New insights on regional tectonics and basement composition beneath the eastern Sierras Pampeanas (Argentine back-arc region) from seismological and gravity data

Jean-Baptiste Ammiratia,⁎, Agostina Venerdinia,b, Juan Manuel Alcacerb, Patricia Alvaradoa,b, Silvia Mirandaa,b, Hersh Gilbertc

a CIGEOBIO-CONICET, Universidad Nacional de San Juan, Argentina
b Departamento de Geofísica y Astronomía, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan, Argentina
c Department of Geosciences, University of Calgary, Canada

ARTICLE INFO

Keywords:
Andean retroarc
Subduction
Surface waves
Receiver functions
Eclogite
South America

ABSTRACT

The eastern Sierras Pampeanas (ESP) are the easternmost expression of a series of foreland uplifts in the Argentine back arc region (~30°–34°S) and show spatial and temporal connections with the subduction of the Juan Fernández Ridge (JFR) under the South American plate. In order to get new insights on the mechanisms that control crustal regional tectonics, we computed teleseismic receiver functions (RF) and jointly invert them with Rayleigh-wave phase velocity dispersion curves. RFs allow resolving crustal thickness and intra crustal velocity variations with a good vertical resolution whereas surface wave information helps to constrain absolute seismic wave velocities.

Our seismic images have been combined with crustal density modeling in order to further investigate if the shear wave velocity structure obtained from the RF-SW joint inversion could explain the observed gravity variations. Our results show a crustal thickness varying from 35–40 km (east) to 45–50 km (west) with a Moho step at ~66°W. This step regionally presents a NW-SE orientation and is parallel to the trace at the surface of the Valle Fértil-La Huerta (VFLH) lineament (Cuyania-Pampia boundary). Our images also reveal the presence of a high wave velocity (high density) lower crust west of this Moho step, beneath the eastern Sierras Pampeanas (at 66–67°W). This observation suggests the east-dipping extension at depth of the VFLH structure and the underthrusting of the Cuyania lower crust under the Pampia terrane along this structure. Finally, we evidenced localized low velocity zones located at about 10 km beneath late Cenozoic volcanic fields (Pocho, Morro). We believe that these low velocity zones correspond to old magma chambers associated to the recent, slab flattening-related volcanism in the ESP.

1. Introduction and geological setting

Observations resulting from geological (Stauder, 1973; Ramos, 1988; Kay and Abruzzi, 1996; Ramos et al., 2002) and geophysical investigations (Barazangi and Isacks, 1976; Cahill and Isacks, 1992; Anderson et al., 2007; Mulcahy et al., 2014) have produced constraints on along strike variations in the angle of subduction including the Chilean-Pampean flat slab segment (Fig. 1). The flat slab subduction has been related to the subduction of the Juan Fernandez Ridge (JFR), a submarine volcano chain located on top of the Nazca plate (Yáñez et al., 2002), as the geometry of the Nazca plate under the South American plate matches the projected orientation of the JFR.

At the surface, the Argentine back-arc region is characterized by three main structural units (Fig. 1). These units are the Pampia terrane to the east, where the eastern Sierras Pampeanas (ESP) are located, the Cuyania terrane in the middle, containing the Precordillera (PC) and western Sierras Pampeanas (WSP), and the Chilenia terrane to the west, forming the basement of the principal and frontal Cordillera (PFC).

The regional tectonics involves a three-stage evolutionary history that included accretion during the Famatinian orogeny (Early Ordovician to Early Cretaceous), extension during the Gondwanic cycle (Early Carboniferous to Early Cretaceous) and compression again, during the Andean orogeny (Early Cretaceous to present) (Ramos, 1988) that re-activated and inverted previous accretionary structures. As a result, a
series of thin-skinned and basement-cored uplifts extends up to 700 km east from the Nazca-South America trench in the Precordillera and the Sierras Pampeanas. Those three main accreted units exhibit seismic activity mostly along their suture zones (Brooks et al., 2003; Alvarado et al., 2007; Ammirati et al., 2015, 2016). Among those structures, a NW-SE oriented suture zone bounding the western flank of the Valle Fértil-La Huerta range (VFLH) (western Sierras Pampeanas) extends about 600 km, marking the transition at the surface between the terranes Cuyania (west) and Pampa (east) (Snyder et al., 1990; Ramos et al., 2002; Otamendi et al., 2009). Recent taphonomical, neotectonic and geophysical studies indicate that this structure seems to play a major role in the uplift of the western Sierras Pampeanas (Ortiz et al., 2015).

The eastern Sierras Pampeanas (ESP) between 29°S to 34°S and 64°W to 67°W (Figs. 1 & 2a) represent the easternmost manifestation of crustal shortening for which the deformation mainly consists of tilted basement blocks bounded to the west by high dipping reverse faults (Ramos et al., 2010). The resulting ranges thus present an asymmetric shape, stretched along the N-S direction with a steep western slope on their eastern side. Although the deformation of the eastern Sierras Pampeanas mainly affects rocks of Neoproterozoic to Early Paleozoic ages (Fig. 2a), geologic evidence shows that the uplifting began much more recently, during the Miocene, by the tectonic inversion of Cretaceous faults (Siegesmund et al., 2010; Martino et al., 2012). The convergence orientation and rate between the Nazca plate and the South American plate is from DeMets et al. (2010). The red rectangle delimitates our study region. Main cities and localities from both countries are shown by magenta circles. (bottom) Cross-section A-B showing intra slab and intra crustal seismic locations (Marot et al., 2013). PFC: Principal and Frontal Cordillera; PC: Precordillera; WSP: western Sierras Pampeanas; ESP: eastern Sierras Pampeanas (Ramos, 1988). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

2. Previous geophysical studies

This study uses data from three seismic experiments deployed between 2000 and 2010 (Fig. 1); The CHile ARgentina Geophysical Experiment (CHARGE) from November 2000 to August 2002, The Sierras Pampeanas Experiment using a Multicomponent BRoadband Array (SIEMBRA) from December 2007 to December 2009 and the Eastern Sierras Pampeanas experiment (ESP) from September 2008 to August 2010. Those experiments were deployed in the Pampean flat slab region to investigate relationships between the subducting Nazca Plate and the crustal shortening observed at the surface (Figs. 1 & 2).

Using P- and S-wave traveltime tomography, Wagner et al. (2005) constrained the wave velocity within the subducting Nazca plate and the overlying mantle. Their findings, later confirmed by Porter et al. (2012) using a combination of earthquake generated surface wave and Ambient Noise Tomography (ANT), evidenced that the subducting plate geometry seems to control the water content and temperature of the overlying mantle wedge. In particular, the region exhibits a hydrated slab and a dry overlying mantle wedge within the flat portion of the slab (beneath the Precordillera) and a dry slab with a hydrated overlying mantle wedge beneath the ESP (Wagner et al., 2005; Alvarado et al., 2007; Porter et al., 2012).

Receiver function (RF) observations from the Pampean flat slab region found the crust to be 50 km thick beneath the western Sierras Pampeanas, > 60 km beneath the Precordillera and ~ 70 km thick beneath the Frontal and Principal Cordillera (Gilbert et al., 2006; Calkins et al., 2006; Perarnau et al., 2010; Gans et al., 2011; Ammirati et al., 2013, 2015). In addition to these RF results, other studies that used a range of seismic methods observed similar crustal thicknesses (Regnier et al., 1992; Alvarado et al., 2007; McGlashan et al., 2008).

The seismic velocity structure combined with petrological analyses (Pérez Luján et al., 2015) provided evidence that the composition of the Cuyania basement consists of dense mafic to ultramafic rocks, which
show that the crust is thinner (~40 km) and the crustal wave velocities are lower than those observed beneath the western Sierras Pampeanas and the Precordillera (Alvarado et al., 2007; Ammirati et al., 2013; Venerdini et al., 2016). Gravity models for this region, estimated the Moho depth at 39.5 km beneath the Sierras de Córdoba (Miranda and Introcaso, 1999). This study was based on gravity data collected along an east–west profile at 31.5°S that extended from the Andes foothills to the easternmost boundaries of the Sierras Pampeanas (Fig. 2b).

Crustal seismicity in the ESP appears to be horizontally distributed between depths of 15 and 25 km (Richardson et al., 2012). The solutions of available focal mechanisms for small-to-moderate magnitude events are heterogeneous, although they consistently exhibit some shear component (Alvarado et al., 2005; Richardson et al., 2012). Using local RF analysis, Perarnau et al. (2012) examined the crustal velocity structure and identified major faults within the Pampa basement. These faults seem to extend from the surface to a regional décollement level at about 20 km depth, which seems to align with the distribution of seismicity (Richardson et al., 2012).

Here, we refine these earlier models of the regional velocity structure through joint inversions of RFs and Rayleigh-wave dispersion data. In addition, we use constraints from gravity data for the eastern Sierras Pampeanas to build a 2D lithospheric profile and address the hypothesis derived from the interpretations of our seismic results. The updated velocity structure developed in this work helps us to discuss the evolution of the ESP and could be used in future regional seismic studies.

3. Data and methods

Discontinuities in seismic velocities generate P-to-S-wave conversions. Because of differences in the velocities of P- and S-waves, the arrival time of the converted S-waves following the direct P is sensitive to the depth where it originated as well as the velocities of the waves. The discontinuity structure beneath three-component seismometers can be measured using these converted S-waves once the signal from P-waves has been removed (Langston, 1979). This separation produces a receiver function and is accomplished by deconvolving the vertical seismogram from the radial or tangential. Because RFs are only sensitive to discontinuities in seismic velocities, solving for the depths of those discontinuities is inherently non-unique (Ammon et al., 1990). However, jointly inverting RFs and Rayleigh-wave phase velocities, which are sensitive to shear wave velocities, can be used to overcome this limitation (Julià et al., 2000).

3.1. Receiver functions

RFs were calculated using events in the USGS-NEIC catalog (https://earthquake.usgs.gov/earthquakes/) with Mw ≥ 6.0 and epicentral distances between 25 and 95° (Fig. 3a) ensuring traces presenting a high signal-to-noise ratio (SNR). The first P-wave arrival has been manually picked allowing to visualize the seismograms and discard traces with low SNR, gaps on any recording artifact. Prior to processing, the mean has been removed from the seismograms and a symmetric taper has been applied at both ends of the data. The traces have been cut within an 80 s time window (20 s before first P-wave arrival and 60 s after).

The three-component seismograms were then band-pass filtered between 0.15 and 5 Hz to remove unwanted long- and short-period signals. The discontinuity structure beneath three-component seismometers can be measured using these converted S-waves once the signal from P-waves has been removed (Langston, 1979). This separation produces a receiver function and is accomplished by deconvolving the vertical seismogram from the radial or tangential. Because RFs are only sensitive to discontinuities in seismic velocities, solving for the depths of those discontinuities is inherently non-unique (Ammon et al., 1990). However, jointly inverting RFs and Rayleigh-wave phase velocities, which are sensitive to shear wave velocities, can be used to overcome this limitation (Julià et al., 2000).

3.2. Receiver functions

RFs were calculated using events in the USGS-NEIC catalog (https://earthquake.usgs.gov/earthquakes/) with Mw ≥ 6.0 and epicentral distances between 25 and 95° (Fig. 3a) ensuring traces presenting a high signal-to-noise ratio (SNR). The first P-wave arrival has been manually picked allowing to visualize the seismograms and discard traces with low SNR, gaps on any recording artifact. Prior to processing, the mean has been removed from the seismograms and a symmetric taper has been applied at both ends of the data. The traces have been cut within an 80 s time window (20 s before first P-wave arrival and 60 s after).

The three-component seismograms were then band-pass filtered between 0.15 and 5 Hz to remove unwanted long- and short-period signals. The traces were then rotated to their great circle path coordinates. Following these steps, radial and tangential RFs were computed in the time domain using an iterative method (Ligorría and Ammon, 1999). The iterative deconvolution was limited to 400 iterations or once the signal-to-noise ratio (SNR) could not improve by > 0.01%. The RFs were calculated using a Gaussian value of 2.5 (corresponding to low-pass filter with a corner frequency of ~1.2 Hz) to remove unwanted high-frequency signals and noise. This process yielded 1203 radial RFs. We used the UNCLAB package (Eagar and Fouch, 2012) to visualize the RFs obtained at each station and perform further quality control. Thus, RFs with a variance

![Fig. 2. a) Map of the study region showing main geological units and structures according to geological information from Lucero-Michaut et al. (1995). b) Location of the seismic stations used in this work to compute teleseismic receiver functions and Rayleigh-wave phase velocity dispersion curves. Black lines mark the location of the CCP stacked RF cross-sections shown in Fig. 4. The red circles show the RF piercing points at 40 km depth. Small black dots mark bin centers for common conversion point (CCP) stacks. Gravity cross-sections realized in this work are shown as green dashed lines (Fig. 7). For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)](image-url)
reduction < 80%, an inconsistent negative first P-wave arrival, or harmonic signals were discarded. A total of 624 radial RFs passed the quality control and were used for the subsequent stages of analysis. Tangential RFs have also been computed in order to compare their amplitudes with the corresponding radial RFs. The sampling region can only be assumed to be close to homogeneous and isotropic when the tangential RF amplitudes are significantly lower than the radial RF amplitudes, which can be observed in Figs. 3b & S1.

3.2. Phase velocities

In this study we use Rayleigh-wave phase velocity dispersion within the 8–120 s period range. Dispersion data with period from 8 to 40 s come from the ambient noise tomography (ANT) by Porter et al. (2012) (Fig. S2). Rayleigh-waves at these short periods are mostly sensitive to crustal velocities. For longer periods, the phase velocity dispersion has been estimated using a similar methodology to Ammirati et al. (2015). Briefly, this method applies a phase match filter (Herrmann, 1973) to 15 selected (Mw ≥ 6) teleseismic earthquakes that present high signal-to-noise ratios (Fig. 3a). The phase match filter allows isolating the fundamental mode Rayleigh wave within the 25–120 s period resulting in “clean” waveforms with no interference from body waves and higher modes. For each event, we then use a wavefield transformation method (McMechan and Yeldin, 1981) to build an average dispersion curve for the entire network. This process is performed in the frequency domain and yields a dispersion curve for each of the 15 events (Fig. S3). These curves are then stacked to produce our final regional phase velocity dispersion curve (Fig. 3b). The ambient noise phase velocities were then combined with our longer (25 < T < 120 s) period observations from earthquakes (Fig. 3a) and used in the joint receiver function inversion.

3.3. Joint inversion and CCP stacking

The joint inversion of RFs and Rayleigh wave phase velocities is performed using the joint96 code (Julia et al., 2000; Herrmann and Ammon, 2002) where an initial velocity model is iteratively updated in order to fit both datasets. Just as used by other studies (e.g., Porter et al., 2012) we use a homogenous initial model comprised of layers with a Vs of 4 km/s and a Vp/Vs = 1.75 from depths of 0 to 150 km. The use of a constant model at these shallow depths avoids retaining any a priori discontinuities in the final model. At depths from 150 to 400 km, the starting model uses velocities from the AK135 global reference model (Kennett et al., 1995) to avoid mapping deep velocities into shallower structure (Julià et al., 2008). Layers in the initial model...
0.4 was selected as the best compromise between data fit quality and abrupt, unrealistic changes in wave velocities in the resulting model (Fig. S4). The joint inversion assigns a weight of 25% to the surface wave (SW) observations and 75% to the receiver functions. These values were chosen based on a broader range of models being able to fit the SW observation and the RFs are able to provide needed constraints on the distribution of discontinuities within those models. Therefor assigning more weight to the SW observations would lead the inversion to produce smoother models. For our processing each RFs is inverted individually, which results in one velocity model for each RF. Those models are then averaged to produce a shear wave velocity model for that station (Fig. S5). This averaging introduces additional smoothing for the station models. Combining the results of the 18 1D velocity models (Fig. S5) produces an average model for the study region (Fig. 3d). The resulting model appears quite smooth with a clear Moho at a depth of ~40 km.

In order examine the lateral extent of structures across the study area, the RFs were geographically stacked into common conversion point (CCP) bin (CCP; Dueker and Sheehan, 1997). We use our regional Vs model to migrate the RFs from time to depth by calculating the delay time to assign to each sampling depth. All of the RFs that sample each CCP point are then binned and stacked. The bin size can be adjusted to increase or reduce the number of RFs stacked into one bin. Using smaller bins allows for sensitivity to smaller lateral variations, while also limiting the number of traces contributing to each stacking point. The bin size used here was selected such that observed small-scale structural variations could be sufficiently sampled to be able to assess whether they are robust features and required by the data. Only bins sampled by ≥10 traces are included in the CCP stacks.

The uncertainties on the velocity model lead to differences of up to 1 s during the time to depth migration (Gurrola et al., 1994). Using these values, and an average crustal shear-wave velocity of 3.5 km/s, causes an uncertainty of ~4 km in our crustal thickness measurements.

3.4. Gravity data

Taking advantage of the strong relationships between rock composition, seismic velocity and rock density (e.g. Ludwig et al., 1970; Christensen and Mooney, 1995; Brocher, 2005), we decided to further validate the seismic wave velocity structure obtained by the joint inversion of RFs and SW dispersion data by inverting gravity data observed at the surface.

In this work, we use a combination of terrestrial gravity measurements, part of the South America Gravity Project database (Pacino, 2007) and satellite observations from the GOCCO 05s project (Mayer-
We considered 192 gravity measurements that span the study region. The theoretical gravity response is computed using the Somigliana expression with parameters corresponding to the 1980 Reference Geodetic System (GRS1980, Hofmann-Wellenhof and Moritz, 2006). The Bouguer anomaly is then calculated applying free-air correction and taking into account the Earth curvature (LaFehr, 1991). Also, we use the 90 m resolution digital elevation model from the Shuttle Radar Topography Mission (SRTM90 - Farr et al., 2007) to correct the effects of the topography. We use the GM-SYS software (http://geosoft.com/products/gm-sys) to compute the gravity response for two-dimensional bodies following the methodology described in Talwani et al. (1959). The crustal geometry used to compute the complete Bouguer anomaly is derived from the velocity structure obtained by the joint inversion. Density values for each layer are estimated using the Vs from our joint inversion results and density-Vs scaling relations based on the Nafe-Drake empirical relationship (Ludwig et al., 1970) that have been re-calibrated by Brocher (2005) to consider different types of crustal lithologies.

4. Results and interpretations

4.1. Crustal discontinuities

The CCP stacks presented here come from two sections from the CCP volume (Figs. 2b & 4). The stacks from both cross-sections possess strong positive arrivals that span across much of the study region. This arrival lies at a depth of 35–40 km depth beneath the Sierras de Córdoba along the eastern portion of the ESP region and at 50–55 km depth at the transition to the WSP region.

Such signal has been observed in previous RF studies beneath the Sierra de Córdoba (Perarnau et al., 2012) and more to the west beneath the WSP (Calkins et al., 2006; Perarnau et al., 2010; Gans et al., 2011) and confirmed by P- and S-wave travel time inversions (Venditti et al., 2016). In all cases, it has been interpreted as the Moho signal. Moho depths found in this work are in good agreement with those previous observations. However, our RF images show with more details the westward deepening of the Moho. Although we acknowledge that the seismic raypaths have lower concentration due to sparser station coverage, one striking observation is the significant variation in Moho depth at about 66°W dropping from ~50 km depth in the west to ~40 km depth in the east, a feature particularly well observed in the northern (P1) cross-section (Figs. 2b, 4a & b).

We suggest that this Moho offset correlates with the transition in depth between the Pampia terrane (east) and the Cuyania terrane (west). At the surface, at about 67.5°W, the same transition corresponds to the suture zone that controls the uplift of the Sierra de VFLH, likely bounded by a reverse fault in its western flank (Ramos et al., 2002; Ortiz et al., 2015; Ahumada et al., 2017) (Fig. 2a). The earliest evidence of activity for this structure dates back to the Cambrian when the Cuyania terrane docked to the western margin of Gondwana (Mulchay et al., 2007; Ramos et al., 2010). This structure later accompanied regional extension during the subsequent breakup of Gondwana (late Triassic to early Cretaceous) (Ramos et al., 2002) and thus would have recently been reactivated in reverse motion during the Andean compression (Neogene) resulting in the uplift of the Sierra de VFLH (Ortiz et al., 2015).

At a regional scale, the surface deformation velocity field from GPS geodesy (Brooks et al., 2003) shows quite constant velocity vectors of similar orientation from the Chilean coast to the Argentine back arc region (at ~68°W or ~400 km east from the trench). Further east, GPS-measured velocities seem to decrease dramatically. The authors have interpreted this important drop in GPS velocity by the presence of a major structure accommodating shortening between two rigid blocks: the Cuyania and Pampia terranes. Other studies showed that the crustal seismicity in the flat slab region is mostly distributed along the sutures that separate the different terranes (Alvarado et al., 2005, 2009; Ammirati et al., 2015, 2016). Low temperature thermochronology, seismicity and neotectonic studies by Ortiz et al. (2015) provide evidence for an active faulting zone to the west of the northern Sierra de VFLH with structures dipping to the east and likely accommodating EW crustal shortening, in good agreement with the aforementioned surface GPS measurements.

For each bin (Fig. 2b), we retrieved the depth corresponding to the RF positive signal associated with the Moho. Depth variations between the obtained values are interpolated by triangulation (Watson, 1982). These CCP stack-derived Moho depths allow to regionally visualize the Moho topography (Fig. 5). Also observed in Fig. 4, the crust is in general thicker to the west with a step at ~66°W. Interestingly, we note a NW-SE trend for this Moho step that seems to align with the proposed NW-SE general trend of the Moho step. Note the similar orientation between this Moho step and the VFLH lineament. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Calkins et al., 2006; Perarnau et al., 2010). These mid-crustal structures may be zones of ongoing deformation as they lie near regions of mid-crustal seismicity (Regnier et al., 1994) just as identified further east beneath the Sierra de Córdoba (Richardson et al., 2012). These observations are suggestive of recent, and possibly ongoing, uplift of the Sierra de Pie de Palo (Ramos et al., 2002; Alvarado et al., 2005; Siame et al., 2015).

Further to the east, the crust beneath the Sierra de Córdoba (ESP) is characterized by the presence of two shallower discontinuities in seismic velocities at ~10 and ~25 km depths (Fig. 4b). The 25 km discontinuity is consistent with earthquake locations by Richardson et al. (2012) as they concluded that most of the seismic activity in this sector was horizontally distributed within a region between 15 and 25 km depths. This observation was in good agreement with Perarnau et al.’s (2012) suggestion of basement faulting reaching a décollement level at 20 km depth, approximately. Images in Fig. 4b and d clearly identify this décollement level beneath the ESP. Richardson et al. (2012) also found a cluster of very shallow seismicity (focal depths < 10 km) beneath the Sierras de Córdoba (Fig. 2a) likely associated to the boundary between the Pampia terrane and the Rio de la Plata craton. Because the Rio de la Plata craton to the east of the décollement level at ~25 km inferred by Perarnau et al. (2012) suggests a transition from the Rio de la Plata craton to the east of the Sierras de Córdoba has not been well sampled seismically, the eastward continuation of seismic activity to the east cannot be ruled out.

The presence of a discontinuity in seismic velocities at ~10 km depth (between 65°W and 65.5°W in Fig. 4b) remains unclear. But, because of the irregular form of this discontinuity it could be related to very local heterogeneities such as changes of lithology as further discussed below.

4.2. Vs and composition of crustal rocks

Our joint inversion of RF and SW dispersion data allows constraining absolute S-wave velocities (Figs. 6 & SS). Overall, the velocity structure obtained in this is in good agreement with observations from previous tomographic studies. However, our images present an improved vertical resolution compared to studies that relied on SW and ANT alone (e.g. Porter et al., 2012; Ward et al., 2013), which allow the interpretation of crustal features. Extrapolating our velocity models into 2-D cross-sections, we are able to relate crustal shear wave velocity variations with crustal rock compositions based on a series of geological and geophysical observations performed on typical crustal rocks (Christensen and Mooney, 1995; Christensen, 1996).

Low shear wave velocities are found at very shallow depths in sectors of sedimentary basins with low elevation (between longitudes of 65.5° and 66.5°W in Figs. 6a & b). According to Brocher (2005), such low velocity values are generally associated with the presence of sedimentary rocks. In our case, regions at shallow depths (< 5 km depth) with low velocities (Vs < 3.2 km/s) coincide with areas of Quaternary basins (Lucero-Michaut et al., 1995). Shear wave velocity increases between 5 and ~25 km depths to reach an average value of 3.5–3.6 km/s, which is typically observed in quartz-enriched lithologies such as gneisses, granites and granodiorites (Christensen and Mooney, 1995; Christensen, 1996). This observation agrees with the composition of exposed Cambrian/Ordovician basement rocks forming the ESP (Lucero-Michaut et al., 1995; Martino, 2003) (Fig. 2a) and thus characterizes the Pampia basement. A granitic crust is typically composed of ~60% SiO2 (Pakiser and Robinson, 1966; Taylor and McLennan, 1981; Christensen and Mooney, 1995). Depending on P-T conditions, quartz begins to behave plastically at depths ranging from 15 to 20 km (Scholz, 1990). The increase in S-wave velocity at 20–25 km depths with values > 3.6 km/s is thus compatible with a brittle-ductile transition at this depth for a crust of a more granitic composition. It also agrees with the bottom of the seismic zone observed by Richardson et al. (2012) and the décollement level at ~25 km inferred by Perarnau et al. (2012).

A closer look at the crustal velocity variations at shallower levels, allows for a localized decrease in Vs to be identified (low velocity zones – LVZ). This feature is particularly visible beneath stations ESP07, ESP08 and ESP12 near a depth of 10 km. Comparing the Vs model produced here to our CCP RF stacks (Figs. 2b, 4 & 6), we are able to identify that this LVZ lines up with a shallow discontinuity. The geologic settings of these LVZ correspond to the locations of the Pocho Volcanic Field to the north and the El Morro Volcanic Field to the south (Fig. 2b). Volcanism in this region includes normal to high-K basalts and shoshonites (Kay and Gordillo, 1994; Urbina et al., 1997), which have been attributed to the arrival of the shallowly dipping slab. The S-wave velocities characterizing these LVZs (3.1 to 3.3 km/s) agree with velocities found in andesites and trachyanandesites (Christensen and Mooney, 1995; Christensen, 1996). The compositions are compatible with the minerals within the basalts observed at the surface (High SiO2 and K contents). Hence, those localized LVZs at ~10 km depth could correspond to the presence of old magmatic chambers from which those basalts are derived.

For depths > 25 km, on the eastern side of our cross-sections (longitudelower than 65.5°W), S-wave velocities gradually increase up to 4.3 km/s. We interpret the Vs = 4.3 km/s contour line (Fig. 6) as the transition velocity from lower crust to upper mantle although wave velocity variations from ANT (Porter et al., 2012) suggest that the Nazca plate is dehydrating beneath the ESP, which would result in slower Vs than expected for upper mantle velocities. It is worth to note that the 4.3 km/s contour line depth matches quite well the Moho depth extrapolated from the CCP stacks (Fig. 6). Shear wave velocities > 4.3 km/s are interpreted as upper mantle velocities.

To the west of 65.5°W, the lower crust wave velocities between 30 and 40 km depths (Fig. 6), appear to be quite higher (3.7 < Vs < 3.9 km/s) and are generally associated with mafic lithologies such as rocks in the greenschists facies and mafic granulites (Christensen, 1996). Higher velocities (Vs ~ 4.0 km/s) could be explained by the presence of eclogites although, probably in small fractions. This high velocity zone (HVZ) seems to be laterally bounded to the east by the Moho step observed on the CCP stacks images at ~66°W (Fig. 4). Previous studies of crustal wave velocity structure calibrated with petrological observations beneath the Precordillera and the WSP (e.g. Pérez-Luján et al., 2015; Ammirati et al., 2015; Ahumada et al., 2017) have shown that the Cuyania basement presents a much more mafic composition with a partially eclogitized lower-crust. The velocity structure observed beneath stations NOQE, ABRA, ESP11 and ESP12 (Figs. 2b, 6c), suggests the underthrusting of the partially eclogitized lower crust of the Cuyania terrane beneath the quartz-rich upper crust along the VFHL structure as inferred from our RF images. Both the abnormally high values of structural thickness (world average: ~40 km – Christensen and Mooney, 1995) and the strong contrast in wave velocities between upper and lower crust on the western part of the ESP (west of 65.5°W) can be explained by partial eclogitization in the lower crust.

4.3. Crustal densities

In order to further investigate if the crustal geometry and rock composition inferred from our seismic data match gravimetric observations at the surface we built two 2D crustal density models (Fig. 7). The first model (G1), has been realized along the seismic cross section P1. The second density model (G2), runs along latitude 31.5°. We chose to model the crustal density for these two cross sections because they present a general orientation nearly perpendicular to the regional tectonic features (Fig. 2a).

Our models include an average crustal structure and have been modified to take into account lower crustal layering deeper than 30 km to the west of 65°W and the presence of localized high density mafic rocks at ~10 km depth in the Pampia terrane. The geometry of the key features are based on the seismic images (Fig. 6a) and adjusted to fit the observed Bouguer anomaly. Constraining the geometry of the density model with our seismic observations contributes to increase its robustness, since the gravity data can usually be adjusted by a large
amount of different models. Each layer is set to be homogenous with densities of 2700 kg/m3 for the upper crust, 2830 kg/m3 for the middle crust, and 3050 kg/m3 for the lower crustal layer. These values were determined using the Vs from our absolute velocity cross-sections (Fig. 6) and density-Vs scaling relations based on the Nafe-Drake empirical relationship (Ludwig et al., 1970; Brocher, 2005). Sedimentary basins were also taken into account to further reduce the misfit between modeled and observed gravity data. The residuals between observed and modeled gravity in the final models is 2.5 mGal.

Depocenters located east of the Sierra de Córdoba and between the Sierra de VFLH and Sierra de Chepes (Figs. 2a & 7), have been modeled as shallow (< 3 km depth) bodies with a density of 2320 kg/m3, a value characteristic of sedimentary fills (Mescua et al., 2016). The magmatic bodies have a density of 2920 kg/m3 which corresponds to the density observed for trachyandesites and trachybasalts found in the Sierras Pampeanas (Krapovickas and Tauber, 2016).

In our models, the Moho depth generally decreases from west to east, with values ranging from ~50 km for the western part of the Pampia terrane to ~33 km for the Rio de la Plata craton. We can observe that the Moho depth in the density models (Fig. 7) matches quite well the CCP-derived Moho depth variations (Fig. 5). An interesting observation is that we had to include a small crustal root beneath the Sierras de Córdoba (particularly well visible in G2) in order to locally fit the gravimetric anomaly observed in the Sierras de Córdoba. This...
Fig. 7. Gravity and density cross-sections (see Fig. 2b for location). The forward models fits the gravity data observed at the surface. The blue line represents the perfect fit between observed and modeled gravity. The crustal thickness and overall geometry have been constrained from our seismic results (Figs. 4 & 6). UC: upper crust; LC: lower crust; EC: partially eclogitized crust; UM: upper mantle; MC: magma chamber; SB: sedimentary basin. The corresponding densities have been chosen considering the Vs obtained from our joint RF-SW inversion and Vs-density scaling (Ludwig et al., 1970). For comparison, the dashed dark grey lines show the Moho depth along the corresponding cross-section, inferred from CCP stacked RFs (Fig. 5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Schematic E-W profile across our study area. We suggest an east dipping structure that accommodates crustal shortening between Pampia and Cuyania terranes. Due to differences in rock composition and density we infer that the Cuyania terrane is underthrusting the Pampia terrane in its western sector. We also suggest the presence of a small Moho depth variation beneath the Sierras de Córdoba (easternmost part of the ESP) possibly related to the transition between the Pampia terrane and the Rio de la Plata craton (RLP). Our results provide evidence for the presence of magma chambers at about 10 km depth likely related to Neogene magmatism in the ESP (e.g. Kay and Gordillo, 1994; Urbina et al., 1997).
observation coincides with the Moho perturbation observed in the CCP stacks for this area (Figs. 4a & b) as identified by Richardson et al. (2012) and Perarnau et al. (2012). The gravity model presented here strengthens the hypothesis of a change in Moho depth, at the transition between the Pampia terrane (west) and the Rio de la Plata craton (east) (Fig. 8). Additional constraints of the crustal structure of the Rio de la Plata craton would allow for this hypothesis to be further tested.

5. Conclusions

Jointly inverting RF and surface wave observations, we produced a detailed model of the crust of the WSP to the ESP (Fig. 8). Combining this model with additional constraints from gravity and petrologic modeling has helped to improve our understanding of structures within the region and the processes that contributed to its formation. Our results show changes in Moho depths with a NW-SE regional trend that divides the study area with a deeper Moho (> 45–50 km depth) in the west in comparison with a shallower Moho (35–40 km depth) in the eastern region. This trend shows a good correlation with the Cuyania-Pampa transition down to 35 km depth) in the

References

Alcacer, J.M., 2018. Modelos globales de gravedad, su uso en estudios tectónicos. Universidad Nacional de San Juan, San Juan, Argentina (dissertation (PhD)).

waves, receiver functions and crustal structure. Available at: www.eas.slu.edu/ People/RHirnemann/CPES330.html.

