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Abstract We revisit some problems arising in the context of multiallelic discrete-time and
deterministic evolutionary dynamics driven first by fitness differences and then by segrega-
tion distortion. In the model with fitness, we describe classes of fitness matrices exhibiting
polymorphism. In the segregation case, still in search for conditions of polymorphism, we
focus on a class of skew-symmetric matrices with a unique strictly positive kernel vector.
Our main results reduce the study of these cases to the analysis of stochastic matrices.

Keywords Species frequencies dynamics · Selection · Segregation · Polymorphism ·
Stability · Potential and stochastic matrices
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1 Introduction

We will first briefly revisit the basics of the deterministic dynamics arising in discrete-time
asexual multiallelic evolutionary genetics driven only by fitness differences (or selection)

Communicated by Josselin Garnier.

B Thierry Huillet
Thierry.Huillet@u-cergy.fr

Servet Martínez
smartine@dim.uchile.cl

Martin Möhle
martin.moehle@uni-tuebingen.de

1 Laboratoire de Physique Théorique et Modélisation, CNRS-UMR 8089 et Université de
Cergy-Pontoise, 2 Avenue Adolphe Chauvin, 95302 Cergy-Pontoise, France

2 Departamento de Ingeniería Matemática, Centro Modelamiento Matemático, UMI 2807,
UCHILE-CNRS, Casilla 170-3 Correo 3, Santiago, Chile

3 Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10,
72076 Tübingen, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-016-0403-z&domain=pdf


On polymorphism for discrete evolutionary dynamics… 1353

and we will mainly consider the diploid case with K alleles. In the diploid case, there is a
deterministic updating dynamics of the full array of the genotype frequencies that involves
the nonnegative symmetric fitness matrix W � 0 (with W = W ′, W ′ the transpose of W )
attached to the genotypes. When the Hardy–Weinberg law applies, it is sufficient to treat
the induced marginal allelic frequencies dynamics. The updating dynamics on the simplex
involves the mean fitness as a quadratic form in the current frequencies, whereas marginal
fitnesses are affine functions in these frequencies. The induced dynamics turns out to be
gradient-like. We will also consider an alternative updating mechanism of allelic frequen-
cies on the simplex, namely segregating distortion: here, the fitness matrix W is based on
skew-symmetric matrices and the fitness landscape is flat. The induced relative frequencies
dynamics is divergence-free like.

In the first case driven by viability selection and in the diploid context, the Fisher theorem,
stating that themean fitness increases as time passes by, holds true but, as a result of the fitness
landscape being quadratic, a polymorphic equilibrium state will possibly emerge. Due to
its major evolutionary interest, our subsequent concern is to identify examples of diploid
dynamics leading to a unique polymorphic state xeq on the simplex, either unstable or stable.
We start with the unstable case and draw the attention on a class of fitness matrices leading
to a unique unstable polymorphic equilibrium state: the class of potential matrices which
includes the class of ultrametric matrices. For such potential fitness matrices, themean fitness
quadratic form is positive-definite. We will then consider a related class of fitness matrices
with amean fitness quadratic formwhich is negative-definite on a hyperplane of codimension
one. For this class of matrices, there will also be a unique polymorphic equilibrium state for
the diploid dynamics and it will be stable.

In the second case driven by segregation distortion, fitness is flat in the sense that its
mean fitness quadratic form is a constant (the segregation ratio or fraction of Ak gametes
contributed by Ak Al individuals is Wk,l ≥ 0 with Wk,l + Wl,k = Const). Conditions under
which its skew-symmetric part

(
W − W ′) /2 has a strictly positive kernel will be addressed.

If this is, indeed, the case, such models will also display a polymorphic equilibrium state and
the flat fitness dynamics will spiral away from it to eventually reach the boundary of the state-
space (as a simplex) in infinite time. InWeissing and van Boven (2001), a population without
sex-differentiation driven simultaneously by viability selection and segregation distortion is
considered in Sect. 2, together with the adjunction of the effect of sex in Sect. 3. In this note,
we shall study separately systems driven first by selection (in the absence of segregation
distortion when segregation is Mendelian Wk,l = Wl,k = Const/2) and then by segregation
distortion (in the absence of selection) and we shall not consider the effect of sex.

Our main results will, therefore, characterize different types of nonnegative or skew-
symmetric matrices (relevant for polymorphism) in terms of stochastic matrices. Theorem 1
of Sect. 2 characterizes the symmetric nonnegative fitness matrices for which xeq is an
isolated polymorphic stable state, in terms of stochastic matrices. In Theorem 2 of Sect. 4,
we characterize skew-symmetric matrices having a strictly positive probability kernel xeq
also in terms of stochastic matrices. The associated dynamics with a flat fitness landscape
will then display an isolated polymorphic state xeq, but it will be unstable.

2 Single locus: diploid population with K alleles

2.1 Joint and marginal allelic dynamics (Bürger 2000; Ewens 2004)

Consider K alleles Ak , k ∈ IK := {1, . . . , K } attached at a single locus. Let W =
(Wk,l : k, l ∈ IK ) be some nonnegative fitness matrix. The coefficient Wk,l ≥ 0 stands

123



1354 T. Huillet et al.

for the absolute fitness of the genotypes Ak Al . Since Wk,l is proportional to the probability
of an Ak Al surviving to maturity, it is natural to assume that W is symmetric.

Let X = (xk,l : k, l ∈ IK ) be the current frequency distribution at (integer) time t of the
genotypes Ak Al , so xk,l ≥ 0 and

∑
k,l xk,l = 1. The joint evolutionary fitness dynamics in

the diploid case is given by X (t + 1) = P(X (t)), with

P(X)k,l = xk,lWk,l

ω(X)
and ω(X) =

∑

k,l

xk,lWk,l . (1)

The relative fitness of Ak Al is Wk,l/ω(X), and ω(X) is the mean fitness. The genotypic

variance in absolute fitness is σ 2(X) = ∑K
k,l=1 xk,l

(
Wk,l − ω(X)

)2 and the diploid variance
in relative fitness is σ 2(X) = σ 2(X)/ω(X)2. Note that

�ω(X) =
∑

k,l

�xk,lWk,l =
∑

k,l

xk,l

(
W 2

k,l

ω(X)
− Wk,l

)

= ω(X)σ 2(X) ≥ 0 (2)

with a relative rate of increase:�ω(X)/ω(X) = σ 2(X). This expression vanishes only when
Wk,l is constant. This is the full diploid version of the Fisher theorem for asexuals; seeOkasha
(2008) for a deeper insight on the meaning of this theorem.

Assuming Hardy–Weinberg proportions, the frequency distribution at time t of the geno-
types Ak Al is given by: xk,l = xkxl , where xk = ∑

l xk,l is the marginal frequency of
allele Ak in the whole genotypic population. The frequency information is now contained in
x = X1,1 where 1′ := (1, . . . , 1) is the 1-row vector of dimension K . x := (xk : k ∈ IK )

belongs to the K− simplex

SK = {x := (xk : k ∈ IK ) ∈ R
K : x � 0, |x| = 1}.

Here, |x| := ∑K
k=1 xk and x � 0 mean that all xk ≥ 0, k = 1, . . . , K . The elements of SK

are called states. The mean fitness is given by the quadratic form: ω(x) := ∑
k,l xk xlWk,l =

x
′
Wx . We now have σ 2(x) = ∑K

k,l=1 xkxl
(
Wk,l − ω(x)

)2 and σ 2(x) = σ 2(x)/ω(x)2.
We will consider the update of the allelic marginal frequencies x themselves. Define the

frequency-dependentmarginal fitness of Ak bywk(x) = (Wx)k := ∑
l Wk,l xl . For the vector

x denote by Dx := diag (x1, . . . , xK ), the associated diagonal matrix. Themarginal mapping
p : SK → SK of the dynamics is given by:

x(t + 1) = p(x(t)), where p(x) = 1

ω(x)
DxWx = 1

ω(x)
DWxx . (3)

This dynamics involves a multiplicative interaction between xk and (Wx)k , the kth entry of
the imageWx of x byW and a normalization by the quadratic form ω(x) = x′Wx. Iterating,
the time-t frequency distribution is:

x(t) = pt (x(0))

where x(0) ∈ SK is some initial condition and pt = p ◦ · · · ◦ p, t-times.

Remark If Wk,l = wkwl , then (3) boils down to

x(t + 1) = p(x(t)), where p(x) = 1

w(x)
Dwx = 1

w(x)
Dxw.

1 Throughout, a boldface variable, say x, will represent a column-vector, and its transpose, say x′ will be a
row-vector. And x � 0 means all entries of x are positive.
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Here, w = (w1, . . . , wK )′ and w(x) = ∑
l wl xl is linear. This yields the haploid asexual

selection dynamics.

For an alternative representation of the dynamics (3), take �x = p(x) − x and define the
symmetric positive-definite matrix G(x) = Dx

(
I − 1x′) with entries:

G(x)k,l = xk
(
δk,l − xl

)
.

Let VW (x) = 1
2 logω(x). Then, (3 ) may be recast as the gradient-like dynamics (Shashahani

1979):

�x = 1

ω(x)
G(x)Wx = G(x)∇VW (x), (4)

with |�x| = 1′�x = 0 as a result of 1′G(x) = 0′. Note that

∇VW (x)′�x = ∇VW (x)′G(x)∇VW (x) ≥ 0.

One can easily check that (3), as a replicator dynamics, can also be recast under the (non-
linear) more conventional Fokker–Planck-like form x′(t + 1) = x′(t)P(x(t)), where P(x)

is the x−dependent matrix with (k, l)−entry P(x)k,l = Wk,l xl/x′Wx ∈ (0, 1) . This matrix
is not stricto sensu stochastic, but we note, however, that x′P(x)1 = 1 when x ∈ SK .

The mean fitness ω(x), as a Lyapunov function, �ω(x) ≥ 0, see Atkinson et al. (1960)
and Kingman (1961b). Its partial rate of increase due to frequency shifts only is δω(x) :=∑

k �xkwk(x). It satisfies

δω(x)

ω(x)
=

∑

k

xk

(
wk(x)

ω(x)
− 1

)2

=
∑

k

(�xk)2

xk
= σ 2

A(x)

2
, (5)

σ 2
A(x) being the allelic variance in relative fitness. See Price (1972), Ewens (2004) and

Castilloux and Lessard (1995) and the discussion of these results in Bürger (2000).

2.2 Equilibria (diploid case)

The mean fitness increase phenomenon occurs till the evolutionary dynamics reaches an
equilibrium state. We wish to briefly discuss the questions relative to equilibria in the diploid
case.

In contrast with the haploid case, in the diploid situation, the dynamics ( 3) can have more
complex equilibrium points, satisfying wk(xeq) = w1(xeq), k = 2, . . . , K and |xeq| = 1.
To avoid linear manifolds of equilibria, we first assume that all principal minors of W are
nonsingular. In particular, Wk,k > 0 for all k. In this case, from the Bézout theorem, the
number of isolated equilibria is bounded above by the number 2K − 1 of faces of SK , see
(Tallis 1966).

When W = I is the identity matrix, there are 2K − 1 equilibrium points (the barycenters
of the

( K
l+1

)
l−dimensional faces, l = 0, . . . , K − 1 ), but only one polymorphic equilibrium

which is the barycenter xB of SK . The barycenter has minimal mean fitness and it is unstable.
The 0−faces are stable fixed points, whereas the barycenters of the l faces with l ∈ IK−2 are
unstable saddle-points. The simplex SK can be partitioned into the attraction basins of the
stable 0−face states.

Similar conclusions can be drawn when we start with W = (I − Dλ)
−1, where λ :=

(λk : k ∈ IK ) satisfies 0 
 λ ≺ 1 (meaning 0 ≤ λk < 1, ∀k). In this case, again, there is
only one unstable polymorphic equilibrium which is xeq = (1 − λ)/(K − |λ|) ∈ SK . Again,
all fixed points but the 0−faces are unstable, and the simplex SK can be partitioned into the
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attraction basins of these stable 0−face monomorphic states: however, in contrast with the
haploid case, the type of the survivor is not necessarily the one of the fittest (with largest λk);
it will depend on the initial condition.

Due to its evolutionary interest, wewould like now to discuss the stability of a polymorphic
state. Under the above assumptions on the principal minors of W , a unique polymorphic
equilibrium state exists if and only if

(i) there is a unique z � 0 for which Wz = 1.
Under this condition, the unique equilibrium polymorphic state is

xeq = z
|z| .

Note that its mean fitness is given by ω(xeq) = 1/|z|.
Let us analyze the stability of xeq. Under (i), by Cramer’s rule, with W(k), a
K × K matrix obtained from W while substituting its k−th column by 1 (satisfying∣
∣W(k)| = (adj(W )1

)
k , where adj(W ) is the adjugate matrix ofW , [see Nagylaki (1992),

p. 56], we have |W | := det(W ) �= 0 and

zk = |W(k)|
|W | > 0, k ∈ IK . (6)

In Kingman (1961a, b), the condition to have stability of the polymorphic state
xeq= z/ |z| was given. This occurs only when the following additional condition holds,
(Lessard and Karlin 1982)

(ii) W has exactly one strictly positive dominant eigenvalue and at least one strictly negative
eigenvalue or else the sequence of the leading principal minors of W alternates in sign,
starting positive (Mandel 1959).

Under (i) and (i i), xeq is a stable equilibrium polymorphic state, and the stability is in the
sense that it is a local maximum of the mean fitness ω(x); so, a perturbation of it will result
in a mean fitness decrease. The condition for xeq to be an isolated global maximum of the
fitness landscape ω(x) is that for all x ∈ SK with x �= xeq, we have x′Wx < x′

eqWxeq. A
direct computation shows (Kingman 1961a)

∀y �= 0, y ⊥ 1 : y′Wy < 0. (7)

In this case, starting from any initial condition in the interior of SK , all trajectories will
be attracted by xeq. In Theorem 1 below, we characterize the symmetric nonnegative fitness
matrices for which xeq is an isolated polymorphic stable state, in terms of stochastic matrices.

When there is no such unique globally stable polymorphic equilibrium, all trajectories
will still converge but perhaps to a local equilibrium state where some alleles have gone
extinct (Lyubich et al. 1980). Which allele and how many alleles are concerned seems to be
an unsolved problem in its full generality.

We note that when the leading principal minors of W are all positive, xeq is unstable and
the quadratic form x′Wx is positive-definite.

In the sequel, we will denote by J := 11′ the flat K × K matrix whose entries are all 1.

Theorem 1 Let W be a nonnegative symmetric matrix and suppose there exists z � 0 such
that Wz = 1. Then, W admits the representation W = PD−1

z , where P is a stochastic
irreducible matrix obeying detailed balance with respect to z′, and conversely.

Assume that W satisfies the above conditions. Then,

(i) W is positive-definite if and only if P has a positive spectrum;
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(ii) The matrix W satisfies

sup{y′Wy : y ⊥ 1, y �= 0} < 0,

if and only if P has 1 as unique positive eigenvalue, all the other ones being negative.
Therefore, this is a sufficient condition in order that xeq be a polymorphic stable state
for W;

(iii) If P is a stochastic matrix that satisfies detailed balance with respect to some z �
0 and λ > λ0 , where λ0 = min(spectrum(P)), then the stochastic matrix Pλ =
(1 + λ0)

−1(P + λ0 I ) satisfies detailed balance with respect to z and it has a positive
spectrum. Furthermore, every stochastic matrix that satisfies detailed balance and has
positive spectrum can be constructed in this way;

(iv) Assume W is a positive-definite nonnegative symmetric matrix for which there exists
z � 0 with Wz = 1. For ξ > max

i, j
Wi, j , define

W = ξ J − W. (8)

Then, W is a nonnegative symmetric matrix for which z/|z| is a polymorphic stable
state.

Proof Assume that W ≥ 0 is a symmetric matrix and Wz = 1 for some z � 0. Then,
WDz1 = 1, and so, P = WDz is a stochastic matrix; clearly, W ′ = W is equivalent to
P ′ = DzPD−1

z . Since P ′z = z, z is proportional to the invariant probability measure of
P . The reciprocal follows immediately, because detailed balance for the stochastic matrix P
means P ′ = DzPD−1

z , and so, W = PD−1
z is a nonnegative symmetric matrix for which

Wz = 1.
Let us now prove condition (i), namely thatW has a positive spectrum if and only if P also

does. Since P obeys detailed balance, we have that Q = D1/2
z PD−1/2

z is symmetric with the
same spectrum as P . We have W = PD−1

z = D−1/2
z QD−1/2

z . Hence, W is positive-definite
if and only if Q is positive-definite, and this happens if and only if Q has a positive spectrum
by an argument given in (Kingman 1961b). And so if and only if P has a positive spectrum.

Let us show (i i) which is a rephrasing of [Kingman (1961a), Sect. 3]. From P1 = 1, we
get that the matrix Q has eigenvalue 1 with eigenvector D1/2

z 1. Then, all other eigenvalues of
P are negative if and only if all other eigenvalues of Q are negative, and since Q is symmetric,
this condition is equivalent to sup{y′Qy : y ⊥ D1/2

z 1, y �= 0} < 0. Substituting y for D1/2
z y,

and because z > 0, this is equivalently

{y′D−1/2
z QD−1/2

z y : y ⊥ 1, y �= 0} < 0.

Recalling Q = D1/2
z PD−1/2

z , this is also y′PD−1
z y : y ⊥ 1, y �= 0 < 0. Which is

sup{y′Wy : y ⊥ 1, y �= 0} < 0,

becauseW = PD−1
z . This is the condition (7) in order that xeq be a polymorphic stable state

for W .
Part (i i i) is a direct computation.
Let us prove part (iv). Let W be a positive-definite nonnegative symmetric matrix

and z � 0 such that Wz = 1. Then, W = ξ J − W with ξ > maxi j Wi, j satis-
fies W � 0 and Wz = (ξ |z| − 1)1. Note that ξ > maxi, j Wi, j and Wz = 1 imply
ξ |z| > 1. Moreover, since W is positive-definite, we get that for all vector y ⊥ 1, we
have y′Wy = y′ (ξ11′ − W

)
y = −y′Wy < 0, so the stability condition (7) is satisfied. ��
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1358 T. Huillet et al.

We note that in [Kingman (1961a), Sect. 3], the symmetric matrix Q was used for the
study of stability.

In the case when W is a symmetric bi-stochastic matrix, we have W1 = 1, and since
D1 = I , the identity matrix, we get P = W in the representation given in the theorem. Let
S be a symmetric permutation matrix so S = S′ = S−1 and it is bi-stochastic. Let y � 0 and
consider W = D−1

y SD−1
y . Putting z = W−11 = DySy, we have z � 0 and Wz = 1. In this

case, Dz = DySDy and so P = WDz is the identity matrix, which is stochastic and every
positive vector satisfies the detailed balance with respect to it, in particular z.

2.3 Potential matrices

Let us introduce potential matrices associated to strictly substochastic matrices. Let � be a
strictly substochastic matrix, so � � 0 and 0 ≺ �1 := q ≺ 1. We will also assume that � is
irreducible. Then, W = (I − �)−1 exists and it is the potential matrix associated to � (else
the resolvent matrix R� (z) = (z I − �)−1, evaluated at z = 1). We have W � 0 and W is
obviously nonsingular. For any λ > 0, the matrix W = λ−1(I − �)−1 will also be called a
potential matrix, parameterized by λ.

The equilibrium potential (vector) of a potential matrix W is, by definition, z = W−11.
Hence, for all λ > 0, λ1 � z = λ(I − �)1 = λ(1 − q) � 0 is satisfied. We have:
|z| = λ(K − |q|) and

z = λ(I − �)1 = λ(1 − q) � 0. (9)

When� is symmetric, it has real eigenvalues and all of them are strictly smaller than 1.Hence,
the symmetric potential matrix W is positive-definite, because when solving Wu = ξu, we
get �u = (1 − 1/(ξλ))u and we deduce ξ > 0. The potential matrices W are row diagonal
dominant in the sense that Wk,k = maxl Wk,l .

We can make the construction done in Theorem 1 part (iv), that is, matrices of type (8).
Let W = λ−1(I − �)−1 be a symmetric potential matrix. Then, z = λ(1 − q) � 0 satisfies
Wz = 1. For ξ > maxk,l Wk,l = maxk Wk,k , define the matrix W as in (8): W = ξ J − W .
Then, W � 0 and Wz = (ξ − |z|)1 . We note that ξ > maxk,l Wk,l and Wz = 1 implies that
ξ −|z| > 0, and so, z = z(ξ −|z|)z is an equilibrium potential ofW . From Theorem 1 parts
(i i) and (iv), we get that xeq is a stable polymorphic state for W and ω(xeq) = (ξ − |z|)/|z|
is the mean fitness at equilibrium.

2.4 Ultrametric matrices

Let us introduce ultrametric matrices, which in (Martínez et al. 1994) were proven to be
potential matrices. The symmetric nonnegative matrix W = (Wi, j : i, j ∈ IK ) is called an
ultrametric matrix if it satisfies

∀ j, k, l ∈ IK : Wk,l ≥ min
{
Wk, j ,Wj,l

}
.

This condition impliesWk,k ≥ maxl �=k
{
Wk,l

}
, ∀k ∈ IK . IfW satisfies this last condition but

in a strict way, that is Wk,k > maxl �=k{Wk,l} ∀k ∈ Ik , then W is called a strictly ultrametric
matrix. An ultrametric matrix is nonsingular if no row and no column is equal to 0, and no
two rows (or columns) are equal. So, a strictly ultrametric matrix is nonsingular. If W is
a nonsingular ultrametric matrix, it is a potential matrix having a nonnegative equilibrium
potential z = W−11, and if W is a strictly ultrametric matrix, then z � 0.
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When K > 1, by a permutation of indices in IK , an ultrametric matrix can always be
written in a nested block form (NBF), meaning that we can write it in the form,

W =
(

W 1 αW 1I 11′
I 2

αW 1I 21′
I 1

W 2

)
, (10)

where IK = I 1 ∪ I 2, αW = mini, j Wi j and W 1 and W 2 are ultrametric matrices in NBF.
Here, the vector 1I l denotes the 1−constant vector of dimension |I l |, l = 1, 2. Then,

W = αW 11′ +
(
Ŵ 1 0
0 Ŵ 2

)
,

where Ŵ i := Wi −αW 11′, i = 1, 2, are again ultrametric matrices. If |I 1| > 1, by permuting
the indices in I 1 if necessary, we now have

Ŵ 1 = αŴ 1 1I 11′
I 1 +

(
Ŵ 3 0
0 Ŵ 4

)
,

and so, with 1̂I 1 the vector of dimension |I | whose coordinates in I 1 are equal to 1 and those
in I\I 1 are equal to 0, we get:

W = αW 11′ + αŴ 1 1̂I 1 1̂′
I 1 +

⎛

⎝
Ŵ 3 0 0
0 Ŵ 4 0
0 0 Ŵ 2

⎞

⎠ .

If (extending what we have already used for l = 1 to all l) we define 1̂I l to be the vector
of dimension |I | whose coordinates in I l are equal to 1 and those in I\I l are equal to 0,
iterating the above construction with K > 1,we can partitionW while generating a sequence
of partition matrices Ŵ 1, . . . , Ŵ r with r ≥ K − 2, till we end in a diagonal matrix D. But
only K − 2 of these matrices are not 1× 1 matrices and so can be subsequently partitioned.
Let us denote this subsequence by Ŵ l1 , . . . , Ŵ lK−2 . Starting from W , and ending with the
diagonal matrix, we obtain

W = αW11′ +
K−2∑

r=1

αŴ lr 1̂I lr 1̂′
I lr + D.

Note that all the diagonal elements of the terminal matrix D are strictly positive if W is
strictly ultrametric.

Stated differently, the above construction gives a real sequence sl ≥ 0 and a sequence
of vectors ul for l = 1, . . . , 2K − 1 with entries in {0, 1} such that [see Nabben and Varga
(1994)]

W =
2K−1∑

l=1

slulu′
l . (11)

For strictly ultrametric matrix, all the 1× 1 matrices corresponding to the K diagonal terms
should be strictly positive; so, there should be at least K terms sl > 0.

If W is an ultrametric matrix, then the associated matrix W defined in (8), satisfies the
following ultrametric property,

∀ j, k, l : Wk,l ≤ max
{
Wk, j ,W j,l

}
, (12)
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and if W is strictly ultrametric, then we have a strict fitness domination of the heterozygotes
Ak Al over the homozygotes,

∀k : Wk,k < min
l �=k

{
Wk,l

}
. (13)

Then, W will display a stable polymorphic equilibrium state xeq.

Remark The strictly ultrametric conditions (12) and (13) should be compared with the so-
called ‘triangle inequality’ conditions, which are necessary for stable polymorphism, as first
pointed out in Lewontin et al. (1978). They read:

(i) ∀k �= l ∃ j, k �= j �= l with: Wk,l < Wk, j + Wl, j ;
(i i) ∀k �= l : Wk,l >

1

2

(
Wk,k + Wl,l

)
.

It is clear that the matrices W of type (8) derived from ultrametric matrices W will satisfy
these conditions. ��

Assume K ≥ 2 and W is a strictly ultrametric matrix, then

max{Wi j : i, j ∈ IK } <

2K−1∑

l=1

sl .

We can construct W = ξ J − W in (8) with ξ = ∑2K−1
l=1 sl , and so,

W = s1 J + V with V :=
2K−1∑

l=2

sl
(
J − ulu′

l

)
.

So, V is of type (8) as well, then there is a zV � 0 such that V zV = 1. Thus,WzV = (s1 J +
V )zV = (s1|zV | + 1)1 showing that, with z = zV / (s1|zV | + 1), Wz = (s1 J + V )z = 1.

In the case sl = 1, ∀l, any positive matrix of the formW = γ J +V with γ > 0 will admit
a stable polymorphic equilibrium state and the equilibrium mean fitness for xeq = zV /|zV |
is x′

eqWxeq = (γ |zV | + 1)/ |zV |.
2.5 Examples

(i) Let K = 2, s > −1, h > 0 and sh > −1. The positive matrix

W =
(

1 + s 1 + sh
1 + sh 1

)

defines the fitness matrix with selection parameter s and dominance h. Here, x′
eq = (h/(2h−

1); (h − 1)/(2h − 1)). The matrix W is strictly ultrametric if and only if s < 0 and h > 1,
and in this case, the equilibrium state is unstable. The matrix W is of type (8) if and only if
s > 0 and h > 1, and in this case, the equilibrium state is stable.
(i i) Let K = 4, that is four alleles, with W = ∑7

l=1 slulu′
l , being sl = 1 for l = 1, . . . , 7,

u1 = (1, 1, 1, 1), u2 = (1, 0, 0, 0), u3 = (0, 1, 1, 1), u4 = (0, 1, 1, 0), u5 = (0, 0, 0, 1),
u6 = (0, 1, 0, 0), u7 = (0, 0, 1, 0) and ξ = 7. We find W = ξ J − W = J + V with:

V =

⎛

⎜⎜
⎝

2 1 1 1
1 4 3 2
1 3 4 2
1 2 2 3

⎞

⎟⎟
⎠ ,
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which is a symmetric matrix of type (8). For this example, z′
V = 1

150 (27, 1, 1, 3) and x′
eq =

1
32 (27, 1, 1, 3) and the equilibrium mean fitness is x′

eqWxeq = (|zV | + 1)/|zV | = 91/66.
��

3 Flat fitness and segregation distortion (Weissing and van Boven (2001))

We now address the flat fitness model. Let A be a real skew-symmetric matrix, so obeying

A′ = −A.

Let σ, λ > 0. We wish here to consider evolutionary dynamics of the form (3), but now,
when W is of the form W = λ−1(J + σ A) � 0 when A′ = −A and such that |Ak,l | ≤ 1/σ .
The mean fitness function ω(x) appearing in (3) is a constant ω(x) = x′Wx = λ−1, and in
this sense, the fitness matrix W is called flat. Because Wk,l + Wl,k = 2λ−1, these models
correspond to constant-sum games in which each pair of two players has opposed interest
or to evolution under the effect of segregation distortion in population genetics; See Karlin
(1984); Hofbauer and Sigmund (1998); Weissing and van Boven (2001). An interesting sub-
family of such models is when σ ∈ (0, 1] and Ak,l ∈ {−1, 0, 1}. Some authors recently
and interestingly considered the interaction between selection differences and segregation
distortion effects, but we shall not run into this problem (Weissing and van Boven 2001;
Sanyal and Sarkar 2013).

The dynamics (3) for this particular form of W boils down to

x(t + 1) = p(x(t)), where p(x) = 1

ω(x)
DxWx = x+σDxAx, (14)

independent of λ. With �xk(t) = xk(t + 1) − xk(t), with H (x) := ∑K
k=1 x

2
k /2, the simple

energy quadratic form, we have

�xk (t)

xk(t)
= (Wx)k − 1

ω(x)
= σ(A∇H(x))k, k = 1, . . . , K , (15)

with σ∇ · (A∇H (x)) = 0 : the relative allelic frequencies obey a divergence-free dynamics.
Such p(·) are called quadratic stochastic or Volterra operators, Ganikhodzhaev et al.

(2011). When σ = 1/
(
max Ak,l + c

)
with c ≥ 0 some constant, it can be checked that

the K extremal points (0−faces) of SK are fixed points of (14).
A key problem we shall face in the next Section is to determine those skew-symmetric

matrices A for which Az = 0 for some z � 0. Indeed, when such a z exists, with λ = |z|, the
newW = λ−1(J +σ A) obeysWz = 1, with z an ‘equilibrium potential’ ofW ; xeq := z/|z|
will be a polymorphic equilibrium state of the dynamics (14) governed by the flat fitness
matrix W .

Note that since ω(x) is constant, it is not a Lyapunov function. Define the partial rate of
increase of the mean fitness due to frequency shifts as

δω(x) :=
∑

k

�xkwk(x), where wk(x) = (Wx)k .
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Observing x′Ax = ∑
k xk (Ax)k = 0, it is satisfied

δω(x)

ω(x)
= δω(x) = |z0|

∑

k

�xk(Wx)k = |z0|
∑

k

�xk(1 + (Ax)k)

= |z0|
∑

k

xk (Ax)k

(
1

|z0| + (Ax)k

)
= |z0|

∑

k

xk(Ax)2k = σ 2
A(x)

2
> 0,

where σ 2
A(x) is the allelic variance in relative fitness (Price 1972).

Consider the dynamics p(x) = 1
ω(x)

DxWx = 1
ω(x)

DWxx, where W = J + A � 0,

with A skew-symmetric, |Ak,l | ≤ 1 and such that there is a z � 0 for which Az = 0. So
p(x) = x + DxAx. Consider V (x) = ∏K

k=1 x
zk
k , where x ∈ SK . Then V is maximum at

xeq = z/|z| with V (xeq) = |z||z| ∏K
k=1 z

zk
k . Clearly, in view of (Wx)k ≥ 0 and x′Wx = 1,

V (p(x)) = V (x)

K∏

k=1

(Wx)zkk = V (x)

K∏

k=1

(1 + (Ax)k)
zk < V (x),

the latter inequality following from the information inequality (Bapat and Raghavan (1997),
p. 80), the concavity of the function log and the Jensen’s inequality.

This shows Liberman (1991) and Ganikhodzhaev et al. (2011), that xeq in the interior
of SK is a repeller and that the trajectory of x spirals away xeq towards the boundary of
SK , without ever reaching it in finite time [a quasi-fixation type event as defined in (Kimura
1954)].

3.1 Examples

(i) Let A be a K × K skew-symmetric matrix. Let us show that for K odd or even, the
conditions under which there is a positive state x for which Ax = 0, is amenable to the sign
structure of some determinants by Cramer’s rule.

– The odd case. Let K be odd: Suppose A has rank K − 1. So, 0 is an algebraically and
geometrically simple eigenvalue of A. We want to check under what conditions Ax = 0
for some unique x � 0 with |x| = 1. We can decompose A as follows, where a is a size
K − 1 column vector and rank(A) = K − 1,:

A =
(

A a
−a′ 0

)
.

If Az = 0 with z � 0, and x := z/|z|, we have Ax = 0 for some x � 0 with |x| = 1.
Since rank(A) = rank(A) = K − 1, there exists a vector b of size K − 1 such that(

A
−a′

)
b=

(
a
0

)
. Then b is uniquely given by inversion of A b = a. We have a′b = 0

because b
′
a = b

′
A b = 0, in view of A being skew-symmetric. The vector b :=

(
b

−1

)

solves Ab = 0. If b < 0, then z := −b is a positive vector of the kernel of A . Whether

b ≺ 0 or not can be checked while using Cramer’s rules to compute b = A
−1

a. If b ≺ 0,
x = z/|z| defines a vector in the one-simplex, solution to Ax = 0.

For instance, the matrix A =
(

0 a b
−a 0 c
−b −c 0

)
has the required property if ac > 0 and bc < 0

(or ac > 0 and ab < 0. Let W = J/|z| + λ−1A, where λ > 0. There is a value λc of λ

such that W � 0 for λ ≥ λc and we have Wz = 1.
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– The even case: Let K be even. Suppose A has rank K −2 so that 0 is a double eigenvalue
of A. Then, up to a permutation of the rows and columns, A can be written as:

A =
⎛

⎝
A a b

−a′ 0 −aK
−b

′
aK 0

⎞

⎠ ,

with (i) rank(A) = K − 2 and (i i) there exist c and d of dimension K − 2 such that:

⎛

⎝
A

−a′

−b
′

⎞

⎠ c =
⎛

⎝
a
0
aK

⎞

⎠ and

⎛

⎝
A

−a′

−b
′

⎞

⎠ d =
⎛

⎝
b

−aK
0

⎞

⎠ .

Thus, Ac = a defines uniquely c), a′c = 0 because A is skew-symmetric and−b
′
c = aK

fixing aK ). Similarly, A d = b defines uniquely d, b
′
d = 0 because A is skew-symmetric

and a′d = −b
′
c = aK .

Under these conditions, the vectors c = [c,−1, 0]′ and d = [
d, 0,−1

]′
obey Ac = 0 and

Ad = 0; so they are the two linearly independent vectors of the kernel of A. If both c ≺ 0
and d ≺ 0, then [−c, 1, 0]′ and

[−d, 0, 1
]′
are two nonnegative linearly independent

vectors of the kernel of A. Then A can be written as:

A =
⎛

⎜
⎝

A b1 b2

−b
′
1 0 0

−b
′
2 0 0

⎞

⎟
⎠ ,

The sub-matrix Ã :=
(

A b1
−b′

1 0

)
is amenable to the previous study with K replaced by

K − 1; so it has rank K − 2.

3.2 Asymmetric permutations

Let us note by ◦ theHadamard product ofmatrices. Let S be a permutationmatrix defined by a
permutation σ that has no fixed points nor 2−cycles. Then S◦ S′ = 0 and S is called a strictly
asymmetric permutation matrix. Let Q = (S − S

′
)/2 and z � 0. Define A = D−1

z QD−1
z .

We have A′ = −A and, in view of Q1 = 0 and 1′Q = 0, we find Az = D−1
z Q1 = 0 and

z′A = 1′QD−1
z = 0.

Let K be odd. Let us define the following sequence (Sl : l = 1, . . . , (K − 1)/2) of
strictly asymmetric permutation matrices. Let S1 be one of these matrices, then the matrix
Q1 := S1 − S′

1 has 2K entries ±1 and A1 := D−1
z Q1D−1

z has the desired properties. Now,
for each k = 2, . . . , (K −1)/2, we take a strictly asymmetric permutationmatrix Sk such that
Sk◦(Sk−1+S′

k−1) = 0. Define Sk := Sk−1+Sk , so Sk◦S′
k = 0. Then Qk := Sk−S

′
k has 2kK

entries ±1 and Ak := D−1
z QkD−1

z has the same properties as A. The matrix Q(K−1)/2 :=
S(K−1)/2 − S

′
(K−1)/2 has K (K − 1) entries ±1 and A(K−1)/2 := D−1

z Q(K−1)/2D−1
z has the

desired properties but it has no zero entries outside the diagonal. This shows how to generate
skew-symmetric matrices Q with entries Qk,l ∈ {−1, 1} for all k �= l, iteratively nesting
‘mutually orthogonal’ strictly asymmetric permutation matrices.
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4 Nonsymmetric nonnegative matrices sharing the same Perron
eigenvector

Let B be a nonnegative nonsymmetric irreducible matrix such that B and B ′ share the same
Perron eigenvector z � 0, so with Bz = B ′z = ρz, where ρ > 0 is the real Perron eigenvalue
[the spectral radius of B, see Horn and Johnson (1985)]. Then, for the skew-symmetric part
A := (B − B ′)/2 of B, Az = 0. For λ > 0, define W = J/ |z| + λ−1A. There is a value λc
such that W � 0 for λ ≥ λc and we have Wz = 1 + λ−1Az = 1.

Let K be odd. We will construct a class of matrices B satisfying the above properties by
using a perturbation analysis of the symmetric case. Let C � 0 be a symmetric irreducible
nonnegative matrix and z =: z0 � 0 be the right and left Perron eigenvector associated to
the Perron eigenvalue ρ > 0. We can assume z′

0z0 = 1.
Let zi , i = 1, . . . , K − 1 be such that zi , i = 0, . . . , K − 1 constitute an orthonormal

system, so z′
iz j = δi, j . Let D = ∑K−1

i=0 γiziz′
i , where Pi = ziz′

i are projectors with P2
i = Pi

and choose the real numbers γi in such a way that γ0 = 1 and D � 0 (this is always possible
because D = z0z′

0+∑K−1
i=1 γiziz′

i and z0z′
0 is a matrix with strictly positive entries). Clearly,

D is symmetric with D2 = DD′ = ∑K−1
i=0 γ 2

i ziz′
i . Then B = CD is nonnegative and

asymmetric because [C, D] = B−B ′ �= 0. Note also that Dz0 = z0 = D′z0 and Dzi = γizi
i = 1, . . . , K − 1, so that zi (and z′

i ) is the right (left) eigenvector of D with eigenvalue γi .
We have Bz = Bz0 = CDz0 = Cz0 = ρz0 and z′B = z′

0B = z′
0CD = ρz′

0D = ρz′
0.

So, B is an asymmetric nonnegative matrix with the same left and right Perron eigenvector
z =: z0 � 0, associated to the Perron root ρ of C .

4.1 Characterization in terms of stochastic matrices

Let K > 2. It turns out that the class of K × K skew-symmetric matrices A for which there
is a unique z � 0 such that Az = 0 admits a representation in terms of some stochastic
irreducible matrices. We note that the matrix A has rank K − 1 if K is odd or K − 2 if K is
even.

In the next result, we shall consider P a stochastic irreducible matrix. Then, it has a unique
invariant probability vector π . We recall that P obeys detailed balance if πk Pk,l = πl Pl,k
for all k, l ∈ IK . This is equivalent to the fact that P is self-adjoint with respect to the inner
product defined by π .

Theorem 2 Let K > 2.

(i) Let P be a stochastic irreducible matrix not obeying detailed balance. Let π ′ be its
invariant row vector, so π ′ = π ′P. Let z � 0 and define B = D−1

z Dπ PD−1
z � 0. Then,

Dπ P is an irreducible nonnegative matrix whose row and column sum vectors coincide.
Furthermore, Bz =B ′z and A = (B − B ′)/2 is skew-symmetric such that Az = 0.

(ii) Any matrix A with the latter property can be represented as
(
B − B ′) /2, where B =

D−1
z Dπ PD−1

z .

Proof (i) Bz = B ′z = D−1
z π , and so, Az = 0. We have (Dπ P) 1 = (Dπ P)′ 1 = π .

When P obey detailed balance, πk Pk,l = πl Pl,k and so Bk,l = Bl,k leading to a
degenerate A ≡ 0. The one-dimensional simplex for which case K = 2 is ruled out
because, in this case, P always obeys detailed balance.

(ii) Let A be a skew-symmetricmatrix such that Az = 0 for some z � 0. Assume rank(A) =
K − 1, which entails that K is odd. Let w � 0 and S = (ww′)/w′z a rank 1 symmetric
matrix. Let B = S + A with rank(B) = K . Then, A = (B − B ′)/2, where B is an
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irreducible nonnegative matrix such that Bz = B ′z = w. Further, C := DzBDz � 0
is an irreducible nonnegative matrix whose row and column sum vectors coincide
with C1 = DzBz = C ′1. Let c = C1 = C ′1. Then, P = D−1

c C is an irreducible
stochastic matrix with invariant measure π = c. Finally, one can choose w =D−1

z π ,
fully characterizing B. Because B is full rank, so is C and, then, also P .

��

As an example, consider P a bi-stochastic nonsymmetric matrix. The invariant vector is
π ′ = 1′, and so, Dπ is the identity. Therefore, the representation of the above Theorem gives
A = D−1

z QD−1
z � 0, where Q = (P − P ′)/2.

Corollary 3 (i) If z = π , B = PD−1
π and Bz = B ′z = 1. Then, A = (

B − B ′)/2 is
skew-symmetric such that Az = 0.

(ii) If z = D1/2
π 1, B = D1/2

π PD−1/2
π and Bz = B ′z = z so z is the common left and

right eigenvector of B associated to the eigenvalue 1. Then, A = (
B − B ′)/2 is skew-

symmetric such that Az = 0.
(iii) Let ρ > 0. Then, B = ρD1/2

π PD−1/2
π is a nonnegative matrix with z as the common

left and right Perron eigenvector associated to the eigenvalue ρ. Any matrix B with this
latter property can be represented in this way.

Proof Only (i i i) deserves a proof. Let B � 0 be an irreducible nonnegative matrix sharing
z � 0 as a common left and right Perron eigenvector. Define P = ρ−1D−1

z BDz. Then,
P1 = ρ−1D−1

z Bz = 1 so P is stochastic. We have π ′ = π ′P , where π = D2
z 1. ��

Let K be even, A = (B− B ′)/2 and S = (B+ B ′)/2. Assume rank (A) = K −2. Ker(A)

consists of two complex conjugate linearly independent and orthogonal eigenvectors z1 and
z2 = z1 (with z1 ·z2 := ∑

k z1,kz2,k = z2 · z1) and z = ξz1+ξz2 = 2Re(ξz1) � 0 for some
complex number ξ with complex conjugate ξ . Then, B = S + A with rank(B) = K and
Bz = B ′z = Sz = w. Note that when we take a realization of a random stochastic matrix P
obtained while considering that its rows are drawn independently from Dirichlet(1, . . . , 1)
distributions. With probability 1, P � 0, and it is irreducible with invariant measure π . Let
B = D−1

z Dπ PD−1
z ; then, 0 is a double eigenvalue of A = (B − B ′)/2 with eigenvectors z1

and z2 = z1 generating Ker(A) in C and z can be chosen as z = ξz1 + ξz2 = 2Re(ξz1) � 0
for some ξ . ��
4.2 Stability of polymorphic states

Let � be a nonsymmetric bi-substochastic matrix, that is � �= �′, � � 0 with �1 := q < 1
and�′1 := r < 1. Letλ > 0. Then, thematrices B = λ−1(I−�)−1 and B ′ = λ−1(I−�′)−1

are potential matrices satisfying B �= B ′. Denote by z and v the solutions of Bz = 1 and
B ′v = 1, which are nonnegative. Since v′Bz = v′1 = 1′z, we get |z| = |v|. Assume q = r.
Then, z = v and z = B−11 = λ(1 − q) . Let A := (B − B ′)/2 and z = λ(1 − q). Clearly,
Az = (

Bz − B ′z
)
/2 = 0 but also Az0 = 0, where z0 := 1 − q.

Let W := |z0|−1 J + A. It has nonnegative entries if and only if λ ≥ λc =
(|z0|maxk,l

[
(I − �)−1

]
k,l)/2), it satisfies Wi, j + Wj,i = 2/ |z0| and W has a positive

right equilibrium potential obeying Wz0 = 1.
Consider the following dynamics over SK : p(x) = DxWx/ω(x) with ω(x) := x′Wx.

Since x′Ax = 0, we get x′Wx = 1/|z0|. This is also
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p(x) = |z0|DxWx = |z0|DWxx = x+|z0|DxAx or �x = |z0|DxAx ,

Note that ω(x) = x′Wx is a constant of motion because W is a flat fitness matrix.
This dynamics has a polymorphic equilibrium state xeq = z0/ |z0|. The stability condition

of xeq results from the study of the eigenvalues of the Jacobian matrix Jeq :=
[

∂p(x)
∂x

]

xeq
at

equilibrium, acting to the right on zero-sum vectors δ = x − xeq, namely

Jeq = I + 1

ω
(
xeq

)DxeqW = I + Dz0

(
J

|z0| + A

)
= I + xeq1′ + Dz0 A.

On the zero-sum eigenspace, Jeq now reduces to Jeq = I + Dz0 A. The equilibrium state
xeq is stable if the spectral radius of Jeq is < 1 and unstable otherwise. Since the diagonal
terms of A vanish, the centers of the Gerschgorin disks of Jeq are located at point (1, 0) of
the complex plane, so ρ(Jeq) > 1 and xeq is unstable [a result due to Liberman (1990)].

4.3 GUM matrices

We will introduce GUM matrices and show that the class of GUM nonsymmetric matrices
W for which the equilibrium potential vectors ofW andW ′ are strictly positive and coincide,
are necessarily symmetric. Hence, this class of potential matrices do not admit non-trivial
skew-symmetric matrices supplied by Theorem 2.

For the definition and main properties of GUM matrices see McDonald et al. (1995),
Nabben and Varga (1995) and Dellacherie et al. (2000). Here, we give the GUM matrix in
its nested block form (NBF) matrices rather than in terms of inequalities as in the case of
ultrametric matrices, but such a characterization exists. The matrixW = (Wi, j : i, j ∈ IK ) is
a GUMmatrix in its NBF if there exists a non-trivial partition of the index set IK = I 1 ∪ I 2,
such that

W =
(

W 1 αW , 1I 11′
I 2

βW 1I 21′
I 1

W 2

)
(16)

with

αW = min
i, j∈IK

Wi j and βW ≤ min{ min
i, j∈I 1,i≥ j

Wi j , min
i, j∈I 2,i≥ j

Wi, j };

and such that W 1 and W 2 admit also this representation in NBF. This algorithmic way of
defining a nested block form matrix generates a family of nested block form submatrices; we
simply call it a family of nested block form matrices defining W .

The GUM matrix W is nonsingular if no row and no column is equal to 0, and no two
rows nor two columns are equal. We will assume that this is the case. On the other hand,
it was shown in McDonald et al. (1995) and Nabben and Varga (1995) that a nonsingular
GUMmatrixW is a potential matrix, so it has right and left nonnegative equilibrium potential
vectors denoted, respectively, by z and v.

Let us mention that a GUM matrix is symmetric if and only if it is ultrametric. So, for
dimension 1, a nonsingular GUM matrix is ultrametric and z = v = α−1

W .
If W is a GUM matrix having a constant row and a constant column (we can assume that

it is the first row and the first column), both with constant value αW , then z = v = α−1
W e1,

where e1 is the vector with a 1 in coordinate 1 and all the other coordinates are 0. Moreover,
in the decomposition (16), we have thatW 1 is a symmetric matrix whose off-diagonal matrix
is the constant αW ; we also have βW = αW and W 2 is a GUM matrix (necessarily with
βW 2 ≥ βW and αW 2 ≥ αW ).
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Hence, a necessary and sufficient condition in order that the right and left z and v equi-
librium potential vectors are (strictly) positive is that every matrix belonging to a family of
nested block form matrices definingW has no constant row and constant column equal to its
minimum value.

Theorem 4 Let W be a nonsingular GUM matrix. Then, if z � 0 and v � 0, we have z = v
if and only if W is symmetric (so W is an ultrametric matrix).

Proof Assume z = v, we must show W is symmetric. Let us make the partition

z =
(

z1
z2

)
,

with z1 of dimension |I 1| and z2 of dimension |I 2|. Denote α = αW and β = βW . We have

Wz =
(

W 1z1 + α|z2|1I 1

β|z1|1I 1 + W 2z2

)
.

and

z′W = (
z′
1W

1 + β|z2|1′
I 1 , α|z1|1′

I 2 + z′
2W

2) .

From Wz = 1 and z′W = 1′, we find

W 1z1 = (1 − α|z2|)1I 1 , W 2z2 = (1 − β|z1|)1I 1;
z′
1W

1 = (1 − β|z2|)1′
I 1 , z′

2W
2 = (1 − α|z1|)1′

I 2 . (17)

Therefore,

z1 = (1 − α|z2|)zW 1 , z2 = (1 − β|z1|)zW 2

z1 = (1 − β|z2|)zW 1 , z2 = (1 − α|z1|)zW 2 .

Then, from α ≤ β, we get α = β. We also deduce

zW 1 = vW 1 and zW 2 = vW 2 . (18)

Moreover, z1 � 0 and z2 � 0 also implies zW 1 = vW 1 � 0 and zW 2 = vW 2 � 0. A
recurrence argument gives αWk = βWk for every matrix Wk belonging to a family of nested
block form matrices defining W ; so W is symmetric.

We note that we can make a perturbation of a strictly ultrametric matrix to get a nonsym-
metric potential matrix such that it shares its Perron eigenvector with its transpose. But the
above result implies that this matrix is not a GUM matrix. ��
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