored the use of the FTPR surrogate data to test the suit-
ability of our Gaussian model to determine the mid-CVE interval. As EEG
spectral properties change dynamically it could be argued that FTPR
epochs could better reflect the probabilistic model for EEG Gaussianity
hypothesis (H0). Thus, in the case of theta band, we calculated the dis-
tribution for a set of FTPR surrogates. Phase randomization produces a
drastic change as the left-skewed distribution of CVEθ is transformed into
a distribution very similar to the one obtained by a filtered white
Gaussian noise (Fig. 2D). While phase randomization maintains the
epoch spectra, it destroys specific EEG phase relations and collapses its
CVE into themid-CVE interval. Similar results were obtained for delta and
sigma bands (not shown). As the parameters describing the distributions
for theta filtered white Gaussian noise CVE (1st Qu.¼ 0.504, me-
dian¼ 0.520, mean¼ 0.521, 3rd Qu.¼ 0.537, N¼ 1000000) and its
Phase Randomization surrogate data (1st Qu.¼ 0.499, median¼ 0.518,
mean¼ 0.519, 3rd Qu.¼ 0.538, N¼ 1002240) are very similar we used
filtered white Gaussian noise as an operational model of Gaussianity for
referential purposes.

The CVE of a signal reveals important morphological aspects of its tem-
poral profile. From visual inspection it is possible to establish a relation-
ship between the CVE value and the signal morphology of a given EEG
epoch (Fig. 3). Epochs with CVE values near 0.523 appear like stationary
filtered Gaussian noise (see traces a, g and i). Low-CVE epochs appear as
rhythms having fairly sinusoidal profiles (see traces d-f). Note that the
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lower the CVE value, the more regular the theta rhythm (see the sequence
f→e→dÞ. On the other hand, high-CVE epochs reveal phasic or transient
activity (see traces b, c, h, j and k). In general signals having envelopes
with low dispersion with respect to their mean, like rhythms, have low-
CVE (d) while pulsed signals (e.g. EEG spikes) are related to high-CVE
values (k).

Relationships among CVE, spectrogram, EMG activity and behavioural
states.CVEθ correlates well with the animal's behavioural state (Fig. 4).
During REM sleep, CVEθ is mostly confined to the low-CVE interval. In
this state, as is well known, the EEG spectrogram exhibits a prominent
theta peak (� 7 Hz). Also, EMG activity is at its lowest as REM is asso-
ciated with muscular atony. During NREM sleep, CVEθ straddlesmid-CVE
and high-CVE intervals and the corresponding spectrogram segment
shows the well known 1=f profile (He et al., 2010), while the EMG also
adopts low values. During the wake state, CVEθ hovers near the low-CVE
and mid-CVE interval boundary. The temporal courses of CVEδ and CVEσ
greatly differ from CVEθ as they seldom transit into low-CVE territory for
any behavioral state.

Envelope characterization space. As CVE is a dimensionless (hence scale
independent) metric, it is important to enquire how its values are
correlated with the amplitude of the corresponding EEG band and
behavioral states. Scatterplots between epoch band amplitudes (y-axis)
and the corresponding CVE (x-axis), defining the envelope characterization
space, show different clustering for delta, theta and sigma bands (Fig. 5,
Fig. 5. Scatterplots of EEG/EMG amplitude vs CVE for
delta, theta and sigma bands. Left column, Clusters
representing the relation between CVE values and
log-normalized EEG amplitude, for delta (A), theta
(B), and sigma (C). Epochs are colored according to
behavioral state (green¼wake; blue¼NREM;
red¼ REM) and a 50% transparency (alpha chan-
nel¼ 0.5) was added to emphasize cluster density.
For all three bands the low amplitude EEG is well
centered in the mid-CVE (delimited by the dashed
lines). As EEG amplitude increases, the three bands
deviate from Gaussianity. For delta (A) and sigma (C)
as EEG amplitude increases, the corresponding CVE
values are confined to mid-CVE and high-CVE in-
tervals. On the other hand, theta band (B) shows a
clear v-shaped relationship. Large theta EEG ampli-
tudes are located in the low-CVE interval (left branch
of B, red dots corresponding to REM) or in the mid-
CVE interval (vertical branch of B, blue dots corre-
sponding to NREM). CVEθ values located in the high-
CVE interval are associated with epochs having in-
termediate theta EEG amplitudes. Right column,
Clusters representing the relation between CVE
values and log-normalized EMG amplitude, for delta
(D), theta (E), and sigma (F). Theta band (E) shows
well-defined and separated clusters correlated with
behavioral states. Each dot represents a 20 s epoch,
from an illustrative 24 h sleep-wake cycle, central
dotted line¼ 0.523.
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left column).
Scatterplots of CVEδ vs. delta amplitude and CVEσ vs. sigma amplitude

reveal elongated clusters with CVE values in mid- and high-CVE intervals
with clear segmentation by behavioral state along the y-axis for delta and
sigma. In both cases the epochs with lowest amplitude correspond to
epochs in the mid-CVE intervals and are fairly distributed around the
0.523 value. A relation exists between band amplitude and CVE: at high
amplitude values there is a small, but consistent co-variation towards
high-CVE. This correlation has the effect of producing right leaning
clusters, constituted mainly by NREM (blue) epochs, and seems more
marked for the sigma band.

The scatterplot of CVEθ vs. theta amplitude shows a v-shaped rela-
tionship represented by a two-branched asymmetric cloud organized
around the 0.523 value (Fig. 5B, left column). The left and upward
pointing branch connects, with an almost linear relation, the small
amplitude background activity with large regular sine-like waveforms
involving mostly REM sleep (red) and wake states (green). Interestingly
the apex of the branch contains REM sleep epochs almost exclusively and
is made of epochs with the largest amplitudes and the lowest CVE. The
vertical branch, which contains NREM sleep (blue) and wake states
(green), shows that CVEθ values are mostly contained in the mid-CVE
interval, but with a small proportion straddling to the high-CVE interval
especially at intermediate EEG theta amplitudes.

Scatterplots between EMG amplitude and CVE values are also infor-
mative. A clear clusterization is obtained in the case of theta band
(Fig. 5E), as the data set divides itself into three well-separated clusters
which correlate with behavioral states (B, right column). When using
delta or sigma bands, these variables are unable to produce a similar
clusterization (Fig. 5D,F). The cluster segmentation found in Fig. 5B and
E opens the possibility of constructing new automatic EEG scoring al-
gorithms using CVE as a relevant variable (which approximates the visual
scoring rules that consider theta morphology).

The clear clusterization induced by EMG/ CVEθ is a robust result.
Fig. 6 shows 35 scatterplots of EMG-activity vs. CVEθ, each corresponding
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to 24-h recordings from a data set constructed from seven rats (rats a-g)
continuously recorded between 3 and 7 consecutive days. The three main
clusters presented in Fig. 5E are also distinguishable in the 35 recording
days analyzed. Importantly, the small cluster related to REM sleep is al-
ways well separated from the other clusters. The bottom-right inset
shows the density map for the superposition of the complete data set,
showing the same clusterization, where the REM associated cluster re-
mains remarkably separated, pointing to a low inter-case variability.

Using density maps that superpose the complete data set over the
envelope characterization space (8640� 35 ¼ 302400 epochs), it is
apparent that the clusterization is also robust (Fig. 7). The topological
properties of the overall data set clusters match those of the illustrative
case (compare clusters in 7A,B,C and Fig. 5A,B,C). In particular, the
density map of the theta band is v-shaped (7B). Also, the CVE distribu-
tions of the complete data are fairly similar to those of the illustrative
case of Fig. 2, indicating low variability between cases (compare distri-
butions in 7A,B,C and Fig. 2A,B,C).

When the same data is plotted taking into consideration the EMG
activity, an indicator of the animal behavioral state, the clusters show the
segmentation already apparent in Fig. 5. For low EMG epochs, mostly
corresponding to sleep epochs (NREM þ REM), two clear clusters are
revealed for theta (Fig. 7E). The smaller cluster has low-CVE values and
large amplitudes while the large cluster has a large spread in amplitudes
and its CVE values are mostly contained in the Gaussianity interval. This
clear dichotomy (in accordance with the low overlap between red and
blue clusters in 5B) is also clearly revealed by the bi-modal CVE distri-
bution. For low EMG epochs, delta and sigma band density plots show a
single elongated region containing two clusters (Fig. 7D,F). The minor
cluster, confined to low amplitude epochs, is well centered in the mid-
CVE range. The larger cluster contains a spread between large and me-
dium size amplitudes, and its epochs are distributed in the mid- and high-
CVE ranges forming a right skewed bulge (Fig. 7D,F).

For large EMG activity epochs, which correspond to active wake state,
the theta band analysis shows an elongated left and upward pointing
Fig. 6. Scatterplots between CVEθ and EMG. The
graph shows the scatterplots for our complete data set
(35 recording days from 7 rats), generalizing Fig. 5 E,
which corresponds to rat b, day 2. In all 35 sleep-
wake cycles, three clusters appear. Bottom right
inset corresponds to the 2D empirical density function
for the 35 rats (colored in an alternating white-grey
palette to provide a contour-plot-like style). In all
panels the vertical lines mark the 0.523 value (dotted)
and the theta mid-CVE interval (dashed).



Fig. 7. Empirical density functions for EEG amplitude vs CVE values for delta, theta and sigma bands (35 days from 7 rats) Upper-row (A-C), Density maps
between CVE values and EEG amplitudes for all epochs (8640� 35 ¼ 302400). The v-shaped relationship found for the single representative case in Fig. 5-B is
clearly apparent across the complete data set (B). The empirical CVE distribution (top histogram in each panel) shows that CVEθ is the only one with values
denoting rhythmic activity (28.4% of epochs). Delta and sigma bands, as in Fig. 5-A,C, show a single, right-leaning cluster evidencing a positive correlation
between EEG amplitude and CVE.Middle-row (D-F), for low EMG epochs (1st tertile reflecting mostly NREM or REM states), the density maps for delta and sigma
bands show the same clusters shifting to high-CVE values as amplitude increases, but for theta two clusters appeared, and they are associated with the bimodal
distribution for CVEθ. One cluster corresponds to epochs with large EEG amplitude but low-CVE (REM sleep). The more massive, central cluster has CVE values in
the range of Gaussianity and large EEG amplitude. Bottom-row (G-I), for epochs with large EMG activity (3rd-tertile reflecting mostly active wake) the distri-
bution of CVE follows the same distribution for delta and sigma. CVEθ distribution shows a Gaussian distribution, but straddling the boundary between low-CVE
and mid-CVE intervals (H). Vertical dashed lines mark boundaries of mid-CVE interval while the dotted line indicates 0.523 value. The frequency of occurrence
outside these intervals is given by the corresponding percentages. Density maps are colored in an alternating white-grey palette to provide a contour-plot-
like style.
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cluster that matches the green cluster of Fig. 5B. The distribution for
CVEθ straddles the boundary between low/mid-CVE intervals as almost
half (47:9%) of CVE are in the low-CVE interval (Fig. 7H). In this con-
dition delta and sigma bands produce single clusters centered near the
critical value 0.523 and their CVE value distributions straddle the mid/
high-CVE intervals (Fig. 7G,I). Finally, it is worth noting that for all
analysis presented, CVE values corresponding to very low amplitude
epochs are confined to the mid-CVE Gaussianity interval (Fig. 7 all
panels).

To explain transient activity (phasic EEG) evidenced by high-CVE, we
constructed a simple model in which EEG activity is assembled as the
superposition of independent exponential decaying pulses of varying
amplitude and with λ uniformly distributed in ½0:1� 100� s-1. We simu-
lated artificial realizations by the poissonian superposition of
32; 64;…;8192 pulses and calculated their CVE (Fig. 8). When the
number of pulses is low, the signal has large CVE (Fig. 8A), low amplitude
(Fig. 8B) and a temporal profile exhibiting clear pulses (Fig. 8 trace a). As
the number of pulses increases, the temporal profiles become similar to
filtered noise (Fig. 8 traces b and c), CVE asymptotically tends to the
theoretical value of 0.523 (Fig. 8A) and the amplitude increases as

ffiffiffiffi
N

p

Fig. 8. CVE of artificial signals obtained by adding increasing numbers of
Poisson distributed exponentialy decaying pulses. A. CVEδ calculated for
artificial signals constructed by adding different numbers of Poisson distrib-
uted pulses followed by delta filtering (0:5� 4 Hz). Signals constructed with
low number of pulses exhibit large CVEδ that consistently diminish as the
number of pulses increases. The CVE average asymptotically approaches the
0.523 value (dotted line). Dashed lines show the limits of mid-CVE interval for
delta band. B. The average amplitude of the synthetic signals, as expected,
increases with

ffiffiffiffiffiffiffiffiffiffiffiffi
pulses

p
. Each data point is the average of 1000 instances of the

simulation. C. Average spectra density for 100 simulated signals constructed
by adding 1024 exponentialy decaying pulses of evenly distributed λ (Ber-
namont model, black trace) and similar computatinos using the alpha function
(dark grey traces). These results aproximates scale-free processes with spectral
profiles aproximatelly following the law P∝1=f β. For the Bernamont model
β ¼ 1. For the alpha function based models β starts around 1 and bends to ’ 3
where the ”knee” location depends on λ distribution range (left trace
λ � ½0:1� 10�; right trace λ � ½0:1� 100�). Gaussian noise (β ¼ 0) and
Brownian noise (β ¼ 2) spectra (light grey traces) are also depicted as refer-
ence. All spectra share the value at the origin to facilitate comparison of their
slopes. Bottom traces from top to bottom, illustrative instances of artificial
signals produced with 128, 512, 2048 exponentially decaying pulses (traces
are delta band filtered).
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(N¼ number of pulses) as shown by the slope ¼ 0:5 in a log-log plot
(Fig. 8B). The average spectrum (1000 realizations) of the profiles ob-
tained by adding 1024 exponentially decaying pulses produces a curve
with an approximate average slope of �1 (Fig. 8C, black trace), corre-
sponding to a numerical implementation of the classical model explain-
ing the 1=f spectrum associated to flicker-noise in vacuum tubes
(Bernamont, 1937). Gaussian and Brownian noises with slopes of 0 and
�2 respectively were also calculated as reference (Fig. 8C, light grey
traces). We further investigated the superposition of pulses based on the
alpha function, a widely used model of synaptic conductance (Rall,
1967). In this case we obtained interesting features (Fig. 8C, dark grey
traces) observed in real EEG, like “knees” and slopes higher than 2 in
log-log spectra (He, 2014). The “knee” location can be controlled
adjusting the distribution of λ values (see methods).

Discussion

CVE as a measure of gaussianity and signal morphology

Signal envelopes, commonly used in science/engineering, have been
used in neuroscience to describe EEG amplitudes (Clochon et al., 1996;
Freeman, 2004; Tao and Mathur, 2010) and here we focus on the CVE as
a scale-independent descriptor of signal morphology and Gaussianity
(Díaz et al., 2007, 2014). Recently Cole and Voytek underlined the
importance of waveform shape of brain oscillations, in particular, their
non-sinusoidal aspects which are difficult to characterize with Fourier
techniques (Cole and Voytek, 2017) while others have stressed the
importance of developing metrics to define “rhythmic” or “sinusoidal”
processes, as even noise could produces sinusoidal-like activity when
undergoing filtering (Jones, 2016; Cohen, 2017) (Fig. 1).

Our approach, based on well-known properties of white Gaussian
noise and narrow band noise (Schwartz et al., 1966), assesses EEG
Gaussianity using CVE as a metric and constructs, for each band, three
confidence intervals which correlate with signal morphology (Fig. 3).
Altougth CVEδ, CVEθ and CVEσ exhibit deviations from Gaussianity, only
CVEθ straddles into its corresponding low-CVE interval while CVEδ and
CVEσ only span their mid and high-CVE intervals. Using FTPR we showed
that any deviation in the estimation of Gaussianity due to particular
spectral properties at the epoch level is minimal (Fig. 2D). Thus, our
Gaussianity model based on filtered white Gaussian noise can be
considered a fair model for Gaussianity in EEG studies. On the other hand
FTPR shows (as FTPR destroy phase relationships, while maintaining the
spectral properties) that some special envelope features like rhythms and
phasic activity (Fig. 3), are produced by EEG specific phase configura-
tions which can not be only characterized using spectral analysis.

Overall, CVE defines an scale pointing to relevant aspects of signal
morphology and with this scale, qualitative categorizations (for example
the widely-used hippocampal LFP types, such as theta rhythm, large-
amplitude irregular activity, and small-amplitude irregular activity
(Vanderwolf, 1969; Bland, 1986; Jarosiewicz et al., 2002) may be now
quantitatively reassessed. Moreover, epoch-based CVE analysis provides
a practical description of neural dynamics as CVE fluctuations are
correlated with animal behavioural states (Fig. 4).

Envelope characterization space

EEG is a wave phenomenon originating from the linear superposition
of a massive number of neuronal current sources distributed across many
anatomical scales and functional types, showing significant changes in
amplitude andmorphology during the sleep-wake cycle. According to the
central limit theorem, if those sources were uncorrelated, EEG signals
should have properties of a Gaussian process (Elul, 1969; McEwen and
Anderson, 1975; Gonen and Tcheslavski, 2012). Instead, if a significant
amount of sources were correlated (i.e. neural synchrony), EEG should
deviate fromGaussianity as correlation/synchrony produces constructive
interference, increasing signal amplitude. The envelope characterization
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space (Figs. 5 and 7) shows a novel synthesis of EEG dynamics exhibiting
deviations from Gaussianity correlated with EEG amplitude, indicating
that for some time periods, something other than themere interference of
uncorrelated waves is occurring. We propose that these deviations to
low-CVE and to high-CVE correspond to two conceptually different
manifestations of neural synchrony.

In the case of deviations to low-CVE, the link to neural synchrony is
straightforward. Epochs showing low-CVE are related to theta rhythm,
considered “the largest extracellular synchronous signal that can be
recorded from themammalian brain” (Vertes, 2005). The left up-pointing
densities (Figs. 5B and 7B, E) in the envelope characterization space show
a correlation between low-CVE and signal amplitude that clearly indicate
how theta rhythm becomes more coherent while augmenting its ampli-
tude, strongly suggesting an underlying neural synchronization process.
Indeed, this correlation matches the behaviour of the well-studied Kur-
amoto model, where weakly coupled oscillators pull each other to a
common frequency producing a collective oscillation of increasing
amplitude as constructive interference dominates the system (Strogatz,
2000; Díaz et al., 2007; Breakspear et al., 2010; Schmidt et al., 2015).

On the other hand, epochs deviating from Gaussianity towards high-
CVE, mostly found in NREM sleep, show a peculiar combination of fea-
tures — high amplitude gaussian waves (delta waves) coexisting with
phasic activity and a high-power 1=f spectral profile lacking a prominent
peak (Fig. 4). As suggested by the phasic activity reported by CVE,
pointing to pulses over EEG background, we propose a model that rec-
reates the properties of EEG concerning its envelope morphology during
NREM sleep. In this state EEG is interpreted as the superposition of
Poisson-distributed (i.e. arrhythmic) transient waveforms appearing at
different temporal rates (Fig. 8). For a small number of events, the CVE
adopts rather large values while the EEG amplitude remains low. As the
number of independent events increases, CVE decreases and converges to
0.523, while the overall simulated signal gains amplitude ∝

ffiffiffiffi
N

p
(N:

number of transients) as expected for out-of-phase wave superposition
(Elul, 1971; Díaz et al., 2007) (Fig. 8A and B). Thus, the coexistence of
high-amplitude gaussian waves and phasic activity (transitions between
mid- and high-CVE) can be explained just by varying the transients’ rate.
Interestingly, human NREM sleep is characterized by a progressive in-
crease in the apparent delta band density as the subject reaches deeper
NREM sleep stages, going from K-complexes, to delta phasic activity, to
delta waves (Terzano et al., 1985; Halasz and B�odizs, 2013).

Our model also illuminates the origin of EEG's 1=f spectral signature
(Ward, 2002; He et al., 2010). As a first approximation, the simulated
events were implemented as exponentially decaying functions, recreating
the classic framework explaining the origin of flicker noise (i.e. 1=f
noise) in vacuum tubes (Bernamont, 1937; Milotti, 2002). In this con-
dition the resulting simulated signals have a 1=f spectral signature
(Fig. 8C). Exponentially decaying functions are relevant for EEG prop-
erties, since post-synaptic potentials, pointed out as being the main
contributors of extracellular field potentials (Buzs�aki et al., 2012), are
characterized by sharp deflections followed by slower exponential de-
cays. Sharp-edged waveforms have broadband spectral signatures unre-
lated to rhythmic activity (Kramer et al., 2008; Ray and Maunsell, 2011),
while the spectral properties of exponentially decaying functions are
probably responsible for the EEG 1=f profile (Miller et al., 2009). In
addition, we also considered a more realistic model of synaptic
conductance (alpha function) where the rising phase is not infinitely fast
(De Schutter, 2010). In this condition, spectral profiles closer to reality
are obtained (Fig. 8C dark grey traces) as the phenomenon colloquially
referred as 1=f spectrum in the brain context, corresponds to a 1=f β law
with 0 < β < 4 and is not strictly linear either (He et al., 2010). The EEG
spectrum profile shaped by the palette of time constants related to
membrane potentials is consistent with general anesthetics' altering
those time constants at multiple targets (Bai et al., 1999; Li and Pearce,
2000; Pittson et al., 2004; Hemmings et al., 2005; Franks, 2008) making
EEG spectrum more tilted to low frequencies and reducing the apparent
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spectral edge (Purdon et al., 2013).
Certainly, to properly model the effect of synaptic activity in EEG

profiles requires considering the non-trivial relationships between
neuronal currents and the extracellular electrical field potentials (Hales
and Pockett, 2015). Nevertheless, empirical data show that
exponential-like transients are commonly recognized in neuronal re-
cordings at the meso-scale level (see Fig. 3 in Luczak et al., 2015 and
Fig. 1 in Plenz and Thiagarajan, 2007). Recently, new kinds of neuronal
correlated activity have been recognized, characterized by neural tran-
sient events or activity packetswhich are manifested in multi-unit activity
recordings as neuronal population spiking concentrated in discrete time
windows and in LFP recordings as transient voltage deflections (e.g.
hippocampal sharp waves, negative LFPs in cortical avalanches, etc)
(Luczak et al., 2015). This ubiquitous phenomena, observed in many
brain areas of multiple species, are thought to represent the basic
building blocks of cortical coding (Luczak et al., 2015) and their time
intervals appear irregular (Plenz and Thiagarajan, 2007) or Poisson
distributed (Buzs�aki, 2015). Thus, concurrent post-synaptic potentials
triggered during activity packets could produce the transients required in
our model. This simultaneous neural activity corresponds to the funda-
mental type of neural synchrony originating neural assemblies, that can be
simply defined as the temporal proximity enabling superposition in the
extracellular field (Plenz and Thiagarajan, 2007).

Concluding remarks

The envelope characterization space (i.e. logðEÞ vs. CVE) introduced
here reveals remarkable relations showing special constraint between
EEG's amplitude and morphology that suggests a new framework for EEG
interpretation. First, our envelope analysis shows that low amplitude EEG
background noise appears Gaussian for delta, theta and sigma bands.
Second, and more crucially, two modes for departing from Gaussianity
are revealed and both are associated with large EEG amplitudes (Fig. 9).
As previously predicted for synchronous waves (Díaz et al., 2007), theta
rhythm showed a correlation between low-CVE and large amplitudes
(Fig. 9 a,b) while the regime characterized by deviations from Gaussianty
towards high-CVE can be explained by the arrhythmic superposition of
EEG transients (Fig. 9 c1,c2). The temporal profile of these transients is
usually close to exponentially decaying functions whose spectral prop-
erties can explain the colored EEG spectrum. Conceiving EEG as mainly
originated by the superposition of neural activity packets producing
transients of many sizes (recruiting neural masses of different sizes), it is
possible to explain why 1=f spectra are present from background EEG to
high-amplitude EEG and observed in all behavioral states, while rhyth-
mic activity—due to the synchronization of weakly coupled oscillators—
only occurs episodically as spectral peaks over a 1=f background (He,
2014). This interpretation is consistent with experimental results
showing that neuronal avalanches during NREM sleep are larger than in
other behavioural states (Priesemann et al., 2013).

The model presented serves to link phenomena like the broadband
scale-free activity with irregular processes like neuronal avalanches. This
link is important as it has been suggested that such a unifying framework
should be an important step in EEG research (He, 2014). CVE analysis
places deviations from Gaussianity, synchrony and the origin of the 1=f
spectra in the same domain. At the same time it obligates a closer
consideration of the definition of neural synchrony. In effect, in our
model, two types of synchronization dynamics are required to explain
divergent properties in EEG's time and frequency domains. Rhythmic
waves, on one hand, exhibit the dynamical properties of a synchronization
of weakly coupled oscillators (Lubenov and Siapas, 2009; Goutagny et al.,
2009) while, on the other hand, EEG transients represent concurrent
neuronal activity, a broader interpretation of synchrony, associated to the
very definition of neural assemblies (Buzs�aki, 2010; Plenz and Thiagar-
ajan, 2007; Hebb, 1949).



Fig. 9. Envelope characterization space analysis: summary of main results.
Projecting epochs of rat EEG sleep cycle into the logðEÞ vs CVE characteriza-
tion space produces an asymmetric clustering, organized around the CVE ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4=π � 1

p � 0:523 axis, that can be subdivided into regions correlated with
behavioural states. Regions A, B (which appear only for theta band) are visible
during REM sleep and wake respectively (Fig. 5B, 7E and 7H). Region C,
which is visible for all studied bands but is more prominent for delta and
sigma during NREM sleep (Fig. 5A, C, 7D and 7F). Region D appears in the
lower amplitude range of all EEG bands and represents EEG background ac-
tivity (Fig. 5 and 7). Real traces a-d illustrates EEG signal morphology related
to the different regions (traces a, b and d: theta band; traces c1 and c2: delta
band). These morphologies can be categorized into rhythmic (low-CVE),
Gaussian (mid-CVE) or phasic (high-CVE). Dotted and dashed lines indicate
CVE ¼ 0:523 and the lower and upper boundaries of the mid-CVE interval
respectively. Bottom insets illustrate the spectral properties of epochs
belonging to regions A (prominent peak in theta band) and C (1=f profile) as
illustrated in Fig. 4. Thus, from Gaussian background EEG (region D) two
routes to high EEG amplitudes are possible (enclosed in dark dotted lines).
One route leads to the appearance of rhythmic oscillations (a, b), associated to
low-CVE. The second route emerges from the arrhythmic superposition of
transient synchronous events, producing Gaussian waves (c1) and phasic
patterns (c2), associated to mid- and high-CVE

J. Díaz et al. NeuroImage 172 (2018) 575–585
Acknowledgments

We thank Jorge Estrada for surgical procedures and Diane Greenstein
for editorial assistance. Also we want to thank the reviewers for their
valuable suggestions. This research was supported in part by Fundaci�on
Puelma (Facultad de Medicina, Universidad de Chile) and FONDECYT
grants 1060250, 1061089.

References

Adrian, E.D., Matthews, B.H.C., 1934. The berger rhythm: potential changes from the
occipital lobes in man. Brain 57, 355–385.

Bai, D., Pennefather, P.S., MacDonald, J.F., Orser, B.A., 1999. The general anesthetic
propofol slows deactivation and desensitization of gaba(a) receptors. J. Neurosci. 19,
10635–10646.

Beggs, J.M., Plenz, D., 2004. Neuronal avalanches are diverse and precise activity
patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24,
5216–5229.
584
Bernamont, J., 1937. Fluctuations de potential aux bornes d’un conducteur metallique de
faible volume parcouru par un courant. Ann. Phys. 79, 71–140.

Bland, B.H., 1986. The physiology and pharmacology of hippocampal formation theta
rhythms. Prog Neurobiol 26, 1–54.

Breakspear, M., Heitmann, S., Daffertshofer, A., 2010. Generative models of cortical
oscillations: neurobiological implications of the kuramoto model. Front. Hum.
Neurosci. 4, 190.

Buzs�aki, G., 2010. Neural syntax: cell assemblies, synapsembles, and readers. Neuron 68,
362–385.

Buzs�aki, G., 2015. Hippocampal sharp wave-ripple: a cognitive biomarker for episodic
memory and planning. Hippocampus 25, 1073–1188.

Buzs�aki, G., Anastassiou, C.A., Koch, C., 2012. The origin of extracellular fields and
currents — eeg, ecog, lfp and spikes. Nat. Rev. Neurosci. 13, 407–420.

Castro-Faúndez, J., Díaz, J., Ocampo-Garc�es, A., 2016. Temporal organization of the
sleep-wake cycle under food entrainment in the rat. Sleep 39, 1451–1465.

Clochon, P., Fontbonne, J., Lebrun, N., Et�evenon, P., 1996. A new method for quantifying
eeg event-related desynchronization:amplitude envelope analysis.
Electroencephalogr. Clin. Neurophysiol. 98, 126–129.

Cohen, M.X., 2017. Where does eeg come from and what does it mean? Trends Neurosci.
40, 208–218.

Cole, S.R., Voytek, B., 2017. Brain oscillations and the importance of waveform shape.
Trends Cognit. Sci. 21, 137–149.

Díaz, J., Razeto-Barry, P., Letelier, J.C., Caprio, J., Bacigalupo, J., 2007. Amplitude
modulation patterns of local field potentials reveal asynchronous neuronal
populations. J. Neurosci. 27, 9238–9245.

Díaz, J.A., Arancibia, J.M., Bassi, A., Vivaldi, E.A., 2014. Envelope analysis of the airflow
signal to improve polysomnographic assessment of sleep disordered breathing. Sleep
37, 199–208.

De Schutter, E., 2010. Computational Modeling Methods for Neuroscientists. MIT Press,
Cambridge, MA.

Elul, R., 1969. Gaussian behavior of the electroencephalogram: changes during
performance of mental task. Science 164, 328–331.

Elul, R., 1971. The genesis of the eeg. Int. Rev. Neurobiol. 15, 227–272.
Franks, N.P., 2008. General anaesthesia: from molecular targets to neuronal pathways of

sleep and arousal. Nat. Rev. Neurosci. 9, 370–386.
Freeman, W.J., 2004. Origin, structure, and role of background eeg activity. part 1.

analytic amplitude. Clin. Neurophysiol. 115, 2077–2088.
Freeman, W.J., 2006. Origin, structure, and role of background eeg activity. part 4: neural

frame simulation. Clin. Neurophysiol. 117, 572–589.
Galka, A., 2000. Topics in Nonlinear Time Series Analysis: with Implications for EEG

Analysis. World Scientific, London.
Gonen, F.F., Tcheslavski, G.V., 2012. Techniques to assess stationarity and gaussianity of

eeg: an overview. Int J BIOautomation 16, 135–142.
Goutagny, R., Jackson, J., Williams, S., 2009. Self-generated theta oscillations in the

hippocampus. Nat. Neurosci. 12, 1491–1493.
Halasz, P., B�odizs, R., 2013. Dynamic Structure of NREM Sleep. Springer, London.
Hales, C.G., Pockett, S., 2015. The relationship between local field potentials (lfps) and

the electromagnetic fields that give rise to them. Front. Syst. Neurosci. 8, 233.
Harris, K.D., Thiele, A., 2011. Cortical state and attention. Nat. Rev. Neurosci. 12,

509–523.
He, B.J., 2014. Scale-free brain activity: past, present, and future. Trends Cognit. Sci. 18,

480–487.
He, B.J., Zempel, J.M., Snyder, A.Z., Raichle, M.E., 2010. The temporal structures and

functional significance of scale-free brain activity. Neuron 66, 353–369.
Hebb, D.O., 1949. The Organization of Behavior. Wiley, New York, NY.
Hemmings, H.C., Akabas, M.H., Goldstein, P.A., Trudell, J.R., Orser, B.A., Harrison, N.L.,

2005. Emerging molecular mechanisms of general anesthetic action. Trends
Pharmacol. Sci. 26, 503–510.

Jarosiewicz, B., McNaughton, B.L., Skaggs, W.E., 2002. Hippocampal population activity
during the small-amplitude irregular activity state in the rat. J. Neurosci. 22,
1373–1384.

Jones, S.R., 2016. When brain rhythms aren‘t ’rhythmic’: implication for their
mechanisms and meaning. Curr. Opin. Neurobiol. 40, 72–80.

Kramer, M.A., Tort, A.B., Kopell, N.J., 2008. Sharp edge artifacts and spurious coupling in
eeg frequency comodulation measures. J. Neurosci. Meth. 170, 352–357.

Li, X., Pearce, R.A., 2000. Effects of halothane on gaba(a) receptor kinetics: evidence for
slowed agonist unbinding. J. Neurosci. 20, 899–907.

Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J., 2001. Long-range
temporal correlations and scaling behavior in human brain oscillations. J. Neurosci.
21, 1370–1377.

Lubenov, E.V., Siapas, A.G., 2009. Hippocampal theta oscillations are travelling waves.
Nature 459, 534–539.

Luczak, A., McNaughton, B.L., Harris, K.D., 2015. Packet-based communication in the
cortex. Nat. Rev. Neurosci. 16, 745–755.

Matthews, P.C., Mirollo, R.E., Strogatz, S.H., 1991. Dynamics of a large system of coupled
nonlinear oscillators. Physica D 52, 293–331.

McEwen, J.A., Anderson, G.B., 1975. Modeling the stationarity and gaussianity of
spontaneous electroencephalographic activity. IEEE Trans. Biomed. Eng. 22,
361–369.

Miller, K.J., Sorensen, L.B., Ojemann, J.G., den Nijs, M., 2009. Power-law scaling in the
brain surface electric potential. PLoS Comput. Biol. 5, e1000609.

Milotti, E., 2002. A Pedagogical Review of 1/f Noise. ArXiv: Physics/0204033.
Motokawa, K., Mita, T., 1942. Das wahrscheinlichkeitsprinzip über die gehirnelektrischen

erscheinungen des menschen. Jap J med Sci Biophys 8, 63–77.
Nunez, P.L., Srinivasan, R., 2006. Electric Fields of the Brain: the Neurophysics of EEG.

Oxford University Press, New York, NY.

http://refhub.elsevier.com/S1053-8119(18)30063-6/sref1
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref1
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref1
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref2
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref2
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref2
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref2
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref3
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref3
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref3
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref3
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref4
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref4
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref4
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref5
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref5
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref5
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref6
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref6
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref6
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref7
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref7
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref7
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref7
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref8
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref8
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref8
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref8
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref9
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref9
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref9
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref9
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref9
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref10
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref10
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref10
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref10
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref11
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref11
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref11
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref11
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref11
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref12
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref12
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref12
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref13
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref13
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref13
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref14
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref14
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref14
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref14
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref15
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref15
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref15
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref15
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref16
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref16
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref17
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref17
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref17
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref18
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref18
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref19
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref19
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref19
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref20
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref20
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref20
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref21
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref21
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref21
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref22
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref22
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref23
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref23
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref23
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref24
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref24
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref24
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref25
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref25
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref26
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref26
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref27
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref27
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref27
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref28
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref28
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref28
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref29
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref29
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref29
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref30
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref31
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref31
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref31
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref31
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref32
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref32
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref32
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref32
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref33
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref33
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref33
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref34
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref34
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref34
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref35
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref35
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref35
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref36
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref36
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref36
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref36
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref37
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref37
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref37
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref38
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref38
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref38
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref39
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref39
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref39
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref40
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref40
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref40
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref40
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref41
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref41
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref42
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref43
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref43
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref43
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref44
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref44


J. Díaz et al. NeuroImage 172 (2018) 575–585
Pittson, S., Himmel, A.M., MacIver, M.B., 2004. Multiple synaptic and membrane sites of
anesthetic action in the ca1 region of rat hippocampal slices. BMC Neurosci. 5, 52.

Plenz, D., Thiagarajan, T.C., 2007. The organizing principles of neuronal avalanches: cell
assemblies in the cortex? Trends Neurosci. 30, 101–110.

Prerau, M.J., Brown, R.E., Bianchi, M.T., Ellenbogen, J.M., Purdon, P.L., 2016. Sleep
neurophysiological dynamics through the lens of multitaper spectral analysis.
Physiology 32, 60–92.

Priesemann, V., Valderrama, M., Wibral, M., Le Van Quyen, M., 2013. Neuronal
avalanches differ from wakefulness to deep sleep–evidence from intracranial depth
recordings in humans. PLoS Comput. Biol. 9, e1002985.

Purdon, P.L., Pierce, E.T., Mukamel, E.A., Prerau, M.J., Walsh, J.L., Wong, K.F., Salazar-
Gomez, A.F., Harrell, P.G., Sampson, A.L., Cimenser, A., Ching, S., Kopell, N.J.,
Tavares-Stoeckel, C., Habeeb, K., Merhar, R., Brown, E.N., 2013.
Electroencephalogram signatures of loss and recovery of consciousness from
propofol. Proc. Natl. Acad. Sci. U. S. A. 110, E1142–E1151.

Rall, W., 1967. Distinguishing theoretical synaptic potentials computed for different
soma-dendritic distributions of synaptic input. J. Neurophysiol. 30, 1138–1168.

Rao, R., Edwards, E., 2008. F1000prime recommendation of Díaz J et al. J. Neurosci.
2007 27 (34), 9238–9245. F1000Prime.com/1127024.

Ray, S., Maunsell, J.H., 2011. Different origins of gamma rhythm and high-gamma
activity in macaque visual cortex. PLoS Biol. 9, e1000610.

Robert, C., Guilpin, C., Limoge, A., 1999. Automated sleep staging systems in rats.
J. Neurosci. Meth. 88, 111–122.

Sato, K., 1957. An interpretation concerning physiological significance of statistical
nature of electroencephalogram. Folia Psychiatr. Neurol. Jpn. 10, 283–294.

Saunders, M.G., 1963. Amplitude probability density studies on alpha and alpha-like
patterns. Electroencephalogr. Clin. Neurophysiol. 15, 761–767.
585
Schmidt, R., LaFleur, K.J., de Reus, M.A., van den Berg, L.H., van den Heuvel, M.P., 2015.
Kuramoto model simulation of neural hubs and dynamic synchrony in the human
cerebral connectome. BMC Neurosci. 16, 54.

Schwartz, M., Bennett, W.R., Stein, S., 1966. Communication Systems and Techniques.
McGraw-Hill, New York, NY.

Singer, W., Gray, C.M., 1995. Visual feature integration and the temporal correlation
hypothesis. Annu. Rev. Neurosci. 18, 555–586.

Steriade, M., Datta, S., Par�e, D., Oakson, G., Curr�o Dossi, R.C., 1990. Neuronal activities in
brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical
systems. J. Neurosci. 10, 2541–2559.

Stern, J.M., Engel, J., 2005. Atlas of EEG Patterns. LWW, Philadelphia, PA.
Strogatz, S.H., 2000. From kuramoto to crawford: exploring the onset of synchronization

in populations of coupled oscillators. Physica D 143, 1–20.
Tao, J.D., Mathur, A.M., 2010. Using amplitude-integrated eeg in neonatal intensive care.

J. Perinatol. 30, S73–S81.
Terzano, M.G., Mancia, D., Salati, M.R., Costani, G., Decembrino, A., Parrino, L., 1985.

The cyclic alternating pattern as a physiologic component of normal nrem sleep.
Sleep 8, 137–145.

Vanderwolf, C.H., 1969. Hippocampal electrical activity and voluntary movement in the
rat. Electroencephalogr. Clin. Neurophysiol. 26, 407–418.

Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J., 2001. The brainweb: phase
synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239.

Vertes, R.P., 2005. Hippocampal theta rhythm: a tag for short-term memory.
Hippocampus 15, 923–935.

von der Malsburg, C., 2000. The what and why of binding: the modeler's perspective.
Neuron 24, 95–104, 111.

Ward, L.M., 2002. Dynamical Cognitive Science. MIT Press, Cambridge, MA.

http://refhub.elsevier.com/S1053-8119(18)30063-6/sref45
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref45
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref46
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref46
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref46
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref47
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref47
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref47
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref47
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref48
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref48
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref48
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref48
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref49
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref50
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref50
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref50
http://F1000Prime.com/1127024
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref52
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref52
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref53
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref53
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref53
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref54
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref54
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref54
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref55
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref55
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref55
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref56
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref56
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref56
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref57
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref57
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref58
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref58
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref58
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref59
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref60
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref61
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref61
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref61
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref62
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref62
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref62
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref63
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref63
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref63
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref63
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref64
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref64
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref64
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref65
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref65
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref65
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref66
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref66
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref66
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref67
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref67
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref67
http://refhub.elsevier.com/S1053-8119(18)30063-6/sref68

	Envelope analysis links oscillatory and arrhythmic EEG activities to two types of neuronal synchronization
	Introduction
	Methods
	Results
	Discussion
	CVE as a measure of gaussianity and signal morphology
	Envelope characterization space
	Concluding remarks

	Acknowledgments
	References


