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High altitude (HA) exposure may affect human health and performance by involving the
body timing system. Daily variations of melatonin may disrupt by HA exposure, thereby
possibly affecting its relations with a metabolic parameter like the respiratory quotient
(RQ). Sea level (SL) volunteers (7 women and 7 men, 21.0 ± 2.04 y) were examined
for daily changes in salivary melatonin concentration (SMC). Sampling was successively
done at SL (Antofagasta, Chile) and, on acute HA exposure, at nearby Caspana (3,270
m asl). Saliva was collected in special vials (Salimetrics Oral Swab, United Kingdom) at
sunny noon (SMCD) and in the absence of blue light at midnight (SMCN). The samples
were obtained after rinsing the mouth with tap water and were analyzed for SMC by
immunoassay (ELISA kit; IBL International, Germany). RQ measurements (n = 12) were
realized with a portable breath to breath metabolic system (OxiconTM Mobile, Germany),
between 8:00 PM and 10:00 PM, once at either location. At SL, SMCD, and SMCN

values (mean ± SD) were, respectively, 2.14 ± 1.30 and 11.6 ± 13.9 pg/ml (p < 0.05).
Corresponding values at HA were 8.83 ± 12.6 and 13.7 ± 16.7 pg/ml (n.s.). RQ was
0.78 ± 0.07 and 0.89 ± 0.08, respectively, at SL and HA (p < 0.05). Differences
between SMCN and SMCD (SMCN–SMCD) strongly correlate with the corresponding
RQ values at SL (r = −0.74) and less tight at HA (r = −0.37). Similarly, mean daily SMC
values (SMCx̄) tightly correlate with RQ at SL (r = −0.79) and weaker at HA (r = −0.31).
SMCN–SMCD, as well as, SMCx̄ values at SL, on the other hand, respectively, correlate
with the corresponding values at HA (r = 0.71 and r = 0.85). Acute exposure to HA
appears to loosen relations of SMC with RQ. A personal profile in daily SMC variation,
on the other hand, tends to be conserved at HA.

Keywords: melatonin, circadian rhythm, high altitude, respiratory quotient, body timekeeping

INTRODUCTION

Contemporary working conditions, tend to challenge the human body internal timing system.
Jet-lag (Coste et al., 2004), and extreme environments (Arendt, 2012; Najjar et al., 2014),
affect circadian rhythms. Circadian misalignment sets the basis for metabolic disorders and
cell cycle alterations that ultimately implicate risks at work and disease (Archer et al., 2014;
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Smolensky et al., 2016; Swanson et al., 2016). Circadian
deregulation on high altitude (HA) exposure (Mortola, 2007,
2017) added to desynchronization by shift-work (Andlauer et al.,
1979; Reinberg and Ashkenazi, 2008; Mirick et al., 2013) may well
represent a factor involved in the lethal outcome of remote HA
mining (Zaldívar Larraín, 2013).

Living beings synchronize with periodic environmental
challenges. Various Zeitgebers, among them the daily light/dark
cycle synchronize endogenous time keepers, the biological clocks
(Reddy and O’Neill, 2010; Thut et al., 2012; Tsang et al., 2013).
Rhythms result from a changing balance between activators and
repressors in a negative feedback loop or between synthesis
and degradation rates of oscillator components (Pulivarthy
et al., 2007; see also Li et al., 2017). Intersecting with cellular
biochemistry, multiple oscillators finally yield physiological, and
behavioral rhythms (Top and Young, 2017). Countless oscillators,
with widely differing oscillation periods, constitute the body
timing system (Beale et al., 2016; Tran et al., 2016). Interacting
among themselves (Schroeder and Lakatos, 2009; Zelano et al.,
2016), the oscillators represent temporal reference frames for
each other (Thut et al., 2012; Thurley et al., 2017). A complex
information handling framework thus results (Rapp, 1987; Lloyd
and Rossi, 1993).

Melatonin synchronizes cellular clocks with its own epiphyseal
secretion, the latter being driven, via suprachiasmatic nuclei
(Coomans et al., 2013), by the daily light/dark cycle determined
by Earth rotation (Arendt, 1996; Chakir et al., 2015; Hardeland,
2015). Rhythm synchronization integrates body functions, both
by local (Lin et al., 2017), as well as, by systemic means
(Pfeffer et al., 2017). Melatonin (N-acetyl-5-methoxytryptamine),
an ubiquitous, pleiotropic, and multitasking indoleamine (for
recent reviews see Luchetti et al., 2010; Reiter et al., 2010;
Hardeland et al., 2012) derives from tryptophan successively
being transformed into serotonin and N-acetylserotonin. An
N-acetyltransferase, involved in melatonin synthesis, is inhibited
by light. Melatonin, thus, acts as a chemical transmitter of
darkness (Tan et al., 2010; Hardeland et al., 2011). The
non-image-forming vision system entraining body function
rhythmicity via melatonin also implicates a subpopulation of
retinal ganglion cells (ipRGCs ≈ 1% of the retinal ganglion
cell population; Panda et al., 2003). The ipRGCs depolarize in
response to photostimulation (Berson et al., 2002). Melanopsin,
the photopigment of ipRGCs, absorbs light at aprox. 480 nm,
the wavelength most effective in suppressing melatonin secretion
(for a recent review see Lucas et al., 2014). Notably, melanopsin
is also present in epithelial cells of the lens (Alkozi et al.,
2017).

Melatonin involvement in overall circadian regulation relates
to energy metabolism (Peschke et al., 2013; Cipolla-Neto et al.,
2014) including termoregulation (Gubin et al., 2006; Kräuchi
et al., 2006) and redox status (Maciel et al., 2010; Jiménez-
Ortega et al., 2012; Tan et al., 2013; Cudney et al., 2014) acting,
among others, as a natural antioxidant (Nehela and Killiny,
2018). Melatonin targets genes (Unfried et al., 2010; Hardeland
et al., 2011; Torres-Farfán et al., 2011), the epigenome (Korkmaz
et al., 2012; Haim and Zubidat, 2015), as well as, mitochondria
(Acuña-Castroviejo et al., 2003; Maciel et al., 2010).

High altitude exposure may affect melatonin rhythm by lack of
oxygen. Hypoxia, the lack of oxygen as related to aerobic energy
requirements (Connett et al., 1990), delays the phase of melatonin
rhythm (Coste et al., 2009). Untreated obstructive sleep apnoea
syndrome, a clinical condition implicating intermittent hypoxia,
leads to an early morning plateau of plasma melatonin
concentration. This morning plateau of melatonin is reversed
into a night time peak by increasing oxygen supply via CPAP
device application in treated obstructive sleep apnoea patiernts
(Hernández et al., 2007). Hypoxia applied for two hours in a
hypobaric chamber (simulating 8,000 m a.s.l.) increases plasma
melatonin concentration in rats (Kaur et al., 2002). This body
timing system, thus, may be alterated by an environmental
challenge such as a rapid ascent from sea level (SL) up to
3,000 m a.s.l., as usual in Chilean Andes. Respiratory quotient
(RQ) elevation on HA exposure indicates an increase of glucose
utilization under that condition. Insulin-regulated pathways
depend on integrity of biological clocks (McGinnis et al.,
2017). We, thus, examined effects of acute exposure at HA
on the circadian rhythm of the chronotropic neurohormone
melatonin and its relation with a metabolic parameter like
RQ, the latter representing, a point of reference for energy
metabolism at HA.

MATERIALS AND METHODS

Subjects
Fourteen healthy volunteers (Table 1), all of them students
enrolled in Physical Education Pedagogy at University of
Antofagasta, volunteered for the present study in the context
of a wider HA research project (FONDECYT 1100161). Having
previously been approved by the Ethics Committee of the
Faculty of Medicine, University of Chile, the latter project was
also endorsed by Bioethical Committee of Faculty of Health
Sciences, University of Antofagasta, considering the principles
and practices stated in the Declaration of Helsinki for studies of
human beings. A written informed consent was obtained from
each subject finally participating in the study.

Study Design
The volunteers were examined for salivary melatonin
concentration (SMC) at SL, the site of their usual residence.
Cardio-respiratory parameters could be obtained in only 12 of
them (Table 2). Corresponding measurements at HA were done

TABLE 1 | Body dimensions of the volunteers.

Physical parameters of the volunteers (mean ± SD)

Age (years) Weight (kg) Height (cm) Body mass
index (kg/m2)

Women (n = 7) 21.7 ± 2.63 64.7 ± 12.8 163 ± 3.40 24.2 ± 4.48

Men (n = 7) 20.3 ± 0.95 71.6 ± 5.77 174 ± 6.07 23.8 ± 3.02

Total (n = 14) 21.0 ± 2.04 68.1 ± 10.2 169 ± 7.19 24.0 ± 3.68

Parameters measured at SL.
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TABLE 2 | Cardio-respiratory parameters at SL (Antofagasta) and HA (Caspana,
3,270 m a.s.l.).

Cardio-respiratory parameters of the volunteers (n = 12)

SL HA

HR (beats/min) 67.1 ± 9.55 90.3 ± 12.1∗

VE (l/min) 9.54 ± 1.19 15.4 ± 4.56∗

BR (breaths/min) 15.3 ± 4.27 25.9 ± 5.56∗

VO2 (ml/min) 300.3 ± 42.6 376.2 ± 86.7∗

VCO2 (ml/min) 233.8 ± 39.9 336.2 ± 96.0∗

HbO2 sat (%) 99.7 ± 0.47 95.8 ± 1.07∗

RQ 0.78 ± 0.07 0.89 ± 0.08∗

The asterisk denotes the difference between SL and HA values being significant
(p < 0.05). HR, heart rate; VE, pulmonary ventilation; BR, breathing rate; VO2,
oxygen flux; VCO2, carbon dioxide flux; HbO2 sat, hemoglobin oxygen saturation;
RQ, respiratory quotient.

in the context of a pedagogic field trip, on the day after arriving
by bus, at Caspana (3,270 m a.s.l.), a small village located in the
Andes, 300 km east from Antofagasta.

Measurements
Salivary Melatonin Concentration
At SL, as well as, at the HA site, the subjects were required
to provide saliva samples for SMC determination, with sun
light at midday (SMCD) and dim, ordinary bulb light, at
midnight (SMCN). After rinsing the mouth with tap water,
samples of saliva (1.5 ml aprox.) were collected into special
vials (Salimetrics Oral Swab, United Kingdom), The saliva
samples were handled using gloves, coded and stored in liquid
nitrogen, to be later on analyzed for SMC with an ELISA kit
(IBL International, Germany) in an independent commercial
laboratory (Red Lab S.A., Santiago, Chile). SMCN–SMCD and
SMCx̄ are, respectively, assumed to represent the amplitude of
daily SMC change and the average of both day and night SMC
value per subject.

Respiratory Quotient
Cardio-respiratory parameters were determined under resting
conditions, after sitting for 5 min. The measurements were done
between 8:00 and 10:00 PM, both at SL and HA, once at either
location. Evening meals consisted of bread and cheese at SL, as
well as at HA. Along a 3 min equilibration period, respiratory
CO2 and O2 fluxes could be measured in 12 of the 14 subjects
with a portable metabolic system, including a breath-to-breath
spirometer (OxiconTM Mobile, Germany). RQ was calculated as
the ratio between mean CO2 flux and mean O2 flux.

Statistics
Mean values are expressed ± SD. ANOVA for repeated
measurements was applied for comparisons between SMCD
and SMCN at SL and HA. Pearson’s correlation coefficient
and Student’s t-test were, respectively, applied for analysis
of correlations and for comparison between SL and HA.
Calculations were done with the aid of SPSS 22 IBM software
package. Statistic significance was established at the p < 0.05 level.

RESULTS

Age and body mass index were rather similar in women and
men volunteering in the present study (Table 1). Cardio-
respiratory parameters of the volunteers significantly changed on
HA exposure as compared to SL (Table 2). Figure 1 shows mean
values of SMC at day and night, both at SL (SLD, SLN) and HA
(HAD, HAN). Mean SMC values in either those conditions were
similar in women and men (data not shown). Daily variations
of SMC observed at SL vanish at HA. SMCN–SMCD and SMCx̄,
respectively, depict, for the present work, the amplitude of
circadian melatonin rhythm and the average value around which
the oscillation occurs. These parameters strongly correlate one
with the other at SL. At HA, on the contrary, this correlation
weakens (Figure 2). RQ–SMCD relation appears to be strong
at SL and weak at HA (Figure 3A). Similarly, the RQ–SMCN
relation appears to be tighter at SL than at HA (Figure 3B). Both,
SMCN–SMCD (Figure 3C), as well as, SMCx̄ (Figure 3D), also
correlate with RQ more strongly at SL than at HA

SMCx̄ values at SL strongly correlate with those at HA (black
circles, Figure 4). Similarly, SMCN–SMCD at SL also tightly
correlate with the corresponding values at HA (white circles,
Figure 4). As also shown in Figure 4, the former and the latter
relation, respectively, locate mainly above and below the middle
line (y = x).

DISCUSSION

Mean SMCN and SMCD values differ at SL but not at HA
(Figure 1). SMCN and SMCD, as well as, SMCN–SMCD and
SMCx̄, correlate with RQ strongly at SL and much less so at
HA (Figure 3). Melatonin circadian rhythm, thus, may lose
at HA its synchronizing grip on aspects related with energy
metabolism. Individual SMCx̄ and SMCN–SMCD values at SL, on
the other hand, strongly correlate with the corresponding ones at

FIGURE 1 | SMC at SLD, SLN, HAD, and HAN. Subindices D and N,
respectively, indicate whether the samples were obtained at day or at night.
The black line in the boxes denotes the median. Mean values are represented
by a cross. White circles indicate outlier values. Asterisks denote that
differences are significant (p < 0.05).
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FIGURE 2 | SMCN–SMCD vs. SMCx̄ values at SL and HA. Simple linear regression of the relation between SMCN–SMCD and SMCx̄ at SL (white circles) and HA
(gray triangles), are depicted with continuous and dashed line, respectively.

FIGURE 3 | SMC values as related to RQ. (A) Simple linear regression of the relation between RQ and SMCD at SL and HA. (B) Simple linear regression of the
relation between RQ and SMCN at SL and HA. (C) Simple linear regression of the relation between RQ and SMCN–SMCD at SL and at HA. (D) Simple linear
regression between RQ and SMCx̄ at SL and HA. White circles and gray triangles, respectively, represent SL and HA values (n = 12).

HA (Figure 4). Although being distorted at HA (Figures 1–3),
an individual profile of circadian melatonin rhythmicity, thus,
seems to persist under the latter condition (Figure 4). Such an
individual profile of circadian melatonin rhythmicity may in the
future be explored for its potential to predict the capacity for
adequately dealing with challenges of the body timing system.

Salivary melatonin has been validated as an adequate marker
for phase typing of circadian regulation (Voultsios et al., 1997).

Although representing only one third of plasma melatonin
concentration (Benloucif et al., 2008), SMC adequately relates
to the latter (Voultsios et al., 1997). Hyposalivation and
low melatonin levels may limit the reliability of SMC, as
measured by radioimmunoassay in the elderly (Gooneratne
et al., 2003). Liquid chromatography combined with mass
spectrometry, on the other hand, revealed SMC values to
exceed free plasma melatonin concentration on average by 36%
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FIGURE 4 | SMCN–SMCD and SMCx̄ values at SL and at HA. Identity line is
depicted as a continuous black line. Black circles show the relation between
SL and HA SMCx̄ values. White circles show the relation between SL and HA
SMCN–SMCD values.

(van Faassen et al., 2017). Like in oral mucosa (Chaiyarit et al.,
2017), melatonin may be also locally produced in salivary glands
(van Faassen et al., 2017). Whether related or not with plasma
melatonin, SMC shows in the present work a clear rhythmicity,
that may even represent changes occurring at tissue level. An
ELISA kit used in the present work yielded SMC values very
similar to those reported by others (Lushington et al., 2002;
Verheggen et al., 2012).

Mean SMCN and SMCD values differ at SL but not at HA
(Figure 1). SMCN–SMCD considered, in the present study, as the
amplitude of daily melatonin variation, correlates with SMCx̄ (the
average value around which the oscillation occurs) more strongly
at SL than at HA (Figure 2). Distortions of SMC rhythm as
shown to occur at HA (Figures 1, 2) may implicate a deregulation
of melatonin-dependent periodic processes. High amplitudes in
circadian melatonin rhythmicity may prevent and/or delay the
development of diabetes (Hardeland, 2017). The amplitude of
daily melatonin oscillation, on the other hand, diminishes in the
elderly (Gubin et al., 2006; Kim et al., 2014).

Disruption of body timekeeping, implicates deregulation of
body functions (Cipolla-Neto et al., 2014; O’Neill and Feeney,
2014). Three weeks of circadian disruption induce a pre-
diabetic condition in otherwise healthy subjects (Buxton et al.,
2012). Energy metabolism unbound from circadian pacemakers
associates to obesity, diabetes, cardiovascular disease, and cancer
(Miller et al., 2010; Blask et al., 2014; Zubidat and Haim,
2017). SMCN–SMCD, as well as, absolute values of SMCN and
SMCD loosening their relation with RQ at HA (Figure 3)
could mean a decoupling of energy metabolism from circadian
control, a possibility that certainly has further to be elucidated.
It may be noticed, however, that even acute adequation of

energy metabolism to HA exposure is yet far from reaching a
consensus (Chicco et al., 2018). It may be provisionally assumed,
however, that mistiming of melatonin circadian rhythmicity may
represent a metabolic risk factor, particularly under conditions
combining shift work with hypoxia as being usual in Chilean
Andes.

Deregulation of circadian melatonin rhythmicity may result
from changes in oxygen supply. Hypoxia also implicates an
increase in sympathetic activity. Sympathetic afferent nerves of
the pineal gland activate an N-acetyltransferase, the rate-limiting
enzyme for melatonin synthesis. Beta-blockers, older age and a
higher body mass, on the other hand, have been found to lower
nocturnal urinary 6-sulfatoxymelatonin levels (Davis et al., 2001).
Melatonin secretion may, moreover, additionally be altered at
HA by hypocapnia prevailing in newcomers at HA. Neurons of
suprachiasmatic nucleus are, in fact, particularly sensitive to pH
(Chen et al., 2009).

Individual values of SMCN–SMCD and SMCx̄ observed at
SL, respectively, correlate with the corresponding value at
HA (Figure 4). Individual patterns in melatonin circadian
rhythmicity as observed at SL, thus, appear largely to be
conserved at HA. Individual circadian melatonin rhythmicity
seems, indeed, to remain relatively stable (Fernández et al.,
2017). With exception of sedation and/or artificial ventilation
(Olofsson et al., 2004), neither activity, posture, sleep, nor
menstrual phase appear to affect individual circadian rhythm
of melatonin (Cain et al., 2010). From one subject to another
one, nocturnal melatonin concentration can, on the other
hand, differ considerably (Zeitzer et al., 1999). Some people
seem to be able to rapidly modify their melatonin secretion
pattern, as well as, to readily adapt to rotating shift schedules
(Quera-Salva et al., 1997). Similarly, physiological adjustments
to acute HA exposure vary, indeed, substantially from one
subject to another. Individual characteristics of circadian
melatonin rhythmicity, yet to be defined, may well relate
with the capacity to adequately deal with challenges of the
body timing system affecting energy metabolism in health and
disease.

To summarize, a rapid ascent to an altitude of about 3,000
m a.s.l., as usual under working conditions in the Andes, tends
to override the night-day difference of SMC and to weaken the
relations between SMC with RQ, thus, potentially deregulating
melatonin-dependent timing of body functions, affecting energy
metabolism. Individual SL circadian profile of SMC tends, on the
other hand, to be maintained at HA. The SL profile of melatonin
circadian rhythm may be further on explored for its potential
to predict individual tolerance to challenges of the body timing
system at HA.
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