Mid-latitude trans-Pacific reconstructions and comparisons of coupled glacial/interglacial climate cycles based on soil stratigraphy of cover-beds

B.V. Alloway a, b, *, P.C. Almond c, P.I. Moreno d, E. Sagredo e, M.R. Kaplan f, P.W. Kubik g, P.J. Tonkin h

a School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand
b Centre for Archaeological Science (CAS), School of Earth and Environmental Sciences, University of Wollongong, Wollongong, NSW, 2522, Australia
c Department of Soil and Physical Sciences, Faculty of Agriculture and Life Sciences, PO Box 8084, Lincoln University, Canterbury, New Zealand
d Instituto de Ecología y Biodiversidad, Departamento de Ciencias Ecológicas, Universidad de Chile, Casilla 653, Santiago, Chile
e Instituto de Geografía, Pontificia Universidad Católica de Chile, Av. Vicuna Mackenna, 4860, Santiago, Chile
f Lamont-Doherty Earth Observatory Columbia University, Palisades, NY, 10964-8000, United States
g Paul Scherrer Institut, c/o Institute of Particle Physics, HPK H30, ETH Hoenggerberg, CH-8093, Zurich, Switzerland
h 16 Rydal Street, Christchurch 8025, New Zealand

ARTICLE INFO

Article history:
Received 19 December 2017
Received in revised form 6 April 2018
Accepted 6 April 2018
Available online 17 April 2018

Keywords:
Tephra
Andic
Loess
Quaternary
Multisequal soils
Developmental upbuilding
Topdown weathering
Southern Chile
Northwest Patagonia
South Westland

ABSTRACT

South Westland, New Zealand, and southern Chile, are two narrow continental corridors effectively confined between the Pacific Ocean in the west and high mountain ranges in the east which impart significant influence over regional climate, vegetation and soils. In both these southern mid-latitude regions, evidence for extensive and repeated glaciations during cold phases of the Quaternary is manifested by arrays of successively older glacial drift deposits with corresponding outwash plain remnants. In South Westland, these variably aged glacial landforms are mantled by layered (multisequal) soils characterised by slow loess accretion and pedogenesis in an extreme leaching and weathering environment. These cover-bed successions have undergone repeated coupled phases of topdown and upbuilding soil formation that have been related to fluctuating cycles of interglacial/warm and glacial/cold climate during the Quaternary. In this study, we recognise multisequal soils overlying glacial landforms in southern continental Chile but, unlike the spodic (podzolic) soil sequences of South Westland, these are of dominantly volcanogenic (andic) provenance and are very similar to multisequal soils of andic provenance that predominate in, and adjacent to, areas of rhyolitic to andesitic volcanism in North Island, New Zealand. Here we develop a soil-stratigraphic model to explain the observed occurrence of multisequal soils mantling dominantly glacial landforms of southern continental Chile. Based on proxy data from southern Chile, we propose that persistent vegetation cover and high precipitation on the western side of the Andes, during colder-than-present episodes tends to suppress the widespread production of glacially-derived loessial materials despite the pervasive occurrence of glacial and glacio-fluvial deposits that have frequently inundated large tracts of this landscape during the Quaternary. Given the lack of loess cover-beds that have traditionally assisted in the relative dating of glacial episodes prior to the Late Quaternary, surface exposure dating techniques could provide another chronological alternative to address this issue. However, there have been two main obstacles to successfully apply this dating technique in Patagonia. First, minimum exposure ages may be obtained on moraines older than the last glacial cycle due to erosion, although dating outwash plains is more robust. Second, on the wet western side adjacent to the Andes, persistent vegetation cover during both glacial and post-glacial times, as well as widespread inundation by volcanic mass-flows, appear preventative. We make a case that soil genesis within this region appears to be dominated by a constant flux of intermittently erupted Andean-sourced tephra which has continued to upbuild soils at the ground surface separated by intervals where topdown weathering processes are intensified. As already demonstrated by New Zealand studies, multisequal soil successions have a clear implied connection to coupled glacial and interglacial climate cycles of the

* Corresponding author. School of Environment, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
E-mail address: brent.alloway@gmail.com (B.V. Alloway).

https://doi.org/10.1016/j.quascirev.2018.04.005
0277-3791/© 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Southern continental Chile and South Westland, New Zealand, share similar southern mid-latitude positions within the southern westerly wind (SWW) belt and are located immediately westward of north-south trending high (>2000-m above sea level) mountain ranges that form significant topographic barriers influencing precipitation in these regions. At both locations, evidence for extensive and repeated glaciations during cold climate phases of the Quaternary is manifested in the landscape by an impressive array of glacial drift deposits with corresponding outwash plains.

In South Westland (~43°S), densely forested, fluvo-glacial landforms and associated soil cover-bed successions have been studied in detail (Almond, 1996; Almond and Tonkin, 1999; Almond et al., 2001) and this research has contributed to the formulation of a robust regional glacial chronostratigraphic framework (e.g. Nathan et al., 2002; Cox and Barrell, 2007). Across the Pacific Ocean and at similar southern latitude, the configuration and internal architecture of ice lobes in southern continental Chile (northwest Patagonia) is well-known based largely from seminal glacial morphologic maps (i.e. Caldenius, 1932; Andersen et al., 1999; Denton et al., 1999a,b). In contrast to the South Westland glaciated landscape, however, the soil cover-bed stratigraphies that mantle this glacial sequence have not been documented in any detail. The closest related studies are well to the south on the east arid side of the Andes (Douglass and Bockheim, 2006). In our study, we identify the first occurrence of multisequential soils mantling these glacial landforms in southern continental Chile, and develop a soil-stratigraphic model based on soil genesis analogues from South Westland (~43°S) and Taranaki-Wanganui (~39°S) regions in New Zealand, to provide new insights to better characterise and define the glacial chronostratigraphy in southern continental Chile.

2. Soil and loess stratigraphy

Soil formation is most often presented as occurring in a top-down sense, i.e., a set of processes acting on a pre-existing body of sedimentary or volcanic deposits or rock (the parent material) such that the degree and depth of alteration increases with time with a downward moving “front” (Simonsen, 1959). Such a scenario is clearly a simplification that nevertheless can hold true for many situations, but in aggrading landscapes where material is intermittently added to the ground surface this conceptual scheme is generally unsuitable (Nikiforoff, 1949; Raeside, 1964). Soils on surfaces incrementally mantled by loess, tephra, overbank deposits, colluvium or other materials form contemporaneously with the geological additions (of sediment, tephra, etc.), i.e. these soils formed by upbuilding (Nikiforoff, 1949). The degree of soil expression is dependent on the relative rates of geological accumulation and pedogenic alteration. Where the former dominates, the latter deposits are minimally modified and the geological material thickens without significant soil alteration. This scenario has been referred to as retardant upbuilding (Johnson and Watson-Stegner, 1987). Where rates of geological accumulation are low but where environmental factors drive high rates of pedogenesis (such as in warm and moist climates) coeval geological accumulation and soil modification result in thick, strongly expressed soils (developmental upbuilding: Johnson et al., 1990; Lowe and Tonkin, 2010; Lowe et al., 2015). An important feature of upbuilding pedogenesis is that all depth increments of an upbuilding soil have experienced processes characteristic of surface horizons, such as melanisation, acidification, intense bioturbation and eluviation. As a surface soil horizon (typically an A horizon) becomes progressively buried by ongoing sediment or tephra accumulation it moves into a zone characterized by subsurface pedogenic processes (e.g. illuviation) and different moisture, temperature and bioturbation regimes. Moreover, features inherited from the near-surface pedogenic processes may modulate subsurface pedogenesis (McDonald and Busacca, 1990). Phases of upbuilding and topdown pedogenesis alternated during climatically modulated loess accumulation in the Quaternary. In relatively dry continental regions with extensive loess sources, loess accumulation in cold periods resulted in retardant upbuilding, which was followed by topdown pedogenesis in the warm periods when loess accumulation effectively ceased. These circumstances yielded the so-called loess-paleosol sequences of Europe, China, North America and the drier eastern side of the Andes (i.e. Chaco–Pampean plains and the northwest mountain environments of Argentina, Paraguay, Brazil, Uruguay, Bolivia; see Zárate, 2003 and references therein). In maritime New Zealand, particularly on the western side of the two main islands, high rainfall results in rapid pedogenesis, and, where loess accumulation rates have been relatively low (Eden and Hammond, 2003), loess accumulation phases resulted in developmental pedogenesis. In these circumstances there is no clear distinction between loess and paleosols; all the loess is altered by pedogenesis to a greater or lesser extent and at times there is pedogenic overprinting between loess sheets (Lowe et al., 2015). On the western side of North Island multiple incremental contributions of weatherable andesitic tephra have enhanced pedogenesis. During cold phases, developmental upbuilding occurred during accumulation of mixed andesitic tephra-aeolian deposits (Sy beds of Alloway et al. (1992a), now manifested as weak-to moderately-structured, yellowish-brown moderately allophanic Bw horizons). Occurring within intervening warm phases, developmental tephra upbuilding continued but the intensity of pedogenesis increased. This scenario resulted in the accumulation of strongly weathered andesitic tephra soil material now manifested as well-structured, reddish-brown highly allophanic Bw horizons (Sr beds of Alloway et al. (1992a)).

On the West Coast of New Zealand’s South Island, very high rainfall rates (>3-m annually) promote rapid pedogenesis (Tonkin and Basher, 2001) and consequently the relatively thin loess sheets characteristic of the region are strongly pedogenically altered from the overprint of developmental upbuilding and topdown pedogenesis. In well-drained environments, buried soils are identified by the occurrence of repeating E-Bs horizon pairs (Almond et al., 2001) (Fig. 1). At these sites, mineralisation of organic matter from the A horizon as it becomes buried reveals a bleached horizon subsequently identified as a buried E horizon (e.g., ßE in the New Zealand Soil Classification, (NZSC: Hewitt, 2010), or Eb horizon in ‘Soil Taxonomy’ (Soil Survey Staff, 2014); see Fig. 1 caption for further explanation). Further addition of loess...
results in weathering and translocation of Fe and Al from the upbuilding A and E horizon to lower increments. The result is an upbuilding Bs horizon (Almond and Tonkin, 1999). On less well-drained fluvioglacial outwash terraces, buried soils are identified by the occurrence of repeating buried A/O/Bh-Er horizon pairs. In the anaerobic subsoils, organic matter in the A/O horizons does not mineralise as it becomes buried and secondary Fe minerals do not accumulate because of the reducing conditions. Aluminium extracted by acid ammonium oxalate solution (Alox) is generally accepted to be associated with nanocrystalline or short-range order minerals (e.g. McKeague, and Day, 1966) and is mobilised at low pH. In the presence of organic ligands, Al ox precipitates at depth, particularly where it can further complex with buried organic matter. When loess addition stops or becomes negligible, topdown modification of the upbuilding soil continues with intensified translocation of Al whereby the maximum concentration of extractable secondary Al develops in the buried A and/or O horizons.

In drier eastern parts of both main islands of New Zealand where loess accumulation rates tend to be higher (Eden and Hammond, 2003) and away from significant tephra inputs, loess sequences take on a character more similar to the more classically described loess-paleosol sequences described for the northern hemisphere as well as for the drier, eastern side of the Andes. The boundaries between loess sheets are defined by the tops of buried soils with an fragiustalf or fragiustept form in ‘Soil Taxonomy’ (Soil Survey Staff, 2014) (Fig. 1). Often loess sheets are in the order of metres-thick (Tonkin et al., 1974) and within a loess sheet there is a clear distinction between basal loess of minimal pedogenic alteration and the overlying soil formed in the upper part of the loess sheet. This stratigraphy represents retardant upbuilding during loess accumulation followed by developmental upbuilding in the intervening warm phases. Nonetheless, there is evidence to indicate that the fragipan is at least partly a consequence of pedogenesis during
the loess accumulation phase (Kemp et al., 1998), and that topland pedogenesis results in a range of features including formation of redoximorphic horizons, clay illuvial (Bt) horizons, gley veins between prisms in the fragipan and general degradation of the fragipan (Bruce, 1973, 1996).

The inferred climate control on loess accumulation (upbuilding pedogenesis: developmental or retardant), and cessation of the loess flux (topdown pedogenesis) is supported by paleobotanical studies and chronology. Direct dating of loess has typically been confined by contamination by young carbon of samples submitted for radiocarbon-analysis (Goh et al., 1978), and problems associated with the systematics of luminescence dating (Berger et al., 2001a,b; 2002). However, tephrochronology (Palmer, 1982c; Alloway et al., 1988, 1992a; 2007; Pillans, 1988; Pillans et al., 1993; Eden, 1989; Berryman, 1992; Almond, 1996; Litchfield and Reiser, 2005; Litchfield and Berryman, 2005; Hughes et al., 2009, 2010; Vandergoes et al., 2013) has provided constraining ages for loess sheets and confirmed their deposition during cold climate phases. Pollen and phytolith-based reconstructions of past vegetation show loess accumulation occurred during times of widespread grassland and shrubland vegetation (Raeside, 1964; Kondo et al., 1994; Carter and Reiser, 2005; Carter and Lian, 2006; Almond et al., 2001) whereas topland pedogenesis occurred during periods when taller-statured vegetation, including forest, dominated. Independent well-dated pollen records (Almond et al., 2007 and references therein) have unequivocally shown these vegetation transitions to be climatically controlled such that they have become the basis for defining New Zealand’s climate event stratigraphy (Barrell et al., 2013).

3. Glacial records

3.1. South Westland, New Zealand

In South Westland, six distinct moraines and associated outwash terraces were recognised (Almond, 1996, Almond et al., 2001, Fig. 2), each of which was interpreted to represent a separate glacial advance. Moraines are designated M6, M5, etc. in order of increasing age and their associated outwash terraces are correspondingly designated T6, T5, etc. Relative ages were assigned to moraines using the principle that moraines become progressively younger toward the Southern Alps because early moraines within the range of a later glacial advance are obliterated. The three oldest moraines (M1, M2, and M3) lie within Saltwater Forest and are sub-parallel to the coastline. The age of the youngest moraines (i.e. M6 and M5) were supported by an array of radiocarbon dates (Moar, 1980; Denton et al., 1999b) and also by the occurrence of the ~25.4 ka BP Kawakawa/Oruanui Tephra (KOT; Almond, 1996; Almond et al., 2001; Vandergoes et al., 2013) which has recently been identified distally within the WAIAS Divide ice core, West Antarctica (Dunbar et al., 2017). Loess cover-beds thickened and the number of buried soils increased systematically with the age of the landforms they mantled. A maximum of five loess sheets and morphologically identified soil features were recognised.

Accumulation of South Westland loess sheets has been linked via chronology and palynology to cool/cold climate conditions (Almond, 1996; Almond et al., 2001). Synchronicity of fluvial aggradation and loess accumulation points to the linking mechanism or mechanisms, namely broad, aggrading and unstable outwash plains formed during glacial advances create extensive loess sources. Nonetheless, loess continues to accumulate in the Holocene, albeit slower and more spatially limited (Eger et al., 2011, 2013; Marx and McGowan, 2005), despite rivers being confined to relatively narrow, well-vegetated floodplains. The braided rivers issuing from the Southern Alps range front drain catchments with specific sediment yields exceeding 5000 t km\(^{-2}\)y\(^{-1}\) (Hicks et al., 2011) and their braided and flood-prone channels still provide a significant loess source. At the only site of detailed study, Haast River, Holocene loess forms a narrow loess wedge (c. 1 km-wide) downwind of the predominant westerly-quarter winds (Eger et al., 2012). The rapid downwind thinning implicates the tall rainforest in ‘scrubbing’ of loess from the atmosphere. Contemporary aeolian processes provide insights into the faster and more widespread loess accumulation during stadials. At these times the broad outwash plains forming in front of the glacial termini constituted a larger source area, while other factors such as lower rainfall, shorter-stature vegetation, and stronger winds may have contributed as well.

3.2. Southern continental Chile

Dominant features of the southern continental Chile landscape are ubiquitous moraines, outwash plains and ice-carved lake basins formed by Andean piedmont glaciers during episodes of cold (glacial) episodes through the Quaternary. The extent and relative-ages of glaciated landform-sediment sequences extending over the last glacial period in northwest Patagonia are well known (e.g. Andersen et al., 1999; Denton et al., 1999b). At least three ridge-forming glacial drift deposits have been recognised extending westwards from the Andean range front (Fig. 3). The two oldest deposits (locally referred to as Casma and Colegual Drift, Mercer, 1976) represent pre-last glacial drift and associated outwash plains, which become progressively more subdued in their topographic expression and have a steadily increasing thickness of layered fine-textured loess-like cover-beds (now weakly developed soil horizons) formed from wind-borne accretion, towards the west.

Glacial coverage during MIS 4 is based on minimum \(^{14}\)C ages of ~40–50 cal ka and pollen analyses from cores retrieved within Tairequén øre (Heusser et al., 1999; Heusser and Heusser, 2006). The youngest glacial drift deposits (locally referred to as Llanquihue Drift) represent the last glaciation, and are mostly coincident with the maximum western-most extent of lakes within the Chillean Lake District. Radiocarbon dating of Llanquihue landforms show that the Andean ice lobes advanced into the moraine belt depicted in brown in Fig. 3 numerous times during cold-cool inter-stadial phases of Marine Isotope Stage (MIS) 3 and 2 (Denton et al., 1999b; Heusser et al., 1999). Lislecki and Raymo (2005) date stage boundaries from benthic \(^{3}^{14}\)O records (LR04 stack) to 57 ka (MIS 4–3), ~33 ka BP (MIS 3–2), and ~17 ka BP (MIS 2–1). The chronology of glacial advance in southern continental Chile during the LGM (−33,400 to −17,800 cal a BP) is constrained by an extensive array of \(^{14}\)C dates from sites tied to the former Llanquihue, Reloncaví, Ancud and Golfo de Corcovado ice lobes (Denton et al., 1999a,b; Moreno et al., 2015). LGM glacial advances in this region of...
have been recorded at ~33,600, ~30,800, ~26,900, ~26,000 and 18,100–17,700 cal a BP. There appears to be significant differences in the extent of these lobes during the glacial advance at ~18 cal ka BP as evidenced by the two northern lobes (Llanquihue and Reloncaví) reaching the inner margin of the LGM moraine belt whereas the two southern lobes (Ancud and Golfo de Corcovado) was either the most extensive, or close to the most extensive during MIS 2.

4. Cosmogenic dating in the Chilean Lake District

In Patagonia, besides sporadic 40Ar/39Ar dated lava-flows (e.g., Singer et al., 2004), or possibly OSL on associated sediments (Smedley et al., 2016), cosmogenic nuclide dating is currently the only other approach available for dating landforms older than Stage 3. However, there are two potential problems that affect the application of cosmogenic dating to older landforms. First, this technique appears to so far provide only minimum-limiting ages on moraines older than the last glacial cycle (e.g., Stage 6 and older) due to the effect of geomorphic processes such as boulder exhumation. Dating outwash plain remnants is more robust and has allowed direct age constraints on outwash dating to Stage 8 and as old as 1 Ma (Hein et al., 2009, 2017). However, for each glacial outwash facies, the method is time consuming and relatively expensive given the amount of analyses needed (e.g., Hein et al., 2010). Second and in the context of this study, dating even LGM-aged landforms in the wettest areas of the Chilean Lake District appears not to be possible, as we show here. To test the viability of cosmogenic dating in this region, given a former dense rainforest now mostly cleared for agriculture, we measured 10Be concentrations in 7 samples near the Huelmo mire (Moreno and Leon, 2003; Massaferro et al., 2014, Fig. 4). The timing of deglaciation at Huelmo and surrounding area is well-dated (Andersen et al., 1999; Denton et al., 1999a,b; Moreno et al., 2015). Specifically, at Huelmo, ice recession over the site is tightly constrained to ~19.5–19.6 cal ka.

Fig. 3. A. The location of the study area in Llanquihue-Puerto Montt, Hornopirén, Chaitén and Isla Grande de Chiloé sectors of northwestern Patagonia. The extent of ice lobes within this region during the Last Glacial Maximum (LGM) (modified from Plates 1–4 in Denton et al., 1999b) is indicated by a solid blue line extending north to southwest. Moraine ridges or hills associated with these ice lobes are indicated in purple. The location of the Huelmo mire (Moreno and Leon, 2003; Moreno et al., 2015) is indicated as a star symbol. In this immediate vicinity, seven boulders were sampled from adjacent moraines for 10Be surface-dating (see also Fig. 4). An elevational transect (A–A') across northwest Patagonia (~41° 08' S) is also indicated. B. Glacial geomorphic map of the Llanquihue-Puerto Montt area (modified from Andersen et al., 1999) showing Llanquihue (brown), Casma (green) and Colegual (dark green) moraine belts and associated outwash plains. Meltwater spillways, lake-bordering kame terraces, and areas dominated by volcanoclastic deposits sourced from an ancestral Volcan Calbuco are also indicated. A schematic cross-section (B–B') of this drift-outwash succession is indicated and shows a multisequential arrangement of soil-cover-beds predicted to occur on successively older glacial-outwash deposits. Note the westward thinning of tephric and/or loess-like andic soil material and increased occurrence of pedogenically overprinted older subsurface soil horizons forming composite upper profiles. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Moreover, as summarized below, the Termination in the region occurred ~17.8 cal ka (Fig. 4); this includes in the inner Andes, well east of Huelmo and Chiloé.

Samples were processed using standard procedures at the University of Edinburgh, measured at the Paul Scherrer Institut in Zurich, and then calculated with the regional Patagonian rate and systematics discussed in Kaplan et al., (2011) (e.g., v.2.2 of the CRONUS calculator). We present two different sets of ages because the procedural blank run with the seven samples was above average for the laboratory (BLmean). Regardless of the blank used, all ages are younger than the Huelmo mire basal (deglacial) 14C ages (indicated by the red solid line at ~19.5–19.6 cal ka; see Moreno and Leon, 2003; Moreno et al., 2015). The top panel shows (older calculated) ages with average blank, overlain on a Google Earth image. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Moreover, as summarized below, the Termination in the region occurred ~17.8 cal ka (Fig. 4); this includes in the inner Andes, well east of Huelmo and Chiloé.

An important aspect that connects southern continental Chile with New Zealand is the widespread occurrence of andic-dominated cover-beds. In both the Soil Taxonomy (Soil Survey Staff, 2014) and New Zealand Soil Classification (NZSC; Hewitt, 2010) Andisols or Allophanic Soils (respectively) are predominately formed from well-drained tephra or volcanic ash and, defined as containing high proportions of glass and nanocrystalline colloidal materials, including allophane and ferrihydride along with paracrystalline imogolite (e.g. Churchman and Lowe, 2012). In New Zealand, Andisols (or Allophanic and Pumice Soils in NZSC) cover 12.5% of the country and are predominantly associated with the tephra products of rhyolitic to andesitic volcanic centres of central and western North Island (Lowe and Palmer, 2005), but allophanic Inceptisols (Allophanic Brown Soils in NZSC) can also form from the weathering products of greywacke and schist in the South Island high country (Hewitt, 2010). Typically, these soils have distinct ‘andic’ properties of high 1500 kPa (15-bar) water retention, high porosity and low bulk density, and are dominated by nanocrystalline materials chiefly allophane, ferrihydrite and metal-humus complexes (Parfitt and Clayden, 1991; McDaniel et al., 2012; Soil Survey Staff, 2014).

In southern Chile (36-49° S). Typical (trumao) and Aquic (nadias) Andisols are well expressed in areas west of, and adjacent to, volcanic centres of the Cordillera de los Andes and extend down the longitudinal Central Valley south of 36° S (FAO-UNESCO, 1971; Luzio et al., 2010; Casanova et al., 2013). Their occurrence is coincident with Holocene-aged Andean-sourced tephra deposits on fluvial and fluvo-glacial landforms. Trumao are characterised as deep, well-drained soils (Hapludands) occurring on moderate to steep slopes whereas nadias are moderately deep, poorly drained soils (Placuquands) occurring on flat or depressed positions in the landscape (Casanova et al., 2013). In both southern Chile and western to central regions of New Zealand’s North Island, cover-bed sections proximal to volcanic centres typically comprise predominately tephra-derived, fine-textured soil materials separating thick and/or coarse-grained lithologically distinct tephra beds and volcaniclastic detritus that have resisted post-depositional weathering and pedogenic mixing. At medial to distal locations from volcanic sources, however, the proportion of fine-textured soil material significantly increases as tephra becomes perceptibly thinner and finer-textured. Each andic inter-bed forms part of a soil accession and represents a period of intermittent accretion of fine-grained detritus (dominantly tephra) with concomitant rapid weathering (Alloway et al., 1995) (see Section 2 above Soil and loess stratigraphy).

In southern continental Chile, the post-glacial andic soil succession developed on glacial, glacio-fluvial and volcanic landforms
and/or surfaces, is of dominantly volcanogenic-provenance as evidenced by the thickening towards multiple volcanic sources centred eastwards and along the Cordillera de los Andes. This situation contrasts with South Westland, New Zealand, where layered soil successions mantling glacial and glacio-fluvial landforms have completely different soil attributes on account of the quartzfeldspatic provenance of the cover-beds (no tephras nor volcanics), significantly higher precipitation (>3-m per annum) and extreme organic translocation and acid leaching conditions. Consequently, soils in this region are dominantly categorised as Spodosols (Soil Survey Staff, 2014) or Podzol Soils (NZSC; Hewitt, 2010). Layered andic soils of Wanganui-Taranaki in western North Island (see Fig. 2 inset) have soil attributes more akin to those andic soils occurring in southern Continental Chile and are similarly of dominantly volcanogenic origin. Instead of andic soils mantling glacial landforms as is the case for southern continental Chile, andic soils of western North Island typically form on uplifted alluvial and marine terraces as well as on volcanoclastic deposits adjacent to source volcanoes.

On the western side of the Andes soil genesis appears to be dominated by a flux of intermittently erupted Andean-sourced tephra which has continued to build soils at the ground surface separated by intervals where topdown weathering processes are intensified. Alternating layers of reddish-brown (Sr-) and yellowish-brown (Sy-) soil horizons can be occasionally observed upon old drift deposits (Casma-Colegal). Sr-horizons have reddish-brown to brown hues (5YR-7.5YR) with high chroma and are characteristically well-developed with a fine to medium blocky-structure, whereas the Sy-horizons are moderately to poorly developed coarse blocky structured to massive with yellow-brown structure, whereas the Sy-horizons are moderately to poorly developed coarse blocky structured to massive with yellow-brown (Sy-) soil horizon (Bw) couplets there is a present in Fig. 5. With increasing number of reddish-brown (Sr-) demonstrated by New Zealand studies (i.e. Fig. 6), multisequal soil successions have a clear implied connection to coupled glacial and interglacial climate cycles of the Quaternary.

In areas bordering Lago Llanquihue and coastal regions adjacent to Seno Reloncavi, Llanquihue glacial drift deposits have complex depositional architectures (Fig. 7A and B) with diamicts and ice contact stratified sediments representing different-aged advances chaotically juxtaposed. Ice-contact sediments frequently exhibit syn-depositional deformation but in some cases, stratified sediments can be displaced by normal faults. Llanquihue drift and outwash gravels are identified by an eastward-thickening of fine-textured post-glacial andic soil material and coarsening tephra inter-beds (Fig. 7C and D). Occasionally, late Llanquihue drift can be observed to either directly overlie earlier Llanquihue drift deposits with a sharp and wavy erosional contact (Fig. 7E), or is sometimes observed separated by thin to moderate (<0.5-m) andic soil material resting on a gravel-lag pediment atop an older drift (Fig. 7F).

In the vicinity of Casma, beyond the western limit of the LGM-ice lobe, laterally discontinuous yellowish-brown sandy-textured andic material sits directly upon Llanquihue outwash deposits (Fig. 7G), indicating localised accumulation of aeolian sands directly adjacent an outwash channel. In the same vicinity, multisequal soil horizons are observed intervening between successively older outwash deposits (Fig. 7H). Frequently associated with drift and outwash deposits of this region are sequences of non-cohesive volcanoclastic mass-flow deposits, likely sourced from an ancestral Calbuco Volcano, which bury and/or erode pre-existing surfaces (Fig. 8A–C). Exposed along Ruta 5, at a locality just north of Puerto Montt, a massive to weakly stratified debris-flow deposit containing pumice clasts and bread-crusted bombs overlies and thins out adjacent and more elevated LGM-age moraines (Fig. 8D and E).

On a newly exposed road section on Ruta 5 (km-1054.2) between Puerto Montt and Pargua (41°37’25.0’’ S; 73°16’46.9’’ W), a multisequal soil succession with four Sr-Sy couplets overlies a highly-weathered glacial diamict (till) with a ~4.2-m-long, large diameter (1-m-) tree-trunk mold encased within its matrix (Fig. 9A and B). At the northern end of this section, a sheet of Sy1 of (interpreted LGM-age) cross-cuts older soil horizons and thins southwards along section. At this southern point, Sy-1 is apparently overprinted above by Sr-1 top-down soil formation that penetrates into older pre-Sy1 soil horizons forming a composite profile. A significant point of difference between multisequal soil records from New Zealand and Chile, is that andic soil sequences in New Zealand are frequently interbedded by widespread and distinct rhyolitic tephra layers sourced from the Taupo Volcanic Zone (TVZ), situated in the central North Island, which provide opportunities for independent chronological control (e.g. Fig. 6). In southern Chile, numerous late Last Glacial to Holocene-aged tephra deposits of variable composition can be recognised westward and upwind of the Cordillera de los Andes — the strong westerly winds favour dispersal to the east and few tephras are preserved any further west than the limits of the LGM and LGIT moraines (e.g. Watt et al., 2009; Fontijn et al., 2014; Alloway et al., 2015). So far, only two widespread tephra markers (Chana and Lepue Tephras, dated ~9.6 and ~11 cal ka BP, respectively) sourced from Chaitén
Fig. 5. A. Conceptual model of developmental upbuilding (Ub) and topdown (Td) soil formation in southern continental Chile. It is important to recognise that developmental upbuilding reflects the interplay of geological accumulation and concomitant (but only weakly effective) topdown pedogenesis. Topdown pedogenesis occurs with nil or negligible geological accumulation, and pedogenesis is thus much more effective and intense. With increasing number of coupled Ub-Td cycles there is a corresponding increase in reddish-brown (Sr-) and yellowish brown (Sy-) soil horizon couplets. Coupled Ub-Td cycles are associated with fluctuations in cool/cold-warm paleoclimate during the Quaternary, respectively. B. Road section on Ruta 5 (km-1054.2) between Puerto Montt and Pargua (41º37'02.5"S; 73º16'46.9"W) showing four Sr-Sy couplets overlying a highly-weathered glacial diamicton (till) with an encapsulated tree-trunk mold. In upslope portions of this section there appears to be lesser overall wind-borne accretion, as evidenced by significant post-glacial topdown soil formation that has pedogenically overprinted older subsurface soil horizons and formed a composite upper profile. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Western North Island

Dominant soil form - Allrophic (NZSC; Hewitt, 2010) or Andisol (USDA; Soil Survey Staff, 2014)

Onaero, North Taranaki
(Alloway et al. 1992a)

Rangitatau East Road, Wanganui-Taranaki
(Palmer and Pillans, 1996)

Marine sands and gravels
NT2 uplifted wave-cut surface
(OIS-5e; Alloway et al. 2005)
Tertiary-aged siltstone

QAR

0.0 0.2 0.4 0.6

g cm⁻²/ka

16 ± 1 (TL, PB)

Kawakawa/Oruanui Tephra (KOT)
[25,358 ± 162 cal. a BP (C14);
(Vandergoes et al. 2013]

Rotoehu Ash
[45.1 ± 2.9 ka (U-Th)/He zircon);
Danišik et al. 2012]

134 ± 22 (TL, PB)

168 ± 17 (TL, PB)

Unnamed rhyolitic ash
234 ± 58 (TL, PB)

247 ± 41 (TL, PB)

Rangitawa Tephra
[350 ± 40 ka (g-FT, Z);
Pillans et al. 1996]

509 ± 99 (TL, TB)
Dune-sand

L1
L2
L3
L4
L5
L6
L7
L8
L9
L10
L11

Sr1
Sr2
Sr3
Sr4
Sr5
Sy1
Sy2
Sy3
Sy4
Sy5
Fig. 6. Multisequal soil successions of dominantly volcanogenic (andic) provenance exposed at (A) Egmont Road, North Taranaki (39°03’ 09.06” S, 174° 07’ 41.14” E; Alloway et al., 1992a), and (B) Rangitatau East Road, Wanganui (Palmer and Pillans, 1996). These soil successions form the dominant cover-beds on uplifted marine terraces in western North Island, New Zealand. C. Stratigraphic profiles from Onaero, North Taranaki (Alloway et al., 1992a) and Rangitatau East Road, Wanganui (Palmer and Pillans, 1996), indicating multiple couplets of reddish-brown (Sr-) and yellowish brown (Sy-) soil horizons indicating repeated Ub-Td soil formation phases relating to variable climate through the Quaternary. Both successions are punctuated by the occurrence of rhythmic tephra horizons (indicated in red) sourced from the central North Island that have provided independent chronological control. Such successions with chronological tie-points facilitate direct correlation to the marine oxygen isotope records (e.g. Pillans, 2017 and refs. above) that would otherwise be based on relative age constraints and counting paleosol-loess couplets back from present day. These western North Island multisequal soil successions have strong morphological resemblance with those andic soil successions occurring in southern continental Chile overlying Quaternary-aged glacial and glacio-fluvial landforms. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 7. In areas bordering Lago Llanquihue and coastal regions adjacent to Seno Reloncaví, diamicts and ice-contact stratified sediments have complex depositional architectures (A, 41°45’44.4” S, 73°25’09.2” W; B, 41°13’33.8” S, 72°38’29.2” W). Llanquihue drift and outwash gravels are identified by an eastward thickening of fine-textured (medial-ashy grade) post-glacial andic soil material, as well as coarsening tephra inter-beds. C shows a typical post-glacial andic soil succession in the vicinity of Frutillar (41°13’21.8” S, 72° 39’38.7” W) and closer to eruptive centres situated in the Cordillera de los Andes. D shows Llanquihue drift overlain by multiple centimetre-thick, coarse-grained tephra and subordinate andic soil interbeds of post-glacial age. Occasionally, drift deposits are directly stacked on top of each other (E, 41°19’02.4” S, 73°00’28.7” W) separated by lag-gravel pediment, or are separated by prominent and laterally continuous well-developed andic soil material (F, 41°19’02.6” S, 73°00’34.1” W). G. In the vicinity of Casma (41°01’59.0” S, 73°06’35.3” W) beyond the western limit of the LGM-ice lobe, laterally discontinuous yellowish-brown sandy-textured andic material (<0.6-m thick) sits directly upon Llanquihue outwash deposits indicating localised accumulation of aeolian material directly adjacent an outwash channel. H. In the same vicinity (41°00’25.9” S, 73°07’07.5” W), multisequal soils intervene between successively older outwash deposits. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
and Michimahuida volcanoes in the Chaitén sector have been recognised beyond this limit (Alloway et al. 2017a, b) but are confined to post-glacial aged uppermost andic soil material (Sr1). In the vicinity of Puerto Montt Hospital (41°26′54.2″S, 72°57′19.5″W), an older prominent weathered tephra can be identified in a woody lignite sequence occurring between two glacio-fluvial outwash deposits of LGM and pre-LGM (>45 14C ka BP) age. Two radiocarbon dates of 45,600 ± 2500 14C a BP (UCIAMS-145967; lignite) and 45,700 ± 2500 14C a BP (UCIAMS-145932; wood) from immediately beneath this tephra establish a maximum age (see Fig. 10A).

Such exposures revealing tephra of this antiquity are rare in this region and this same tephra has yet to be recognised elsewhere within equivalent-aged andic soils or organic-rich sediments.

6. Vegetation and climate record

Palynological investigations on ODP Site 1233 (41°0.005 S, 74°26.992 W, 838-m water depth) and the Taquemó bog (42°17′ S, 73.60′ W) on Isla Grande de Chiloé (see Fig. 11) yielded continuous, well-dated records of vegetation change through the last glacial-interglacial cycle in northwest Patagonia (Heusser, 1990, 2003; Heusser et al., 2006; Heusser and Heusser, 2006). Significantly, the palynology of ODP 1233 extends continuously over the last 93,000 years, spanning from MIS 5b to the present.

These records show similar trends through MIS 3 with a preponderance of cold-resistant southern beech (N. dombeyi type), conifers (Pilgerodendron, Podocarpus nubigena) and Poaceae, indicating a subantarctic woodland under cold and humid conditions. Poaceae increased during MIS 2 (between ~30 and ~17 cal ka BP) at the expense of Nothofagus, suggesting the establishment of a subantarctic parkland under extreme glacial conditions, followed by the spread of thermophilous trees (Myrtaceae, Lomatia) and ferns (Lophosoria) characteristic of north Patagonian rainforests at ~17.8 cal ka BP. This warming event marks the beginning of the last glacial termination and led to the establishment of closed canopy rainforests in the mainland of the Chilean Lake District and Isla Grande de Chiloé (Moreno et al., 2015; Pesce and Moreno, 2014). Subsequent warming and decline in precipitation led to the expansion of Valdivian rainforests during the early Holocene, followed by a cooling trend and increased precipitation commencing at 7.8 cal ka BP. This warming event marks the beginning of the last glacial termination and led to the establishment of closed canopy rainforests in the mainland of the Chilean Lake District and Isla Grande de Chiloé (Moreno et al., 2015; Pesce and Moreno, 2014). Subsequent warming and decline in precipitation led to the expansion of Valdivian rainforests during the early Holocene, followed by a cooling trend and increased precipitation commencing at 7.8 cal ka BP. Centennial-scale variability started at ~6 ka and led to the establishment of a mosaic of north Patagonian and Valdivian rainforest communities that persist until the present (Moreno and Videla, 2016).

Remarkable in the ODP1233 record is the abundance and continuous presence of arboreal pollen (Nothofagus) during the last glaciation with a mean of ~60% (MIS 5b to MIS 2), accompanied by relatively modest abundance of herbs (Poaceae, 20%), other trees...
and herbs. *Nothofagus* abundance in the Taiquem mire was higher (~80%) than ODP1233 between ~50 and 30 ka (MIS 3) and similar between 30 and 18 cal ka BP (MIS 2~60%), though more variable. The Taiquem mire, which was located a few kilometres from MIS 2 moraines and a few metres west from MIS 4 glacial margins (39°45’ 51.0 S; 73°13’ 41.0 W). Here, six Sr-Sy couplets are conspicuously exposed overlying a very prominent >3 m-thick composite paleosol developed on a colluvium wedge resting on bedrock. This succession provides clear indication that layered soil sequences reflecting multiple Ub-Td soil forming cycles have developed under varying paleoenvironmental conditions and are likely (but yet to be proven) formed over a much longer timeframe than those soil sequences observed further south. This section is important in that multisequal soil successions can be clearly recognised in other regions of southern Chile less affected by the direct influence of piedmont glaciation. A majority of soil sections in the vicinity of Valdivia typically reveal a prominent well-developed reddish soil typically resting on bedrock with little to negligible horizon differentiation. Such an undifferentiated profile develops in response to low to negligible accretionary flux of wind-borne materials, which over time, results in the formation of a thick-topdown overprinted composite soil similar to that composite paleosol which is evident at the bottom of the north Valdivia roadside profile.

7. Discussion and conclusions

Here, we make a case that multisequal soil successions in northwest Patagonia provide a relatively untapped archive to reconstruct Quaternary glacial and environmental changes. Patagonia contains a geomorphic record of glaciations going back well into the Quaternary Period, and a glacial stratigraphic record as old as Miocene in age (Mercer, 1976). On the eastern, more arid, side of the Andes, cosmogenic dating (as well as OSL and K-Ar, 40Ar/39Ar) of moraines and outwash plains (Fig. 12), has revealed insight into glaciations older than the last glacial cycle, to perhaps > Stage 6 time (>130 ka), stage 8 (~200–300 ka), and as old as 1 Ma (e.g., Singer et al., 2004; Kaplan et al., 2005; Hein et al., 2009; 2017). However, using these same approaches, dating glaciations older than the LGM has been problematic, if not impossible on the wet western side of the Andes (Fig. 4) due to persistent vegetation cover.
Puerto Montt Hospital Overpass
west-facing road section
S 41° 26' 54.2" W 72° 57' 19.5"

Tephra
Sample PHM-11 (coarse sand grade)
- Lignite (<5 mm x <500) (UCI-AMS 148967)
- Wood, 45,700 ± 2500 (UCI-AMS 149932)
- Wood, 47,300 (UCI-AMS 149933)

Weathered glacio-fluvial
gravel & sands (pre-LGM) Unit 7

Parga-Porto Montt Highway
west-facing road section
11.5 km south of Ranco torrent,
3.5 km north of Carabuco over-pass
S 41° 34' 25.4" W 73° 12' 05.2"

Glaceo-fluvial
gravel & sands (LGM) Unit 5

KEY
1 Fill
2 Andic soil material (post-glacial)
3 Volcanogenic hyperconcentrated flow (HCF) deposit
4 Colluvium
5 Glacio-fluvial gravel & sands (LGM)
6 Truncated carbonate mud sequence containing a prominent tephra
 and wood in growth position
7 Weathered glacio-fluvial gravel & sands (pre-LGM)
during both glacial and post-glacial times, as well as widespread inundation of glacial drift and associated outwash deposits by volcanic mass-flows.

In New Zealand, at a similar southern mid-latitude position to northwest Patagonia, an increasing number of soil horizons is recognised on successively older Quaternary-aged landforms (Fig. 12A). In South Westland, this relationship has been demonstrated for successively older moraines and associated outwash surfaces, while in Taranaki and Wanganui regions of western North Island this has been similarly demonstrated for successively older marine and fluvial terraces. These multisequal soil successions have been related to coupled phases of topdown and upbuilding soil formation associated with fluctuating cycles of interglacial/warm and stadial/cold climate respectively, following stabilisation of the landform on which the soils accumulated. Based on soil genesis analogues from New Zealand, we propose a similar soil-stratigraphic model for cover-bed sequences in southern continental Chile (see Fig. 12B). Up to four sets of coupled Sr- and Sy-horizons reflecting four sequential cycles of Ub-Td soil formation can be observed overlying glacial drift and outwash deposits in southern continental Chile. Northwards in the vicinity of Valdivia (~40°S) even thicker successions occur with greater number of coupled Sr- and Sy-horizons (Fig. 9C). The basal ages of these coupled Valdivian soil sequences are unknown but there exists the opportunity to link via cover-bed sequences to dated marine terraces preserved along the coast of this region (e.g. Fuenzalida et al., 1965; Antinao and McDonough, 1999; Pino et al., 2002; Jara-Muñoz et al., 2015) in an approach similar to that undertaken for New Zealand marine terrace sequences (e.g. Pillans, 1983, 1990a; 1990b, 2017; Berrymann, 1992; Alloway et al., 2005; Wilson et al., 2007).

The paucity of widespread loess in southern continental Chile despite the proximity of extensive piedmont glaciation and associated outwash surfaces seems perplexing but this likely indicates that prevailing environmental conditions tended to suppress both the formation and restrict the widespread mobilisation of loess in this landscape. Palynological analysis from equivalent-aged terrestrial and marine sediments during MIS 3 and 2 indicate near-continuous vegetation ground cover (scattered Nothofagus woodland) under conditions of high precipitation and variable temperature and windiness (Fig. 11). Clearly the analysis of older (>MIS-3) terrestrial palynological records will be essential for assessing vegetation associations as well as their persistence through earlier glacial/interglacial cycles. Unfortunately, such records in northwest Patagonia are both fragmentary and rare.

Fig. 11. Comparison of N. dombeyi, Myrtaceae and Gramineae pollen spectra from ODP Site 1233 (41°0.005 S, 74°26.992 W, 838-m water depth) and Taquémó mire (42.17° S, 73.60° W) on Isla Grande de Chiloé (modified from Heusser et al., 2006) provide a continuous ~50,000-yr record of regional changes in vegetation from southern Chile, and provides key information on prevailing palaeoenvironmental conditions and persistence of vegetation during equivalent-aged Ub-Td soil formation cycles. Note the continuous presence and abundance of arboreal pollen (Nothofagus).

Fig. 10. A–C. In the vicinity of Puerto Montt Hospital (41°26.42°S, 72°57.19.5°W), a prominent weathered tephra is preserved within a woody lignite sequence intervening between two glacio-fluvial outwash deposits of LGM and pre-LGM (>45 14C ka BP) age. The upper (LGM) glacio-fluvial sediments are deeply incised with colluviated channel margins partially surmounted and veneered by a prominent volcanic hyperconcentrated flow deposit. The entire sequence is mantled by andic soil material of late last glacial to post-glacial age; D–F. An equivalent-aged sequence can be observed on Ruta 5 south of Puerto Montt (41°34.25.4°S, 73°12.05.2°W) Here, woody lignites intervene between LGM glacio-fluvial outwash deposits above and pre-LGM till below. Such sections in northwest Patagonia are rarely exposed.
Observed multisequel soils cannot be simply explained by coupled soil formation phases of enhanced upbuilding (Ub > Td) by glacially derived wind-borne sediment during full glacial and cool climate episodes and intensified toptdown pedogenesis (Td > Ub) during interglacial and/or warm climate episodes. Rather, coupled Sr- and Sy-horizons (reflecting a Td-Ub cycle) are formed by continuous addition of intermittently erupted Andean-sourced tephra deposited to the ground surface during different climatic episodes - Sr-horizons reflecting enhanced toptdown soil formation during interglacial and warm interstadials, and Sy-horizons...
reflecting reduced topdown soil formation during full glacial and cool stadials, i.e. developmental upbuilding. The colour and structure is a direct reflection of differential weathering under different climate regimes but also may be attributed to differences in Al:Si ratio of the nanocrystalline materials which have been related to mean annual rainfall and the level of Si and Fe in soil solution (Parfitt et al., 1983; Alloway et al., 1992b; Churchman and Lowe, 2012). The recognition of multiscale soil successions in southern continental Chile and their implied connection to variations in Quaternary climate presents a tantalising opportunity for researchers to identify magnetic excursions (e.g. Blake excursion, ~115–122 ka; Icelandic basin excursion, ~190 ka; see Thorveny et al., 2004) within these cover-bed sequences as well as conduct luminescence dating in order to firmly link these layers with variations indicated from the established oxygen isotope record. Ultimately, our stratigraphic approach, which includes an appreciation of the critical role of upbuilding pedogenesis (cf. ‘classical’ topdown pedogenesis), will enable us to better constrain the age of this well-preserved sequence of Andean-sourced drift and washout deposits, the older members of which are difficult to differentiate by morphostratigraphic means and which all lie near or beyond the current limits of radiocarbon dating.

Acknowledgements

This study was funded by Investigación Científica Milenio grants P02-51 and NC120066, Fondecyt 1151469 (to PIM), Fondecyt 1160488 (to ES), and a Royal Society of London Postdoctoral Fellowship and U.S. National Science Foundation BCS-1263474 (to MK). Ignacio Jara, Willy Henríquez, Nick Pearce, Craig Wickham and our many field-adverse wife, Waleska Pino-Ojeda, are all thanked for their assistance in the field. This paper is an output of SHAPE (Southern Hemisphere Assessment of Paleo-Environments) - an International Focus Group supported by the Palaeoclimate Commission of INQUA (PALCOM). This Focus Group provides a support network for palaeoclimate/palaeoenvironmental research by Quaternary scientists working within the Southern Hemisphere. We thank David J. Lowe (Waikato University, New Zealand) and an anonymous reviewer for their contributions that improved the overall quality of this manuscript. We would also like to thank Neil Glasser (Aberystwyth University, Wales, UK) for his editorial assistance and insights in the production of this manuscript. This is LDEO contribution (MK) # 8202.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.quascirev.2018.04.005.

References

developed chironomid-based temperature model. Palaeoecol. Palaeoclimatol. Palaeoecol. 399, 214–224.
stracts, Puerto Varas, Chile, pp. 24–28.
Smedley, R.K., Glasser, N.F., Duller, G.A.T., 2016. Luminescence dating of glacial ad-
Sci. Rev. 9, 175–197.