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Abstract—The time characteristics of the seismic source are

usually neglected in tsunami modeling, due to the difference in the

time scale of both processes. Nonetheless, there are just a few

analytical studies that intended to explain separately the role of the

rise time and the rupture velocity. In this work, we extend an

analytical 1 ? 1 D solution for the shoreline motion time series,

from the static case to the kinematic case, by including both rise

time and rupture velocity. Our results show that the static case

corresponds to a limit case of null rise time and infinite rupture

velocity. Both parameters contribute in shifting the arrival time, but

maximum runup may be affected by very slow ruptures and long

rise time. Parametric analysis reveals that runup is strictly

decreasing with the rise time while is highly amplified in a certain

range of slow rupture velocities. For even lower rupture velocities,

the tsunami excitation vanishes and for larger, quicker approaches

to the instantaneous case.
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1. Introduction

The study of tsunamis from analytical approaches

has been treated for decades (e.g. Kajiura 1970;

Carrier and Greenspan 1958; Synolakis 1987; Kâno-

ğlu 2004; Madsen and Schaffer 2010; Fuentes et al.

2013; Fuentes 2017). However, just a few analytic

studies involve explicit time characteristics of the

generation process with applications to tsunamis

triggered by earthquakes (Hammack 1973; Dutykh

and Dias 2007; Todorovska and Trifunac 2001;

Dutykh and Dias 2009). The assumption of neglect-

ing temporal effects comes from the fact that tsunami

propagation velocities are by far slower than the

rupture (Kajiura 1981). Kajiura (1981) demonstrated

that there was equivalence between generating a

tsunami from a static seafloor displacement or from a

dynamic one, because of the much lower velocity of

the tsunami propagating through the source. Since

then, this term has not been a subject of importance in

tsunami analytical modeling.

The evidence of a variety of slow earthquakes

(Ide et al. 2007) suggests at least examining and

testing this hypothesis. The 2004 Sumatra–Andaman

megathrust earthquake has been studied by many

authors investigating the relation between earthquake

and tsunami generation (Ammon et al. 2005; Lay

et al. 2005; Stein and Okal 2005). These studies

showed that there is a slow component on the rupture

towards the north, according to Lay et al. (2005). The

main excitation of the tsunami was located around

500 km from the epicenter source occurring within

the first 500 s. Then, the rupture shows a slow com-

ponent in the next 700–800 km and the Bengal bay

brings special attention because there are large runup

heights, but no high-frequency earthquake was radi-

ated, and buildings did not show signs of damage

(Lay et al. 2005). This slow component of the rupture

may play an important role in the tsunami generation.

Effects of tsunami amplification along the Japa-

nese coastline were observed by Imai et al. (2010) by

modeling delayed ruptures along the Nankai trough

where they caused the sub-faults to have a temporal

delay resulting in the worst case scenario. This

approach could be thought as the use of a variable

rupture velocity. Satake et al. (2013) performed a

Multi time-window inversion to resolve the time

history of the slip of the 2011 Tohoku-Oki earth-

quake, with constant rupture velocity. They observed
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that the best delayed slip model better explained the

coastal tsunami heights than the instantaneous slip

model, which overestimated them. Fukutani et al.

(2016) studied the uncertainties in tsunami estima-

tions due to kinematic rupture parameters. In

particular, they considered the rupture origin location

and velocity along the strike direction. These kinds of

studies are practical for probabilistic tsunami hazard

assessments.

Regarding the analytical approach, Todorovska

and Trifunac (2001) studied the problem of a hump

seafloor deformation with constant rupture velocity

and instantaneous source (no rise time). They found

that wave amplification occurs when rupture velocity

is comparable with tsunami velocity. The attributed

mechanism of amplification was wave focusing. On

the other hand, Dutykh and Dias (2007) modeled a

seafloor deformation with a finite rise time, but

simultaneously along the fault plane (instantaneous

rupture). Saito and Furumura (2009) included the

source duration to obtain a criterion, in terms of the

fault dimensions and depth, for discriminating when a

dynamic generation should be preferred over a static

initial condition. Saito (2013) incorporated the rise

time to evaluate the influence of dynamic tsunami

generation over the ocean-bottom pressure evolution.

This is useful when using in combination with ocean-

bottom pressure gauges to estimate the water dis-

placement. Nevertheless, all those studies were

applied in a constant depth ocean, with the 2 ? 1 D

linear potential theory. In this work, we trade-off one

spatial dimension for bathymetry complexity. We

consider a sloping beach model, which is suitable for

earthquakes in subduction zones that triggers near-

field tsunamis.

Geist (1998) reviewed the effects of rise time,

rupture velocity, and dynamic overshooting. He used

the definition of t� as a dimensionless number from

Hammack (1973). If this t� � 1, then the static dis-

placement is transferred immediately to the seafloor.

The other extreme t� � 1 is rare. He found that the

runup decreases if the rise time increases, and the

spatial variation of the rise time has almost no effects

on the tsunami generation. Rise time value is between

1 and 20 s for subduction earthquakes (Geist 1998).

The rupture time of the source is limited basically by

two physical parameters: L and Vr, where L is the

total rupture length and Vr is the rupture velocity. The

source duration and the rupture time are affected

depending on the rupture mode: unilateral and bilat-

eral rupture propagation. Along-strike tsunami has a

faster velocity in the ocean-ward direction because

the bathymetry is deeper in that direction. Rupture

modes are also important in tsunami directivity. It

was demonstrated by Bouchon (1980) that, in the

near field, there is a dynamic overshoot in the vertical

displacement field to up-dip propagation of the rup-

ture for an inverse fault. If the lower layer has low

velocity value then the overshoot acquires an oscil-

latory behavior. Geist (1998) simulated this effect

using the formula

uzðx; tÞ ¼ u0z 1� cosðx0tÞe�
t
tR

� �
;

which is a ramp-like function including oscillations.

Given that, the tsunami occurs in a much longer

period of time than tR.This should have a very small

effect in the tsunami generation.

In this study, we will include rise time and rupture

time into analytical modeling in order to study the

amplification on the tsunami generation and runup.

2. Mathematical Formulation

We consider the forced linear shallow water

equation in a sloping beach (Fig. 1):

gtt � agðxgxÞx ¼ g0tt; ð1Þ

where gðx; tÞ is the water surface elevation, a ¼:

tanðbÞ is the slope of the beach, g is the gravity

Figure 1
Sketch of the sloping beach domain and variables of the 1 ? 1 D

model
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acceleration, and g0ttðx; tÞ is the forcing term applied

to the sea bottom.

Tuck and Hwang (1972) solved Eq. (1) by using

Hankel and Laplace transforms. The solution is

gðx; tÞ ¼
Z 1

�1
J0ð2k

ffiffiffi
x

p
Þ
Z 1

�1
J0ð2k

ffiffiffi
n

p
Þg1ttðn; tÞ�

sinð ffiffiffiffiffi
ag

p
ktÞHðtÞdndk;

where

g1ðx; tÞ ¼ g0ðx; tÞ þ ½gðx; 0Þ þ tgtðx; 0Þ�HðtÞ;

HðtÞ is the Heaviside step function, J0ð�Þ is the zero-
order cylindrical Bessel function, and * denotes the

convolution product in time.

2.1. Source Time-Dependent Solution

To model a non-instantaneous tsunami genera-

tion, we set null initial conditions,

gðx; 0Þ ¼ gtðx; 0Þ ¼ 0; and g0ðx; tÞ ¼ f0ðxÞTðx; tÞ,
where f0ðxÞ is the final shape of the seafloor

deformation and Tðx; tÞ 2 ½0; 1� is a temporal descrip-

tion on how f0ðxÞ is performed.T is directly related

with the temporal description of the seismic source

function. We define

Tðx; tÞ ¼ t � tV

tR
HðtR þ tV � tÞ þ Hðt � tR � tVÞ

� �

Hðt � tVÞ;

where tR is the rise time, tVðxÞ ¼ x�xRj j
Vr

is the rupture

time at location x for a bilateral rupture propagating

with a constant velocity Vr, starting from an origin xR
(Fig. 2). For simplicity, we consider tR constant.

Computing Ttt in the sense of the distributions, we

get

Ttt ¼
1

tR
½dðt � tVÞ � dðt � tV � tRÞ�:

Defining

Mðf; sÞðtÞ ¼ 2ffiffiffiffiffi
ag

p
Z 1

0

Hðag½t � sðnÞ�2 � 4nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ag½t � sðnÞ�2 � 4n

q fðnÞdn;

and following the same procedure as in Fuentes

(2017) with each term, the approximated shoreline

motion provided by the linear theory, gSðtÞ ¼: gð0; tÞ,
can be written as

gSðtÞ ¼
1

tR
Mðf0; tVÞðtÞ �Mðf0; tVÞðt � tRÞ½ �: ð2Þ

From there, we can also obtain expressions for

quantifying individual effects of tR and Vr

lim
tR!0

gSðtÞ ¼ otMðf0; tVÞðtÞ; ð3Þ

lim
Vr!1

gSðtÞ ¼
1

tR
½Mðf0; 0ÞðtÞ �Mðf0; 0Þðt � tRÞ�;

ð4Þ

where Eqs. (3) and (4) are for null rise time and

infinite rupture velocity, respectively.

Note that

lim
tR ! 0

Vr ! 1

gSðtÞ ¼ lim
Vr ! 1
tR ! 0

gSðtÞ

¼ 2ffiffiffiffiffi
ag

p ot

Z 1

0

Hðagt2 � 4nÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
agt2 � 4n

p f0ðnÞdn

¼ 1

2

o

ot
t

Z 1

0

f0
1
4
agt2y

� �
ffiffiffiffiffiffiffiffiffiffiffi
1� y

p dy

	 

;

ð5Þ

which is the same as the solution for the static case

derived by Fuentes (2017).It is also clear to observe

that

(a)

(b)

Figure 2
a Scheme of realistic setting of a subduction zone (Not to scale).

The rupture origin location is denoted by xR. b Source time

function Tðx; tÞ for a given x
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lim
Vr!0

gSðtÞ ¼ lim
tR!1

gSðtÞ ¼ 0:

2.2. The Seabed Deformation

As mentioned, the final shape of the initial

condition is denoted by f0ðxÞ. In tsunami modeling,

the Okada’s equations are widely used to compute the

static deformation due to a finite fault in 3D (Okada

1985). It provides a solution for the problem of static

deformation in an elastic half-space. Freund and

Barnett (1976) solved the 2D problem of surface

deformation and their solution can also handle non-

uniform slip distributions.

2.2.1 Uniform Slip

We take a pure dip-slip (rake angle is 90�) fault of
width W , length L, dip angle d, slip U in a medium of

Poisson ratio m.The fault is oriented parallel to the

coast, so the strike angle can be fixed, in our case, to

180� due to the axis orientation chosen (Fig. 3a). In

the case of a pure dip-slip fault, the slip vector

reduces to ðU1;U2;U3Þ ¼ ð0;U; 0Þ:
Both studies used different coordinate system, and

then they will be reoriented to our reference system.

Placing the lower corner of the fault in

� L
2
; 0;�d

� �
and letting L tends to infinity, the

Okada’s solution for the seabed displacements can

be reduced to the following expressions:

UzðxÞ ¼ uz
x

d

� �
� uz

x�W cosðdÞ
d �W sinðdÞ

� �
; ð6aÞ

UhðxÞ ¼ uh
x

d

� �
� uh

x�W cosðdÞ
d �W sinðdÞ

� �
: ð6bÞ

Originally, the retained variable should be y, but

we renamed it as x to keep consistency, and it

represents the variable along the half-space. uz and uh
are the dislocations defined as

uzð�xÞ ¼
U

p

�
sinðdÞ arctanð�xÞ � cosðdÞ � �x sinðdÞ

1þ �x2

þð3� 8mÞd sinðdÞ
�
;

ð7aÞ

uhð�xÞ ¼
U

p

�
cosðdÞ arctanð�xÞ � sinðdÞ þ �x cosðdÞ

1þ �x2

þ sinðdÞ þ d cosðdÞ � 2ð1� 2mÞd sinðdÞf2d tanðdÞ þ 1g
�
:

ð7bÞ

(�x denotes a ratio between the horizontal distance and

depth of the fault endpoint) which are the same

expressions obtained by Freund and Barnett (1976)

for uniform slip and corrected Madariaga (2003). It

must be noted that constant terms in the previous

equations were ignored by other authors. However, it

is not quite important because the final displacement

Ui is the difference of dislocations ui at the endpoints

(a) (b)

Figure 3
a Geometry and spatial orientation of the fault plane [adapted from Okada (1985)]. b Profile of a dip-slip fault with slip distribution DðsÞ.

[adapted from Freud and Barnett (Freund and Barnett 1976)]
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of the fault (i ¼ z; h). Here, we will keep them for

completeness.

In theworst case, the fault breaks up to the free surface

of the half-space. It is well-known that a singularity is

produced, but it is still possible to retain a closed form.

This is obtained by letting d tends to W sinðdÞþ,

UzðxÞ ¼
U

p

�
sinðdÞ arctan x

d

� �

� d d cosðdÞ � x sinðdÞ½ �
x2 þ d2

� C1ðx�W cosðdÞÞ
�
;

Uh xð Þ ¼ U

p

�
cosðdÞ arctan x

d

� �

� d x cos dð Þ þ d sin dð Þ½ �
x2 þ d2

� C2 x�W cos dð Þð Þ
�
;

where d ¼ W sinðdÞ,

C1ðzÞ ¼:
p
2
sinðdÞsgn(zÞ þ cosðdÞ1f0gðzÞ;

C2ðzÞ ¼:
p
2
cosðdÞsgn(zÞ þ sinðdÞ1f0gðzÞ;

sgn(zÞ is the sign function and 1AðzÞ is the indicator

function.

Following Tanioka and Satake (1996), the com-

plete vertical displacement of the ocean bottom

corresponds to the vertical component UzðxÞ plus

the horizontal advection contribution. Also, we must

translate the solutions to our coordinate system.

Defining the trench axis location at x0 and

xe ¼: x0 �W cosðdÞ;, we finally obtain

f0ðxÞ ¼ Uzðx� xeÞ þ aUhðx� xeÞ: ð8Þ

We can observe, when the term aUh is neglected,

that the maximum slip transformed into vertical

displacement occurs in the singularity (Ward 2011);

thus

f0ðx0Þ
U

¼ sinðdÞ 1� d
p

� �
:

The optimal dip angle that maximizes the uplift is

63:76� giving 58% of slip converted into vertical

displacement.

2.2.2 Non-uniform Slip

We call s to the local variable along the fault and

uzðx; sÞ ¼
1

p

�
sinðdÞ arctan x� s cosðdÞ

s sinðdÞ

� �

þ sxsin2ðdÞ
x2 � 2sx cosðdÞ þ s2

�
;

ð9aÞ

uhðx; sÞ ¼
1

p

�
cosðdÞ arctan x� s cosðdÞ

s sinðdÞ

� �

þ ½s� x cosðdÞ�s sinðdÞ
x2 � 2sx cosðdÞ þ s2

�
:

ð9bÞ

Then, for a general slip distribution DðsÞ and a

fault of width W buried at a distance a from the

origin, the final displacements are

UzðxÞ ¼
Z aþW

a

uzðx; sÞD0ðsÞds; ð10aÞ

UhðxÞ ¼
Z aþW

a

uhðx; sÞD0ðsÞds: ð10bÞ

Freund and Barnett (1976) proposed, as example,

the following normalized slip distribution:

D
0 ðrÞ ¼

12
q3
ðq� rÞr; r\q

12

ð1�qÞ3 ðr � 1Þðr � qÞ; r	 q

(
; ð11Þ

where r ¼ s�a
W

and q 2 ð0; 1Þ.
In our coordinate system, a ¼ d

sinðdÞ �W and the

final vertical displacement is

f0ðxÞ ¼ Uzðx� xeÞ þ aUhðx� xeÞ; ð12Þ

with xe ¼ x0 þ a cosðdÞ.

3. Numerical Tests

3.1. A Classical Mw ¼ 8:0 Earthquake

In this section, we will set d ¼ 20� being a typical

value in the Chilean subduction zone (Hayes et al.

2012). Once the dip angle is fixed, U and W are free

to be chosen. Nonetheless, to keep realistic earth-

quake fault scales and to diminish the number of

parameters, we use the scaling laws from Blaser et al.

(2010), assuming a constant rigidity of the medium

¼ 30GPa. Then,

logðWÞ ¼ �1:86þ 0:46Mw;

logðUÞ ¼ �3:15þ 0:47Mw;

Vol. 175, (2018) Implications on 1 ? 1 D Tsunami Runup Modeling due to Time Features 1397



where Mw is the moment magnitude, W is in kilo-

meters, and D is in meters. This gives W 
 66 km

and D 
 4:1 m.

Figure 4 displays the shoreline motion due to a

typical Mw ¼ 8:0 earthquake for a case with uniform

slip and another with non-uniform slip distribution

concentrated up-dip. One can see a clear difference in

the deformation profile when assuming uniform or

non-uniform slip. For the values chosen in the

modeling, the results show that in terms of the

shoreline motion, it presents larger peak-to-peak

amplitudes when considering the combined effect of

tR and Vr than in the static case. In the case of the

uniform slip fault, the amplification is 11% higher

when comparing a combined effect of rupture

velocity and rise time with a static initial condition.

The case of non-uniform slip presents a 15% of

amplification. These calculations were made with

values indicated in the caption of Fig. 4.

In Figs. 5 and 6, we display the complete

variation of the maximum runup relative to the static

case for models with rupture velocity and rise time

for four modes of rupture, for two slip distributions:

uniform and heterogeneous (Fig. 4). Figure 6 shows

that the amplification becomes very important for low

rupture velocities (of the order of the tsunami

velocity). For very slow ruptures, the rise-time has

little affect on the maximum runup. For larger rupture

(a) (b)

(c) (d)

Figure 4
a Vertical displacement for a Mw ¼ 8:0 earthquake (Eqs. 6a–8) computed at the sea bottom. Inner plot depicts the normalized uniform slip

distribution used. b Vertical displacement for a Mw ¼ 8:0 earthquake (Eqs. 9a, 9b, 10a, 10b, 12) computed at the sea bottom. Inner plot

depicts the normalized skewed ðq ¼ 0:3Þ slip distribution used (Eq. 11). c Shoreline motion induced by a for different cases, with

Vr ¼ 2 km=s, xR ¼ 80 km (asymmetric bilateral rupture) and tR ¼ 15 s (Eqs. 2–5). d Shoreline motion induced by b for different cases, with

Vr ¼ 2 km=s, xR ¼ 80 km (asymmetric bilateral rupture) and tR ¼ 15s (Eqs. 2–5)

1398 M. Fuentes et al. Pure Appl. Geophys.



velocities, when rise-time increases, the maximum

runup tends to be in the order of the value of the static

case. The complete behavior of these parameters will

be examined in detail in the next section.

3.2. Parametric Analysis

There are many parameters involved in the whole

problem of the tsunami runup; nonetheless, we focus

on those aspects related to the temporal evolution of

the source. Since the analytical solution is dependent

on the initial deformation profile, we keep fixed that

shape by using the same as one set in the previous

subsection.

3.2.1 Rise Time

We callRtR the maximum runup induced by an initial

condition applied with a rise time tR, and t1 the time

where it is attained.

RtR ¼ 1

tR
½Mðf0; tVÞðt1Þ �Mðf0; tVÞðt1 � tRÞ�:

Similarly, we call R0 the maximum runup in the

case of instantaneous rise of the seafloor deformation

and t0 the time where it is attained.

R0 ¼ otMðf0; tVÞðt0Þ:

By virtue of the mean value theorem, there exist

�t 2 ðt1 � tR; t1Þ such that

RtR ¼ otMðf0; tVÞð�tÞ:

Since R0 is the maximum of the time series,

RtR �R0

which is true for any rise time. This result also shows

that the rise time introduces a time delay in the runup.

Figure (5) confirms the decreasing behavior of the

ratio RtR=R0 with increasing rise time (Fig. 5a) and

also the trend that follows the time shift of the

maximum runup relative to the static case (Fig. 5b).

This test was performed with infinite rupture velocity,

(a) (b)

Figure 5
Effect of the rise time in the runup height and time shift for an instantaneous rupture. a Variation of the normalized runup (with respect to the

static case) with variable rise time for homogeneous and heterogeneous slip distributions. The heterogeneous slip distribution was taken from

eq. (11) with q ¼ 0:3. b Same as a for the time shift relative to the peak runup time of the static case
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which makes the origin location of the rupture xR
irrelevant.

3.2.2 Rupture Velocity

In this case, an analytical conclusion from the

equations is more complicated to obtain. Neverthe-

less, we examine a wide range of rupture velocities

where amplification is observed. Again, the results

are compared with respect to the static case, and the

rise time is set to zero in all these simulations.

Figure 6 shows the behavior of the amplification

of the runup, relative to the static case, as a function

of the rupture velocity. The variation with the rupture

origin location reveals that the maximum amplifica-

tion occurs for a bilateral rupture that initiates at the

middle of the fault. Also, the amplification is greater

for a rupture propagating downdip (updip origin)

instead the opposite.

3.2.3 Combined Effect of Vr and tR

As a summary, Figs. (7, 8) present the whole

variation of the runup in terms of the rupture velocity

and rise time. For instance, level curve ‘‘1’’ represents

the isocontour where the effects of the rupture

velocity and rise time are perfectly compensated.

Nevertheless, as it can be deduced from the previous

subsection, the worst-case scenario lies in the zone of

low rupture velocities (0.3–0.5 km/s) and null rise

time. Lower velocities were also tested (0.1–0.3 km/

s), but numerical treatments for the integration

become quite complex, even though the runup is still

amplified, as founded by Todorovska and Trifunac

(2001). In general, for regular earthquakes, the

rupture velocity varies around 2.0–2.5 km/s and the

rise time about 1–20 s (Kanamori and Brodsky 2004;

Geist, 1998). This means that according to our model,

the time dependency of the earthquake source is

responsible for 15–20% of the amplification.

4. Discussion and Conclusions

Since continuous GPS and broadband seismome-

ter observations have increased, seismologists have

detected and observed several types of slow earth-

quakes or non-regular earthquakes such as slow slip

Figure 6
Amplification of the runup due to the rupture velocity considering uniform and non-uniform slip distributions. Each curve is associated with a

different rupture origin location xR. Both initial shapes were considered from subfigures (4a, b) with null rise time

1400 M. Fuentes et al. Pure Appl. Geophys.



events (SSE), episodic and tremors, slip earthquakes

(ETS) (e.g. Miller et al. 2002; ; Beroza and Ide 2011),

silent earthquakes (Kanamori and Stewart 1979), and

tsunami earthquakes (Kanamori 1972) in certain

zones around the world. A key question is: Do giant

thrust tsunamigenic earthquakes produce slow rup-

ture (0.1–0.5 km/s) velocities? There is no strong

evidence of observations of such slow earthquake

rupture velocity on tsunamigenic events in subduc-

tion zones. However, this is related to observational

capabilities rather than no existence of such

phenomena.

Large tsunamigenic earthquakes often produce

large aftershocks immediately after the mainshock,

then instruments are still reverberating for many

hours. This complicates our observations of such

small wave amplitudes that carry information on slow

earthquake rupture velocity. Examples of this are the

giant earthquakes of Valdivia 1960 and Sumatra

2004, both ruptures are very complex. The moment

rate functions for both events have been subject of

study (Kanamori and Cipar 1974; Lay et al. 2005;

Ammon et al. 2005). These tsunamigenic earthquakes

have shown slow rupture velocities; however, due to

instrumental limitations, it is not well understood nor

how slow they were, even the rupture area for both

events were not determined until months or years

after the mainshock (Barrientos and Ward 1990; Stein

and Okal 2005).

For the giant 2004 Sumatra earthquake some

runup observations are still not well explained, not

just because of the limited resolution of the bathy-

metry or topography. During this event the Bay of

Bengal did not experience structural damage and

intensities were documented at levels I and II, sug-

gesting the presence of a very slow rupture

(a) (b)

(c) (d)

Figure 7
Color map of the maximum runup relative to the static case from Fig. 4a for four different rupture origins. a xR ¼ 60 km (unilateral up-dip). b

xR ¼ 80 km (asymmetric bilateral). c xR ¼ 100 km (asymmetric bilateral). d xR ¼ 120 km (unilateral down-dip). Some level curves are

displayed in red for visual guidance
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component considering the inundation reached there

(Lay et al. 2005). In this work, we isolate the effect of

earthquake rupture velocity, rise time, and runup due

to a rupture propagating along the dip direction. We

computed the runup amplification due to a very slow

moment rate in thrust earthquakes along the dip

direction. We are aware of other amplification runup

effects such as resonance in bays, shelf resonance,

and edge waves. These effects are not taken into

account in our analytical formulation; instead, we

explore the effects on the runup due to source

parameters controlling the rupture kinematic. The

tsunami amplitude is larger with a slower rupture

velocity (0.1–0.5 km/s) than with a regular one

(2.0–2.5 km/s).

Due to the difficult equation treatment, we are still

limited to obtain a solution including the source time

function in the 2 ? 1 D approximation. Nonetheless,

with this 1 ? 1 D solution we can still capture some

overall features of the seismic source, and it has the

advantage over previous studies that consider a

sloping beach bathymetry rather than a flat ocean and

the novelty of combining two temporal parameters at

the same time.

We have demonstrated using a simple source

model that time evolution of slip can play an

important role in the tsunami modeling and its con-

sequent runup. It cannot be neglected for some cases,

especially when rupture velocities around 0:1�
0:5 km=s can amplify the runup up to five times

compared to the static case. This suggests that the

system ocean-earth resonates with the tsunami wave

periods (tsunami phase velocity rounds 0.2 km/s).

Mega-large earthquakes that present slow rupture

velocities, which have generated enormous tsunamis

in the near-field, might be conditioned by this slow

(a) (b)

(c) (d)

Figure 8
Color map of the maximum runup relative to the static case from Fig. 4b for four different rupture origins. a xR ¼ 60 km (unilateral up-dip). b

xR ¼ 80 km (asymmetric bilateral). c xR ¼ 100 km (asymmetric bilateral). d xR ¼ 120 km (unilateral down-dip). Some level curves are

displayed in red for visual guidance
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rupture velocity component. This could be an

explanation for the low earthquake intensity and the

abnormal runup heights in Bengal Bay during the

2004 Mw 9:3 Sumatra earthquake. Further studies

taking into account the combined effects of ruptures

in the strike and dip directions are necessary to

quantify accurately the amplification factors.
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