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a b s t r a c t

For every connected graph G, a subgraph H of G is isometric if the distance between any
two vertices inH is the same inH as in G. A distance-preserving elimination ordering of G is a
total ordering of its vertex-set V (G), denoted (v1, v2, . . . , vn), such that any subgraph Gi =

G \ (v1, v2, . . . , vi) with 1 ≤ i < n is isometric. This kind of ordering has been introduced
by Chepoi in his study on weakly modular graphs (Chepoi, 1998). We prove that it is NP-
complete to decidewhether such ordering exists for a given graph— even if it has diameter
at most 2. Then, we prove on the positive side that the problem of computing a distance-
preserving ordering when there exists one is fixed-parameter-tractable in the treewidth.
Lastly, we describe a heuristic in order to compute a distance-preserving ordering when
there exists one that we compare to an exact exponential time algorithm and to an ILP
formulation for the problem.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Elimination orderings of a graph are total orderings of its vertex-set. Many interesting graph problems can be specified
in terms of the existence of an elimination ordering with some given properties. These range from some practical problems
in molecular biology and chemistry [8] to the analysis of graph search algorithms [14], the characterization of some graph
classes [10,29], and the study of network clustering methods in social networks [26]. On the computational point of view,
vertex ordering characterizations of a given graph class often lead to efficient (polynomial-time) recognition algorithms for
the graphs in this class [2,6,15,21,28]. In this work we will consider one specific kind of elimination ordering that is called
distance-preserving elimination ordering [11]. Precisely, let us remind that a subgraphH of a graphG is isometric if the distance
between any two vertices in H is the same in H as in G. An elimination ordering (v1, v2, . . . , vn) of G is distance-preserving
if it satisfies that each suffix (vi, vi+1, . . . , vn) with i < n induces an isometric subgraph of G.

Distance-preserving elimination orderings encompass several other elimination orderings studied in the literature
[6,7,19,24,25,28], all of which can be computed in polynomial time when they exist. In particular, known refinements
of distance-preserving elimination orderings comprise the perfect elimination orderings [28], maximum neighbourhood
orderings [6], h-extremal orderings [7], semisimplicial elimination orderings [24], dismantlable orderings [25] and more
generally domination elimination orderings [19]. The latter orderings characterize chordal graphs, dually chordal graphs,
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homogeneously orderable graphs, cop-win graphs and a subclass of tandem-win graphs [12], respectively, and as above
stated they all can be computed in polynomial-time when they exist. However the complexity of deciding whether a
distance-preserving elimination ordering exists in a given graph has been left open until this paper. We aim at completing
the picture and characterizing the complexity of this problem.

Related work. In [17] it has been proved that every graph with a distance-preserving elimination ordering has a minimum-
size cycle basiswith only triangles and quadrangles, that can be easily computed if a distance-preserving elimination ordering
is part of the input. This property has been useful in the study of some tree-likeness invariants of graphs (e.g., in comparing
treewidth with treelength). However, the complexity of recognizing graphs with a distance-preserving elimination ordering
has been left open in [17]. Prior works [9,11] have focused on the existence of distance-preserving elimination orderings in
somewell-structured graph classes, i.e., theweakly modular graphs. In particular, it has been proved recently in [9] that every
breadth-first search ordering of a weakly modular graph is distance-preserving, that allows to compute one such ordering
in linear time for a given graph in this class.

On the positive side, above stated refinements of distance-preserving elimination orderings [6,7,19,24,25,28] can all
be computed with greedy algorithms when they exist. Indeed, for all these orderings it can be tested in polynomial-time
whether a given vertex can be eliminated first. As an example, any dominated vertex can be the starting vertex of some
domination elimination ordering (total ordering of the vertex-set where for every suffix, the closed neighbourhood of the
first vertex is dominated in the subgraph induced by the suffix). The latter implies that any partial domination elimination
ordering can be extendedunless the graphdoes not admit such a total order. A first hint that computing a distance-preserving
elimination ordering can be more difficult is that it is not that simple to choose a starting vertex. For instance, consider the
wheel W5 obtained from a cycle C5 of length five by adding a universal vertex. Every elimination ordering of W5 where
the universal vertex is the last vertex eliminated is distance-preserving. However, if the universal vertex is eliminated first
then the cycle C5 is an isometric subgraph ofW5 that does not admit a distance-preserving elimination ordering. The above
problem occurring with C5 also occurs with hypercubes, that can be proved using tools from discrete geometry.1

Our contributions. We prove on the negative side that it is NP-complete to decide whether a given graph admits a distance-
preserving elimination ordering (Section 3). The latter result may look surprising since as above stated, a broad range of
distance-preserving orderings with additional properties can be computed in polynomial time when they exist. Then we
show that the problem remains NP-complete even for general graphs with diameter at most two (Section 3.3). Note that in
a sense our result is optimal w.r.t. the diameter because complete graphs trivially admit a distance-preserving ordering. Our
reduction will show how to encode a 3-SAT formula in a graph whose distance-preserving orderings are in many-to-many
correspondence with the satisfying assignments for the formula. This line of work resembles to the one in [31] in order to
show that it is NP-complete to recognize collapsible complexes. Our work differs from theirs in that we study orderings with
very distinct properties and the ‘‘simpler’’ structure of graphs – w.r.t. complexes – further constrains our gadgets to mimic
variables and clauses of the formula.

On a more positive side, we prove in Section 4 that the problem of computing a distance-preserving ordering when there
exists one is fixed-parameter-tractable in the treewidth.

Next, we show that a meta-theorem on vertex-orderings [3] can be applied to our problem, that results in an algorithm
with O∗(2n)-time and space complexity, as well as in an algorithm with O∗(4n)-time and polynomial space complexity. We
also propose an Integer Linear Programming formulation which may lead to a better running time in practice. These exact
algorithms are described in Section 5 as well as simple heuristic algorithms.

Notations. Graphs in this study are finite, simple (hencewithout loop normultiple edges) and unweighted.We refer to [5,20]
for standard reference books on graphs (see also [1] for a survey about metric graph theory). Let (v1, v2, . . . , vn) be an
elimination ordering of a graph G, we say that vertex vi, 1 ≤ i ≤ n, is the ith vertex to be eliminated, and that vertex
vi is eliminated before vertex vj, denoted vi ≺ vj, if i < j.

2. Local characterization

In what follows, we will avoid considering all the distances in the graph at each time a vertex is eliminated. That is,
we replace the ‘‘global’’ condition that G \ v is isometric by a ‘‘local’’ one implying only the neighbours of v. The following
characterization will explain how to do so.

Lemma 1. Let G = (V , E) and v ∈ V , the subgraph G \ v is isometric if and only if every two non-adjacent neighbours of vertex
v have at least two common neighbours in G (including v).

Proof. If G \ v is isometric, then let x, y ∈ NG(v) be non-adjacent. Since dG\v(x, y) = dG(x, y) = 2, x and y have another
common neighbour than vertex v. Conversely, suppose that every two non-adjacent neighbours of vertex v have at least

1 More precisely, for the special case of an n-dimensional hypercube, the distance-preserving orderings are equivalent to the so-called ‘‘shellable
orderings’’ as defined in [32]. In particular, if every partial distance-preserving ordering of the n-dimensional hypercube could be extended, then it would
imply that its dual, the n-dimensional octahedron, is extendably shellable, that is known to be false for n ≥ 12 [22].
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two common neighbours in G. In particular, every of them have at least one common neighbour in G \ v. Then, for every two
non-adjacent x, y ∈ NG(v) the subpath (x, v, y) can be substituted in any shortest-path of Gwith the subpath (x, u, y) of G\v,
where u denotes a common neighbour of x, y. This proves that G \ v is an isometric subgraph. □

By using Lemma 1, one obtains the following characterization of distance-preserving elimination orderings. It can be seen
as a reformulation of the characterization given in [11, Lemma 3.2] in terms of pseudopeakless functions.

Corollary 2. An elimination ordering ≺ of G = (V , E) is distance-preserving if and only if for every u, v ∈ V at distance
dG(u, v) = 2, there is w ∈ NG(u) ∩ NG(v) such that u ≺ w or v ≺ w.

Proof. Let (v1, v2, . . . , vn) be the elimination ordering we consider. For every 0 ≤ i < n, define Gi = G \ {v1, . . . , vi−1} (in
particular G0 = G). On the one direction, suppose that ≺ is distance-preserving. Let vi, vj ∈ V satisfy dG(vi, vj) = 2 with
i < j. Since ≺ is distance-preserving, Gi is an isometric subgraph of G. Hence, since vi, vj ∈ V (Gi) and dG(vi, vj) = 2, there
existsw ∈ NG(vi)∩NG(vj) such thatw ∈ V (Gi), i.e., vi ≺ w. On the other direction, suppose that≺ is not distance-preserving.
Let i ≥ 0 be the least index such that Gi is an isometric subgraph of G but Gi+1 = Gi \ vi is not. By Lemma 1, there exist
x, y ∈ NGi (vi) nonadjacent such that NGi (x) ∩ NGi (y) ∩ V (Gi+1) = ∅. In particular, there does not exist any w ∈ NG(x) ∩ NG(y)
such that x ≺ w or y ≺ w (else, w ∈ V (Gi+1)). □

Finally, it may be easier sometimes to group vertices into subsets whose vertices can be eliminated in an arbitrary way.
On such occasions, we will base on the following consequence of Lemma 1.

Corollary 3. Let G be a graph, S ⊂ V (G) satisfy that for every v ∈ S, every two non-adjacent neighbours of vertex v have a
common neighbour in G \ S. Then, for any S ′

⊆ S, the subgraph G \ S ′ is isometric.

Proof. By contradiction, let S ′
⊆ S falsify the corollary with S ′ being of minimum size w.r.t. this property. Let v ∈ S ′,

S ′′
:= S ′

\v. The subgraph G\S ′′ is isometric by theminimality of S ′. Furthermore, by the hypothesis every two non-adjacent
neighbours of v have a common neighbour in G \ S, hence in G \ S ′ so, G \ S ′ is isometric by Lemma 1. This contradicts the
fact that S ′ falsifies the corollary. □

3. Hardness results

The purpose of this section is to prove the following result.

Theorem 4. Deciding whether a given graph G admits a distance-preserving elimination ordering is NP-complete, already if G
has diameter at most two.

Note that since the all-pairs-shortest-paths in a graph can be computed in polynomial-time then it easily follows that
the problem is in NP and so, we will only prove the NP-hardness. We will first prove that deciding whether a given graph
G admits a distance-preserving elimination ordering is NP-hard, already if G has diameter at most five. This first part of the
proof is involved and it is based on a technical reduction from 3-SAT, the standard NP-complete problem [13]. Then, we will
show how to lower the diameter to two (Section 3.3).

3.1. Main reduction

Given a formula Φ with n variables and m clauses of exactly three literals each, the 3-SAT problem aims at deciding
whether there exists a boolean assignment of the variables whichmakes the formula true. In case it does, then the formulaΦ
is said satisfiable.Wewill construct a graphGΦ froman arbitrary formulaΦ so that there is a distance-preserving elimination
ordering of GΦ if and only if Φ is satisfiable. This will prove the NP-hardness of our problem. To achieve the result, assume
w.l.o.g. that no literal and its negation can be contained in the same clause of Φ (else, any such clause could be removed
fromΦ), and every variable appears both positively and negatively in the clauses ofΦ (else, any clause containing either this
variable or its negation could also be removed from Φ). Let us denote by x1, x2, . . . , xn the n variables, and by C1, C2, . . . , Cm
them clauses of Φ . The graph GΦ is defined as follows.

Variable gadget. For every variable xi, 1 ≤ i ≤ n, let us add in GΦ an induced quadrangle (xi, yi, x̄i, ȳi) (i.e., a cycle with four
vertices). For every 1 ≤ j ≤ m, if xi is in the jth clause of the formula then four more vertices aij, bij, cij, dij are added and
made adjacent to vertex xi. Similarly if x̄i is in the jth clause of the formula then four more vertices aij, bij, cij, dij are added
and made adjacent to vertex x̄i (this is clearly defined because no clause contains both literals xi, x̄i by the hypothesis). We
refer to Fig. 1 for an illustration.

To better understand the role played by the quadrangle (xi, yi, x̄i, ȳi) in our reduction, wemake the following observation
that captures well the difficulty of the problem. Indeed, every vertex in a quadrangle can be chosen as the starting vertex
of a distance-preserving ordering. However, the vertex diametrically opposed cannot be chosen as the second vertex to be
eliminated. We will make use of a similar trick in our reduction so as to mimic a truth table with variable gadgets, ensuring
that the second vertex to be eliminated in xi, x̄i must be eliminated after one of each pair xi′ , x̄i′ has already been eliminated
for any 1 ≤ i′ ≤ n.
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Fig. 1. The three variable gadgets for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3).

Fig. 2. The clause tree for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3).

Clause tree. Second, a rooted tree of depth two with 8m + 1 vertices is added in GΦ . More precisely, the tree is rooted at
some newly added vertex rΦ that has 2m children denoted by s1, t1, s2, t2, . . . , sm, tm. Informally, for every 1 ≤ j ≤ m both
nodes sj, tj represent the jth clause of Φ . Moreover let Cj = lp ∨ lq ∨ lr with p < q < r and li ∈ {xi, x̄i} for every i ∈ {p, q, r}.
Then, the internal node sj has three children denoted by uj(p, q), uj(q, r) and uj(r, p), similarly the internal node tj has three
children denoted by vj(p, q), vj(q, r) and vj(r, p). Finally, let us describe how the clause tree is linked to the variable gadgets.
Precisely, any leaf node uj(p, q) is made adjacent to the pair of vertices apj, bqj, and in the same way any leaf node vj(p, q) is
made adjacent to the pair of vertices cpj, dqj. We refer to Fig. 2 for an illustration.

Our reduction will ensure that rΦ is the unique common neighbour of sj, tj in GΦ . Consequently, by Corollary 2 in any
distance-preserving ordering of GΦ one of sj, tj will need to precede vertex rΦ . We will show that this implies that the jth
clause of Φ is satisfied.

Literal clique. The final andmost technical part of our reduction is to construct a clique of GΦ with 8n vertices so as to ensure
that a distance-preserving ordering exists if Φ is satisfiable. For every 1 ≤ i ≤ n, the clique contains four vertices denoted
by ei, fi, gi, hi (related to variable xi). In the same way there are four vertices denoted by ēi, f̄i, ḡi, h̄i (related to the negated
variable x̄i).

This clique is connected to variable gadgets as follows. Vertex yi (in the ith variable gadget) is made adjacent to each of
the four vertices ei, fi, gi, hi, and in the same way vertex ȳi is made adjacent to each of the four vertices ēi, f̄i, ḡi, h̄i. For every
1 ≤ j ≤ m such that one of xi, x̄i is a literal of Cj, the four vertices aij, bij, cij and dij are made adjacent to each of the four
vertices ei, fi and ēi, f̄i.
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(a) Adjacency relations between vertices from the variable gadgets and those
from the literal clique.

(b) Adjacency relations w.r.t. literal x̄1 and clause C3 = x̄1 ∨ x̄2 ∨ x3 .

Fig. 3. The literal clique, for the formula Φ = (x1 ∨ x2 ∨ x3) ∧ (x̄1 ∨ x̄2 ∨ x̄3) ∧ (x̄1 ∨ x̄2 ∨ x3).

Then, the clique is connected to the clause tree as follows. For any 1 ≤ j ≤ m, let Cj = lp ∨ lq ∨ lr with p < q < r and
li ∈ {xi, x̄i} for every i ∈ {p, q, r}, then:

• the three vertices uj(p, q), uj(q, r), uj(r, p) are, respectively,made adjacent to the 4-tuples of vertices: (ep, gp and ēq, ḡq);
(eq, gq and ēr , ḡr ); (er , gr and ēp, ḡp);

• similarly, the three vertices vj(p, q), vj(q, r), vj(r, p) are, respectively, made adjacent to the 4-tuples of vertices: (fp, hp
and f̄q, h̄q); (fq, hq and f̄r , h̄r ); (fr , hr and f̄p, h̄p);

• last, vertex sj is made adjacent to the twelve vertices ei, gi and ēi, ḡi with i ∈ {p, q, r}; similarly, vertex tj is made
adjacent to the twelve vertices fi, hi and f̄i, h̄i with i ∈ {p, q, r}.

Let E =
⋃

1≤i≤n{ei, ēi}, F =
⋃

1≤i≤n{fi, f̄i}, G =
⋃

1≤i≤n{gi, ḡi} and H =
⋃

1≤i≤n{hi, h̄i} partition the clique. The root vertex
rΦ of the clause tree is made adjacent to every vertex in G ∪ H. We refer to Fig. 3 for a partial illustration.

The resulting graph GΦ has diameter at most five. Indeed, all vertices but the xi, x̄i with 1 ≤ i ≤ n are adjacent to the
literal clique, therefore it is a 2-distance dominating clique.Wewill show later how to lower the diameter (Section 3.3). Note
that several vertices play almost identical roles in the reduction. This redundancy is necessary in order to ensure that most
pairs of vertices that are at distance two in GΦ only have one common neighbour. Indeed, the latter will impose necessary
conditions on an elimination ordering of GΦ to be distance-preserving.

3.2. Proof of correctness

We are now ready to prove that it is NP-hard to decide whether a given graph G admits a distance-preserving elimination
ordering. We divide the proof in two propositions, as follows.
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Proposition 5. If Φ is satisfiable, then GΦ admits a distance-preserving ordering.

Proof. Let us fix a boolean assignment of the variables xi satisfying Φ , that exists by the hypothesis. In particular, let
{li, l̄i} = {xi, x̄i} be such that li is true, let V0 = {l̄i | 1 ≤ i ≤ n} and let V1 = {li | 1 ≤ i ≤ n}. Now, consider the
following partition of the vertex-set of GΦ into eleven subsets Sk, with 1 ≤ k ≤ 11. Let G0 := GΦ , and let Gk := Gk−1 \ Sk for
every 1 ≤ k < 11. We will exhibit from the partition a distance-preserving ordering of GΦ . Precisely, we will prove that for
every 1 ≤ k ≤ 11 and for any total ordering S ′

k of Sk, the elimination ordering S ′

1, S
′

2, . . . , S
′

11 is distance-preserving.
The partition is defined as follows:

• The variable gadgets are partitioned into five subsets S1, S2, S7, S8, S9. Furthermore, S1 = V1 = {li | 1 ≤ i ≤ n}, S8 =

V0 = {l̄i | 1 ≤ i ≤ n}, S7 =
⋃

1≤i≤n{yi, ȳi}. The subsets S2, S9 contain the vertices aij, bij, cij, dij that are, respectively,
adjacent to a vertex of V1, V0.

• The clause tree is partitioned into four subsets S3, S4, S5, S10. Furthermore, S5 = {rΦ}, S4 = {s1, t1, s2, t2, . . . , sm, tm}.
The subset S3 contains the vertices uj(p, q), vj(p, q) such that the jth clause is satisfied by one of lp, lq ∈ V1; similarly,
the subset S10 contains the vertices uj(p, q), vj(p, q) such that the jth clause is neither satisfied by lp nor lq.

• The literal clique is partitioned into two subsets S6 = G ∪ H and S11 = E ∪ F .

Inwhat follows, wewill prove that for every 1 ≤ k ≤ 11, the pair ⟨Gk−1, Sk⟩ satisfies the sufficient condition of Corollary 3.
The latter will prove, as claimed above, that for every 1 ≤ k ≤ 11 and for any total ordering S ′

k of Sk, the elimination ordering
S ′

1, S
′

2, . . . , S
′

11 is distance-preserving.

• Let S1 = V1 = {li | 1 ≤ i ≤ n}. Let li ∈ S1. Neighbours of li in G0 are yi, ȳi and every of aij, bij, cij, dij such that li ∈ Cj. Let
α, β ∈ NG0 (li) be non-adjacent. There are four subcases.

– if {α, β} = {yi, ȳi} then l̄i is a common neighbour of α, β;
– if one of α, β is equal to yi and the other is amongst aij, bij, cij, dij for some j, then ei, fi are common neighbours of

α, β;
– similarly, if one of α, β is equal to ȳi and the other is amongst aij, bij, cij, dij for some j, then ēi, f̄i are common

neighbours of α, β;
– if α is amongst aij, bij, cij, dij for some j, and β is amongst aij′ , bij′ , cij′ , dij′ for some j′, then ei, fi and ēi, f̄i are common

neighbours of α, β .

Therefore, in all cases α, β have a common neighbour in G1, and Corollary 3 applies. In other words, G1 = GΦ \ S1 is
isometric and for every total ordering S ′

1 of S1, for any prefix S ′′

1 of S ′

1, GΦ \ S ′′

1 is isometric.
• Let S2 contain every aij, bij, cij, dij such that clause Cj is satisfied by li. Letw ∈ S2. There exist j ≤ m, p < q < r ≤ n such

that neighbours ofw in G1 are composed of ep, fp, ēp, f̄p and one of uj(p, q), uj(r, p), vj(p, q) or vj(r, p). Let α, β ∈ NG1 (w)
be non-adjacent. Note that w has only one neighbour in G1 that is not in the literal clique. Consequently, one of α, β

is amongst uj(p, q), uj(r, p), vj(p, q), vj(r, p). Since the latter four vertices have some neighbour in the literal clique by
construction, therefore α, β have a common neighbour in G2 and Corollary 3 applies. In other words, G2 = G1 \ S1 is
isometric and for every total ordering S ′

2 of S2, for any prefix S ′′

2 of S ′

2, G1 \ S ′′

2 is isometric.
• Let S3 contain uj(p, q), vj(p, q) for every j ≤ m and p, q ≤ n such that one of lp, lq satisfies clause Cj. Let w ∈ S3. There

exist j ≤ m, p, q ≤ n such that either w = uj(p, q) or w = vj(p, q). Two cases thus need to be distinguished:

– Case w = uj(p, q). In particular, the neighbours of w in G2 are sj, ep, gp, ēq, ḡq and at most one amongst apj, bqj.
Furthermore, let α, β ∈ NG2 (w) be non-adjacent. If apj ∈ NG2 (w) then α, β ∈ NG2 [ep], otherwise α, β ∈ NG2 [ēq].

– Case w = vj(p, q). In particular, the neighbours of w in G2 are tj, fp, hp, f̄q, h̄q and at most one amongst cpj, dqj.
Furthermore, let α, β ∈ NG2 (w) be non-adjacent. If cpj ∈ NG2 (w) then α, β ∈ NG2 [fp], otherwise α, β ∈ NG2 [f̄q].

In both cases, any two non-adjacent neighbours α, β of w have a common neighbour in G3 and so, Corollary 3 applies.
In other words, G3 = G2 \ S3 is isometric and for every total ordering S ′

3 of S3, for any prefix S ′′

3 of S ′

3, G2 \ S ′′

3 is isometric.
• Let S4 = {s1, t1, s2, t2, . . . , sm, tm} be the vertices representing each clause. Let w ∈ S4. Clearly, there exists j ≤ m

such that either w = sj or w = tj. Furthermore, by the choice of a boolean assignment satisfying Φ , there
exists lp ∈ S1 satisfying Cj. Up to cyclic permutation of the indices for the variables, this implies by construction
uj(p, q), uj(r, p), vj(p, q), vj(r, p) ∈ S3 for some q, r > p. Two cases need to be distinguished.

– Case w = sj. In particular, the neighbours of w in G3 are rΦ , the twelve vertices ei, gi, ēi, ḡi with i ∈ {p, q, r}, and
possibly uj(q, r). Recall that rΦ is adjacent to all the vertices of G ∪H, furthermore uj(q, r) is adjacent to eq, gq and
ēr , ḡr . Therefore, NG3 (w) ⊆ N[gq] ∩ N[ḡr ]. In this situation for any two non-adjacent neighbours α, β of w in G3
we have α, β ∈ NG3 [gq] (resp., α, β ∈ NG3 [ḡr ]).

Let us point out that in the full graph G, the two vertices uj(p, q) and uj(r, p) are also neighbours of w = sj
in G. Furthermore, by construction w is the unique common neighbour of uj(p, q) and uj(r, p) in G. Hence, it is
crucial that since Φ is satisfiable, and so, Cj is satisfied by some literal lp, the two vertices uj(p, q) and uj(r, p) are
eliminated in S3.



146 D. Coudert et al. / Discrete Applied Mathematics 243 (2018) 140–153

– Case w = tj. In particular, the neighbours of w in G3 are rΦ , the twelve vertices fi, hi, f̄i, h̄i with i ∈ {p, q, r}, and
possibly vj(q, r). Recall that rΦ is adjacent to all the vertices of G ∪H, furthermore vj(q, r) is adjacent to fq, hq and
f̄r , h̄r . Therefore, NG3 (w) ⊆ N[hq] ∩ N[h̄r ]. In this situation for any two non-adjacent neighbours α, β of w in G3
we have α, β ∈ NG3 [hq] (resp., α, β ∈ NG3 [h̄r ]).

As before, let us point out that in the full graph G, the two vertices vj(p, q) and vj(r, p) are also neighbours of
w = tj in G. Furthermore, by construction w is the unique common neighbour of vj(p, q) and vj(r, p) in G. Hence,
it is crucial that since Φ is satisfiable, and so, Cj is satisfied by some literal lp, the two vertices vj(p, q) and vj(r, p)
are eliminated in S3.

In both cases, any two non-adjacent neighbours α, β ofw have a common neighbour in G4. By Corollary 3, G4 = G3 \S4
is isometric and for every total ordering S ′

4 of S4, for any prefix S ′′

4 of S ′

4, G3 \ S ′′

4 is isometric.
• Let S5 = {rΦ}. By construction the neighbourhood of rΦ in the full graph G is equal to S4 ∪ G ∪ H. Note that for every

j ≤ m, rΦ is the unique common neighbour of sj and tj in G, hence G \ rΦ is not isometric. However, since all vertices in
S4 have been eliminated at this step, rΦ is simplicial in G4, i.e., its neighbourhood NG4 (rΦ ) = G ∪ H induces a complete
subgraph. It is thus straightforward that Corollary 3 applies. In other words, G5 = G4 \ rΦ is isometric.

• Let S6 = G ∪ H. Let w ∈ S6. There are four cases to be considered.

– If w = gi for some i, then neighbours of gi in G5 are those in the literal clique, vertex yi and every uj(i, q) ̸∈ S3.
Therefore, NG5 [w] ⊆ NG5 [ei];

– if w = ḡi for some i, then neighbours of ḡi in G5 are those in the literal clique, vertex ȳi and every uj(p, i) ̸∈ S3.
Therefore, NG5 [w] ⊆ NG5 [ēi];

– if w = hi for some i, then neighbours of hi in G5 are those in the literal clique, vertex yi and every vj(i, q) ̸∈ S3.
Therefore, NG5 [w] ⊆ NG5 [fi];

– else, w = h̄i for some i, hence neighbours of h̄i in G5 are those in the literal clique, vertex ȳi and every vj(p, i) ̸∈ S3.
Therefore, NG5 [w] ⊆ NG5 [f̄i].

Since, ei, ēi, fi, f̄i ∈ V (G6), therefore Corollary 3 applies. In other words, G6 = G5 \ S6 is isometric and for every total
ordering S ′

6 of S6, for any prefix S ′′

6 of S ′

6, G5 \ S ′′

6 is isometric.
• Let S7 contain yi, ȳi for every 1 ≤ i ≤ n. Let w ∈ S7. There is some i such that neighbours of w in G6 are vertex l̄i and

either ei, fi (if w = yi) or ēi, f̄i (if w = ȳi). Moreover, recall that we assume the existence of some 1 ≤ j ≤ m such
that l̄i appears in clause Cj. Indeed, all variables are assumed to appear positively and negatively in the clauses of Φ .
In particular, by construction aij, bij, cij, dij ̸∈ S2 and so, aij, bij, cij, dij ∈ V (G6). The latter four vertices are adjacent to
every of l̄i, ei, fi and ēi, f̄i by construction of GΦ . As a result, for any α, β ∈ NG6 (w) non-adjacent, α, β have a common
neighbour in G7 and so, Corollary 3 applies. In other words, G7 = G6 \ S7 is isometric and for every total ordering S ′

7 of
S7, for any prefix S ′′

7 of S ′

7, G6 \ S ′′

7 is isometric.
• Let S8 = V0 = {l̄i | 1 ≤ i ≤ n}. Let l̄i ∈ S8. Neighbours of l̄i in G7 are those aij, bij, cij, dij such that l̄i appears in

Cj. Every such neighbour is adjacent to the 4-tuple ei, fi, ēi, f̄i of the literal clique, hence Corollary 3 applies. In other
words, G8 = G7 \ S8 is isometric and for every total ordering S ′

8 of S8, for any prefix S ′′

8 of S ′

8, G7 \ S ′′

8 is isometric.
• Let S9 contain every aij, bij, cij, dij such that l̄i appears in Cj. The proof for this case is similar as for S2. Let w ∈ S9. There

are j ≤ m, p < q < r ≤ n such that neighbours of w in G8 are ep, fp, ēp, f̄p and at most one of uj(p, q), uj(r, p), vj(p, q)
or vj(r, p). Let α, β ∈ NG8 (w) be non-adjacent. Necessarily, one of α, β must be one of uj(p, q), uj(r, p), vj(p, q), vj(r, p)
because any other neighbour ofw is in the literal clique. Furthermore, uj(p, q), uj(r, p), vj(p, q), vj(r, p) are, respectively,
adjacent to ep, er , fp, fr in the literal clique, that are part of E ∪ F and so, have not been eliminated with S6. Therefore,
α, β have a common neighbour in G9 and so, Corollary 3 applies. In other words, G9 = G8 \S9 is isometric and for every
total ordering S ′

9 of S9, for any prefix S ′′

9 of S ′

9, G8 \ S ′′

9 is isometric.
• Let S10 contain every uj(p, q), vj(p, q) such that l̄p, l̄q appear in Cj. Equivalently, those are all of uj(p, q), vj(p, q) but the

ones already in S3. Let w ∈ S10. There exist j, p, q such that neighbours of w in G9 are either ep, ēq (if w = uj(p, q)) or
fp, f̄q (if w = vj(p, q)). As a result, vertex w is simplicial. It thus follows that Corollary 3 trivially applies. In other words,
G10 = G9 \ S10 is isometric and for every total ordering S ′

10 of S10, for any prefix S ′′

10 of S ′

10, G9 \ S ′′

10 is isometric.
• Finally, let S11 = E∪F , this is a clique and so, the vertices in S11 can be eliminated sequentiallywhile leaving a sequence

of isometric subgraphs.

To sum up, one obtains a distance-preserving ordering of GΦ by sequentially eliminating vertices in S1 then in S2 and so on
until S11, in an arbitrary way. □

Proposition 6. If GΦ admits a distance-preserving elimination ordering, then Φ is satisfiable.

Proof. Let ≺ be a distance-preserving ordering of GΦ . For every 1 ≤ j ≤ m we claim that there is 1 ≤ i ≤ n such that
some li ∈ {xi, x̄i} satisfies clause Cj, and li ≺ rΦ . Then, we will prove that this implies a boolean assignment of the variables
satisfying Φ by showing that rΦ ≺ l̄i, where {li, l̄i} = {xi, x̄i}.

To prove the claim, first observe that for every 1 ≤ j ≤ m, rΦ is the unique commonneighbour of sj, tj inGΦ . By Corollary 2,
it implies sj ≺ rΦ or tj ≺ rΦ . So, assume sj ≺ rΦ (the case tj ≺ rΦ is symmetrical to this one). Let uj(p, q), uj(q, r), uj(r, p)
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be the three children of sj in the clause tree. Note that the latter three vertices pairwise share sj as their unique common
neighbour in GΦ . Consequently, by Corollary 2 (applied twice) at least two of themmust be eliminated before sj. W.l.o.g., let
uj(p, q) be eliminated before sj. In such case, note that uj(p, q) is the unique common neighbour of apj, bqj by construction of
GΦ . Therefore, by Corollary 2, apj ≺ uj(p, q) or bqj ≺ uj(p, q). Suppose by symmetry that apj ≺ uj(p, q). Let lp ∈ {xp, x̄p} appear
in Cj. Since lp and uj(p, q) share apj as their unique common neighbour and apj ≺ uj(p, q), by Corollary 2 lp ≺ apj ≺ rΦ , that
finally proves the claim.

To conclude let us prove for every 1 ≤ i ≤ n, there is li ∈ {xi, x̄i} such that either li ≺ rΦ ≺ l̄i or rΦ ≺ li ≺ l̄i. If so, then
let us consider any boolean assignment of the variables satisfying for every 1 ≤ i ≤ n, li is assigned true if li ≺ rΦ (note that
if rΦ ≺ li ≺ l̄i, then xi can be valuated in an arbitrary way). Since by the above claim, for every 1 ≤ j ≤ m, there is li ≺ rΦ
satisfying clause Cj, therefore any such assignment satisfies the formula Φ . By way of contradiction, suppose li ≺ l̄i ≺ rΦ
with {li, l̄i} = {xi, x̄i} for some 1 ≤ i ≤ n. Since yi, ȳi share xi, x̄i as their only two common neighbours in GΦ , by Corollary 2
yi ≺ l̄i or ȳi ≺ l̄i. Suppose by symmetry yi ≺ l̄i. Then, since yi is the unique common neighbour between l̄i and gi, hi, we have
by Corollary 2 that gi ≺ yi and hi ≺ yi. However, we claim that the combination of gi ≺ yi ≺ rΦ and hi ≺ yi ≺ rΦ contradicts
the fact that ≺ is distance-preserving. Indeed, gi, hi are the only two common neighbours of rΦ and yi, so, this contradicts
Corollary 2. □

3.3. Reduction to graphs with diameter at most two

As stated before, the graph GΦ resulting from our reduction in Section 3.1 has diameter at most five. In this section, we
improve the result by lowering the diameter to two, thereby proving Theorem 4.

We base on the local view of Corollary 2, which states that in order to obtain a distance-preserving ordering of G it is
necessary and sufficient to ensure that vertices at distance two in G still have a common neighbour in the graph at each time
a vertex is eliminated. This motivates the following Definition 7 — to embed any graph G into a graph G′ with diameter at
most two such that any two vertices at distance two in G have the same set of common neighbours in G and G′.

Definition 7. Let G be a connected graph with n vertices, let H = {{u, v} | u, v ∈ V (G) and dG(u, v) ≥ 3} and let p = |H|.
The graph G′ is obtained from G by adding a clique Z of n + p vertices, defined as follows.

For every vertex v ∈ V (G), there is zv ∈ Z that is adjacent to v in V (G).
For every u, v ∈ V (G) such that dG(u, v) ≥ 3, i.e., {u, v} ∈ H, there is zuv ∈ Z that is adjacent to u, v in V (G).

Lemma 8. For any connected graph G, let G′ be as in Definition 7, G′ has diameter at most two.

Proof. Let u, v ∈ V (G′). If u ∈ Z or v ∈ Z then dG′ (u, v) ≤ 2 because either u, v ∈ Z are adjacent or, w.l.o.g., u ∈ Z and
zv ∈ Z is a common neighbour of u, v in G′ by Definition 7. Else, u, v ∈ V (G) and so, dG′ (u, v) ≤ dG(u, v) because G is an
induced subgraph of G′. Moreover, if dG(u, v) ≥ 3 then by Definition 7 there is zuv ∈ Z adjacent to u, v in G′, therefore
dG′ (u, v) = 2. □

Lemma 9. For any connected graph G, let G′ be as in Definition 7, G admits a distance-preserving ordering if and only if G′ admits
one.

Proof. Let (v1, v2, . . . , vn) be a distance-preserving ordering of G. For every 1 ≤ i < n, let Gi := G \ (v1, . . . , vi) be an
isometric subgraph of G, let G′

i be the subgraph of G′ induced by V (Gi)∪ Z (by convention, G0 := G, G′

0 := G′). We claim that
for every 1 ≤ i < n, G′

i is an isometric subgraph of G′. Note that if the claim holds, then (v1, v2, . . . , vn) can be completed
into a distance-preserving ordering of G′ as follows: vertices v1, v2, . . . , vn are sequentially eliminated, then vertices of the
clique Z are eliminated in an arbitrary way.2 To prove the claim, by Lemma 1 it suffices to prove that any two x, y ∈ NG′

i−1
(vi)

non-adjacent share a common neighbour in G′

i . If x, y ∈ V (Gi−1), then by Lemma 1 they share a common neighbour in Gi,
hence in G′

i . Else, one of x, y is in Z , w.l.o.g. say x ∈ Z and so, zy ∈ Z is a common neighbour of x, y in G′

i .
Conversely, let G′ admit a distance-preserving ordering. Let ≺ be a distance-preserving elimination ordering of G′, and

let us consider the restriction (v1, v2, . . . , vn) of the total ordering ≺ to the vertices of G. We claim that it is a distance-
preserving elimination ordering of G. By contradiction, let i be the least index such that Gi := G \ (v1, v2, . . . , vi) is not
an isometric subgraph of G (by convention, G0 := G). Let j be such that vi is the jth vertex to be eliminated in G′ w.r.t. ≺,
and let G′

j be obtained from G′ by removing the j first vertices to be eliminated in G′ w.r.t. ≺. Note that G′

j is an isometric
subgraph of G′ because ≺ is distance-preserving by the hypothesis. Moreover, since (v1, v2, . . . , vn) is assumed not to be
distance-preserving, then by Lemma 1, there exist x, y ∈ NGi−1 (vi) non-adjacent whose unique common neighbour in the
subgraph Gi−1 is vi. In such case, dG(x, y) = 2, therefore x, y have no common neighbour in the clique Z by Definition 7.
However, V (Gi) ⊆ V (G′

j) ⊆ V (Gi) ∪ Z by construction, therefore x, y have no common neighbour in G′

j , that contradicts the
fact that G′

j is an isometric subgraph of G′ by Lemma 1. □

2 In fact, if vertices zv1 , zv2 , . . . , zvn are the last removed in Z then one obtains a breadth-first search ordering rooted at zvn . This proves that the problem
of deciding whether there exists a breadth-first search ordering that is distance-preserving is NP-complete.
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Altogether, we can now prove our main result as follows.

Proof of Theorem 4. The problem is in NP. In order to prove the NP-hardness, letΦ be any instance for 3-SAT. The graph GΦ ,
described in Section 3.1, can be constructed from Φ in polynomial time. Furthermore, by the combination of Propositions 5
and 6,GΦ admits a distance-preserving ordering if and only ifΦ is satisfiable. Finally, letG′

Φ be obtained fromGΦ as defined in
Definition 7. By Lemma 8, G′

Φ has diameter at most two, furthermore by Lemma 9, G′

Φ admits a distance-preserving ordering
if and only if GΦ admits one, that is if and only if Φ is satisfiable. Since 3-SAT is NP-complete [13], this proves the hardness
and so, the result. □

4. A polynomial case

In this section, we prove that the problem of computing a distance-preserving ordering when there exists one is fixed-
parameter-tractable in the treewidth.

A tree-decomposition (T ,X ) of a graph G = (V , E) is a pair consisting of a tree T and of a family X = (Xt )t∈V (T ) of subsets
of V indexed by the nodes of T and satisfying:

(i)
⋃

t∈V (T )Xt = V ;
(ii) for any edge e = {u, v} ∈ E, there exists t ∈ V (T ) such that u, v ∈ Xt ;
(iii) for any v ∈ V , {t ∈ V (T ) | v ∈ Xt} induces a subtree, denoted by Tv , of T .

The sets Xt are called the bags of the decomposition. Furthermore, the width of (T ,X ) is equal to maxt∈V (T )|Xt | − 1, and
the treewidth of G is the minimum possible width of its tree-decompositions.

It is well-known that many NP-hard problems are fixed-parameter tractable (FPT) in the treewidth [18]. Furthermore,
the existence of distance-preserving orderings has been proved useful in the comparative study of treewidth with some
other properties of the tree-decompositions of graphs [17]. We prove that it can be decided in polynomial-time whether a
given bounded treewidth graph admits a distance-preserving ordering, and if so, one such ordering can also be computed in
polynomial-time. More precisely, we prove in what follows that the problem is FPT with the treewidth as parameter.

Theorem 10. For every G = (V , E) with treewidth at most k, it can be decided whether a distance-preserving ordering exists in
time 22O(k)

· nO(1). Furthermore, if it is the case, then a distance-preserving ordering for G can also be computed within the same
amount of time.

Proof. For simplicity, we will work on a specific kind of tree-decompositions, called nice tree-decompositions. A tree-
decomposition (T ,X ) is nice if T is rooted in some node r ∈ V (T ), any node of T has at most two children and, for any
t ∈ V (T ),

• either t is a leaf of T and |Xt | = 1 (Leaf Node);
• or t has one child u and there exists v ∈ V such that Xt = Xu \ {v} (Forget Node);
• or t has one child u and there exists v ∈ V such that Xt = Xu ∪ {v} (Introduced Node);
• or t has two children u and w and Xu = Xw = Xt (Join Node).

In what follows, let (T ,X ) be a nice tree-decomposition of width O(k). It can be computed in time 2O(k)n [4]. For every
t ∈ V (T ), let Tt be the subtree rooted at node t and let Vt =

⋃
u∈TtXu. We aim at computing all the orderings on Vt that can

be extended to a distance-preserving ordering of G. In order to do so, we will represent an ordering on Vt as follows:

• its subordering ≺t on Xt ;
• the collection Ct of pairs (N(v) ∩ Xt , posv) for every v ∈ Vt \ Xt , where posv is the number of neighbours in N(v) ∩ Xt

preceding vertex v;
• finally, a setPt of pairs x, y ∈ Xt at distance two inG such that both x and y are preceded by all their commonneighbours

in Vt .

Note that for any fixed vertex v ∈ Vt , there are 2O(k) possibilities for N(v) ∩ Xt and O(k) possibilities for posv . In particular,
since Ct can be any subset of a set with O(k)2O(k) elements, there are 2O(k)2O(k)

possibilities for Ct . Overall there are
k! · 2O(k)2O(k)

· O(k2) = 22O(k)
possible representations.

Intuitively, we aim at computing for every node t ∈ V (T ) the suborderings ≺t of Vt that could be potentially extended
to a distance-preserving elimination ordering of G. In order to do so, let ≺ be any distance-preserving elimination ordering
of G, let t ∈ V (T ) and let ≺t be the subordering of ≺ constrained to Vt . By Corollary 2, for every x, y ∈ Vt at distance two in
G, there exists a common neighbour z ∈ NG(x) ∩ NG(y) such that either x ≺ z or y ≺ z. Furthermore, if z ∈ Vt then we have
either x≺tz or y≺tz, otherwise since z ̸∈ Vt we have by the properties of a tree-decomposition that x, y ∈ Xt . Hence, we will
consider a representation to be valid at node t ∈ V (T ) if it represents an ordering ≺

′
t of Vt with the following property: for

every x, y ∈ Vt at distance two in G, there exists a common neighbour z ∈ NG(x) ∩ NG(y) such that either {x, y} ∈ Pt and
z ∈ V \ Vt , or z ∈ Vt and one of x or y precedes z w.r.t. ≺′

t .
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For every t ∈ V (T ), the following algorithm will compute all the valid representations at node t . Let us observe that for
every subordering ≺t of Vt and for any child u ∈ V (T ) of t , if ≺t has a valid representation at node t then its restriction ≺u
to Vu also has a valid representation at node u. We will use this observation in what follows in order to compute the valid
representations at every node by dynamic programming. Furthermore, if ≺ is a distance-preserving ordering of G then as
proved above, for every t ∈ V (T ) its restriction ≺t to Vt has a valid representation at node t . Conversely, by Corollary 2 a
valid representation at the root is equivalent to the existence of a distance-preserving ordering of G. Therefore, the valid
representations at the root are exactly the representations of distance-preserving orderings of G, and so, the following
algorithm is correct.

• Case of a Leaf Node. In this situation, Vt = Xt = {v} for some v ∈ V . So, there is a unique valid representation
(≺t = (v), Ct = ∅,Pt = ∅).

• Case of a Forget Node. Let u ∈ V (T ) be the unique child of node t and let v ∈ V be such that Xt = Xu \ {v}. Consider
any valid representation at node u.

If there is a pair {x, v} containing v in Pu then we claim that it cannot be extended to a valid representation at node
t . Indeed, since v ∈ Xu \ Xt it has no neighbour in V \ Vt (by Property (ii) of tree-decompositions). Therefore, given any
subordering on Vt that is mapped to this representation, the two vertices v and x are eliminated after all their common
neighbours in any extension of this subordering to a total ordering on V . The latter falsifies the characterization of
distance-preserving orderings given in Corollary 2, that proves the claim.

Else, there is no pair of Pu containing v. In this situation, the representation can be transformed into a valid
representation at node t by taking the restriction of ≺u to Xt and by constructing Ct as follows. First let us add the
pair (N(v) ∩ Xt , posv) in Ct , that can be easily computed from ≺u (recall that posv is the number of neighbours of v in
Xu that are preceding v w.r.t. ≺u). Then for every pair (N, p) ∈ Cu, either v is among the p first neighbours in N w.r.t.
≺u, in which case let us add (N \ v, p − 1) in Ct , or let us add (N \ v, p) in Ct .

• Case of an Introduced Node. Let u ∈ V (T ) be the unique child of node t and let v ∈ V be such that Xt = Xu ∪ {v}.
Consider any valid representation at node u. We consider theO(k) possible ways to insert v w.r.t.≺u, in order to obtain
the subordering ≺t . For every ≺t , we need to consider all vertices in Vt that are at distance two from v. We distinguish
between two subcases.

– First, let Yu ⊆ Xu contain all the vertices x of Xu that are at distance two from v. For every x ∈ Yu, we checkwhether
there exists a common neighbour z such that either z ∈ Xu and it is preceded by one of x or v (this can be checked
with ≺t ), or z ̸∈ Vt . If no such vertex z exists (that means that all common neighbours are in Vt and they all
preceed x and v in the current ordering) then we claim that it is not possible to extend to a valid representation at
node t . Indeed, let us fix an arbitrary extension ≺ of ≺t to a total ordering on V . Suppose by way of contradiction
that≺ is distance-preserving. By Corollary 2, there exists z ′

∈ N(v)∩N(x) such that x ≺ z ′ or v ≺ z ′. Furthermore,
z ′

∈ Vt (else, we could choose z = z ′, that is a contradiction). By Property (ii) of tree-decompositions, v has no
neighbours in Vt \Xu, and so, z ′

∈ Xu. However, since≺ is an extension of≺t , the latter implies that x≺tz ′ or v≺tz ′.
Hence we could choose z = z ′, that is a contradiction. Therefore, the claim is proved.

Otherwise, there exists a common neighbour z as defined above. In this situation, we will need to add the pair
{x, v} in Pt if and only if all possible choices for z are in V \ Vt . Note that after iterating on all the vertices of Yu,
we will also need to complete Pt with the pairs {x, y} ∈ Pu such that x and y have a common neighbour in V \ Vt
and they are preceded by all their common neighbours in Vt = Vu ∪ {v}. Furthermore, we need to check that for
all the pairs {x, y} ∈ Pu \Pt , vertex v is a common neighbour of x and y such that either x≺tv or y≺tv (otherwise,
we cannot extend to a valid representation and ≺t can be discarded).

– Second, let us consider all vertices x ∈ Vt \ Xu that are at distance two from v. Note that since by Property (ii) of
tree-decompositions v has no neighbours in Vt \ Xu, we have that for every x ∈ Vt \ Xu, x is at distance two from v
if and only if (N(x) ∩ Xu) ∩ N(v) ̸= ∅. Precisely, all the common neighbours of v and x are in Xu (and in Xt ). So, let
us consider all the pairs (N, p) ∈ Cu such that N ∩ N(v) ̸= ∅ (intuitively, this corresponds to a vertex x ∈ Vt \ Xu
that has a common neighbour with v).

For every such pair (N, p), let us define N+ as the subset obtained from N by removing its p first vertices w.r.t.
≺u. Similarly, let N+(v) be the vertices of N(v) ∩ Xu that are preceded by v w.r.t. ≺t . We check whether either
N+(v)∩N ̸= ∅ or N+

∩N(v) ̸= ∅. Intuitively, the former corresponds to the case where v preceeds one common
neighbour of x and v, and the latter corresponds to the case where x preceeds one common neighbour of x and v,
with x being such that (N(x) ∩ Xu, posx) = (N, p). If the test fails then we claim that we cannot extend to a valid
representation at node t (and so, the current subordering ≺t can be discarded).

Indeed, let≺be any extension of≺t to a total ordering onV . Suppose byway of contradiction that≺ is distance-
preserving. Let x ∈ Vt \ Xu be such that (N(x) ∩ Xu, posx) = (N, p). Note that x and v are at distance two. So, by
Corollary 2, there exists a common neighbour z ∈ Xu that is preceded by at least one of v or x. Furthermore, let
us denote by N+(x) = N+ the subset of N(x) ∩ Xu obtained by removing its posx first neighbours in Xu w.r.t. ≺t .
We get that either v precedes z, and so, N+(v) ∩ N(x) ̸= ∅, or x precedes z, and so, N+(x) ∩ N(v) ̸= ∅. The latter
contradicts that neither N+(v) ∩ N ̸= ∅ nor N+

∩ N(v) ̸= ∅, therefore the claim is proved.
Conversely, let us point out that if for every (N, p) ∈ Cu such that N ∩ N(v) ̸= ∅, either N+(v) ∩ N ̸= ∅ or

N+
∩ N(v) ̸= ∅, then the following holds for every x ∈ Vt \ Xu at distance two from v: either N+(v) ∩ N(x) ̸= ∅,
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and so, there exists a common neighbour z preceded by v, or N+(x) ∩ N(v) ̸= ∅, and so, there exists a common
neighbour z preceded by x.

Note that the collection Cu = Ct is not modified.
• Case of a JoinNode. Let u, w be the two children nodes of t . Recall thatXu = Xw = Xt . Consider any valid representation

at node u, and any valid representation at node w. They can be merged into a valid representation at node t only if
≺u = ≺w . If so, let ≺t = ≺u, let Pt = Pu ∩ Pw and let Ct = Cu ∪ Cw .

In order to decide whether this can be extended into a valid representation at node t , we need to consider all
the pairs of vertices in Vt at distance two in G that are neither both contained in Vu nor both contained in Vw . More
precisely, we need to consider all the pairs of vertices vu ∈ Vu \ Xu, vw ∈ Vw \ Xw at distance two in G. Notice
that since by Property (ii) of tree-decompositions, there cannot be an edge between Vu \ Xu and Vw \ Xw , the pairs
vu ∈ Vu \ Xu, vw ∈ Vw \ Xw that need to be considered are exactly those such that (N(vu) ∩ Xu) ∩ (N(vw) ∩ Xw) ̸= ∅.
Hence, let us consider all the pairs (Nu, pu) ∈ Cu, (Nw, pw) ∈ Cw such that Nu ∩ Nw ̸= ∅.

For every two pairs (Nu, pu) ∈ Cu, (Nw, pw) ∈ Cw such that Nu ∩ Nw ̸= ∅, let N+
u be the subset obtained from Nu by

removing its pu first vertices w.r.t. ≺t = ≺u. Intuitively, N+
u corresponds to the neighbours of some vertex vu ∈ Vu \ Xu

that are in Xu = Xt and preceded by vu. Similarly, let N+
w be the subset obtained from Nw by removing its pw first

vertices w.r.t. ≺t = ≺w . We check whether either N+
u ∩ Nw ̸= ∅ or N+

w ∩ Nu ̸= ∅. If it is not the case then we claim
that we cannot extend to a valid representation at node t (and so, the current subordering ≺t can be discarded).

Indeed, let ≺ be any extension of ≺t to a total ordering on V . Suppose by way of contradiction that ≺ is distance-
preserving. Let vu ∈ Vu\Xu, vw ∈ Vw\Xw be such that (N(vu)∩Xu, posvu ) = (Nu, pu) and (N(vw)∩Xw, posvw ) = (Nw, pw).
Since N(vu) ∩ N(vw) = Nu ∩ Nw ̸= ∅, vu and vw are at distance two. Therefore, by Corollary 2, there exists a common
neighbour z ∈ Xt that is preceded by at least one of vu or vw . Furthermore, let us denote by N+(vu) = N+

u the subset of
N(vu)∩Xu obtained by removing its posvu first neighbours in Xu w.r.t.≺t = ≺u; similarly, let us denote byN+(vw) = N+

w

the subset of N(vw) ∩ Xw obtained by removing its posvw first neighbours in Xw w.r.t. ≺t = ≺w . We get that either vu
precedes z, and so, N+(vu) ∩ N(vw) ̸= ∅, or vw precedes z, and so, N+(vw) ∩ N(vu) ̸= ∅. The latter contradicts that
neither N+

u ∩ Nw ̸= ∅ nor N+
w ∩ Nu ̸= ∅, therefore the claim is proved.

Conversely, let us point out that if for every (Nu, pu) ∈ Cu, (Nw, pw) ∈ Cw such thatNu∩Nw ̸= ∅, eitherN+
u ∩Nw ̸= ∅

or N+
w ∩ Nu ̸= ∅, then the following holds for every vu ∈ Vu \ Xu, vw ∈ Vw \ Xw at distance two in G: either

N+(vu) ∩ N(vw) ̸= ∅, and so, there exists a common neighbour z preceded by vu, or N+(vw) ∩ N(vu) ̸= ∅, and so,
there exists a common neighbour z preceded by vw . □

5. Exact algorithms and heuristics

The purpose of the section is to describe algorithms in order to compute a distance-preserving ordering for a given graph
G when it exists. Exhaustive-search on all possible vertex-orderings of the graph would require O∗(n!) = 2O(n log n)-time,3
and the algorithmparameterized by treewidth thatwe have presented in Section 4 has huge constantswhichmakes it rather
impractical.

In this section, we describe exact and heuristic algorithms that can effectively be used to decide if a graph has a distance-
preserving ordering, and return one when it exists.

5.1. Exact exponential time algorithm

A meta-theorem for computing vertex-orderings in graphs with given properties was proved in [3]. It bases on dynamic
programming. Here, we prove that the theorem of [3] also applies to distance-preserving orderings. For any elimination
ordering (v1, v2, . . . , vn) of a graph G = (V , E) and for any 1 ≤ i ≤ n, let Vi+1 = {vi+1, vi+2, . . . , vn} = {u ∈ V | vi ≺ u}.

Theorem 11 ([3]). Let f be a polynomial time computable function mapping each 3-tuple, consisting of a graph G = (V , E), a
vertex set S ⊆ V , and a vertex v ∈ V to an integer.

Then we can compute in O∗(2n)-time and space, or in O∗(4n)-time and polynomial-space, the following values for a given
graph G = (V , E):

• min≺maxvi∈V f (G, Vi+1, vi);
• min≺

∑
vi∈V

f (G, Vi+1, vi).

Corollary 12. The problem of deciding whether a given graph admits a distance-preserving elimination ordering can be solved in
O∗(2n)-time and space, or in O∗(4n)-time and polynomial-space.

3 The notation O∗(f (n)) is for a complexity f (n) · nO(1) .
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Proof. Let the function f map every 3-tuple (G, S, v) to the number of pairs x, y ∈ S ∩ NG(v) of nonadjacent vertices
with no common neighbour in S. Given a graph G = (V , E) our aim is to compute an elimination ordering (v1, v2, . . . , vn)
of G that minimizes max1≤i<nf (G, Vi+1, vi), with Vi+1 = {vi+1, vi+2, . . . , vn}. Indeed, by Corollary 2, G admits a distance-
preserving elimination ordering if and only if there is one such ordering such that for every 1 ≤ i ≤ n, f (G, Vi+1, vi) = 0,
i.e., max1≤i<nf (G, Vi+1, vi) = 0. By Theorem 11 and since f is polynomial-time computable an ordering that minimizes
max1≤i<nf (G, Vi+1, vi) can be computed in O∗(2n)-time and space, or in O∗(4n)-time and polynomial-space. □

5.2. Integer linear programming

Integer linear programming (ILP) formulations have been proved useful in practical computation of vertex order-
ings [8,16]. For completeness, we hence propose an ILP formulation that fits to our problem. Like in [16], total ordering
on the vertices is expressed through n2 binary variables xv,i, each denoting whether vertex v ∈ V is amongst the i first
vertices to be eliminated.∑

v∈V

xv,i = i ∀ 1 ≤ i ≤ n (1)

xv,i ≤ xv,i+1 ∀ v ∈ V , ∀ 1 ≤ i < n (2)

In order to ensure that the total ordering is distance-preserving, we impose that for all pairs of vertices u, v ∈ V at
distance two in G, at least one of u or v must be eliminated before some of their common neighbours w. It can be expressed
as follows:∑

w∈NG(u)∩NG(v)

xw,i ≤ xu,i + xv,i + (|NG(u) ∩ NG(v)| − 1)

∀ u, v s.t. dG(u, v) = 2, ∀ 1 ≤ i ≤ n

(3)

The correctness of our formulation directly follows from Corollary 2.

5.3. Heuristics

In this section, we present three heuristics to decide whether a graph admits a distance-preserving ordering. Then, we
propose two ways to generate graphs admitting distance-preserving orderings.

Heuristic Greedy_Pruning . The first heuristic, very naive, attempts to find a distance preserving ordering greedily.
Precisely, given a graph G, it computes the set C of all vertices v such that G \ v is an isometric subgraph of G. Note that,
by Lemma 1, this can be done by checking only the vertices at distance at most two for every vertex in G. Once the set C of
candidates has been computed, one vertex v is randomly chosen in it (this will be the first vertex of the tried ordering) and
the process goes on G \ v. If C = ∅, the process stops and returns that no distance preserving ordering has been found. If G
has no more vertices, the algorithm returns the found ordering. The pseudo-code of this heuristic is presented in Algorithm
1.

Algorithm 1 Greedy_Pruning
Require: A graph G = (V , E), a layout L of a subset S ⊆ V of the vertices of G
1: H := G[V \ S]
2: if V (H) = ∅ then
3: return L
4: C := ∅

5: for all v ∈ V \ S do
6: if H \ v is an isometric subgraph of H then
7: C := C ∪ {v}

8: if C = ∅ then
9: return ‘‘No ordering found"

10: Let v ∈ C randomly chosen
11: return Greedy_Pruning (G, L ⊙ v)

Heuristic Greedy_Reverse_Pruning . The second heuristic attempts to build the ordering starting from its last vertex.
Precisely, it guesses the last vertex (all vertices of the graph G may be considered as last vertex). From the current vertex,
the algorithm tries to guess its predecessor in the ordering. Precisely, assuming that the algorithm has already computed
a partial layout (vi+1, . . . , vn) of a set S = {vi+1, . . . , vn} ⊆ V , it aims at finding a vertex vi such that G[S] is an isometric
subgraph ofG[{vi}∪S]. For this purpose, it computes the set C of all vertices v ∈ N(S) = {v ∈ V (G)\S | ∃u ∈ S, {u, v} ∈ E(G)}
that satisfies this property. By Lemma 1, a vertex v ∈ N(S) is added to C if any two non-adjacent neighbours x, y ∈ N(v) ∩ S
have another common neighbour in S. Once the set C of candidates has been computed, if it is empty, then the process stops
and returns that no distance preserving ordering has been found. Otherwise, there are two variants of the heuristic:
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• In the first one, one vertex v is randomly chosen in C .
• In the second case, one vertex v is randomly chosen in the set of the vertices of C that have maximum degree in S.

In both cases, the chosen vertex v is added as first vertex of the current layout. The pseudo-code of this heuristic (second
variant) is presented in Algorithm 2. For the first variant, the only difference is that Line 9must be replaced by ‘‘Let C∗

:= C ’’.

Algorithm 2 Greedy_Reverse_Pruning
Require: A graph G = (V , E), a layout L of a subset S ⊆ V of the vertices of G
1: if S = V then
2: return L
3: C := ∅

4: for all v ∈ N(S) = {v ∈ V (G) \ S | ∃u ∈ S, {u, v} ∈ E(G)} do
5: if ∀x, y ∈ NG(v) ∩ S, N(x) ∩ N(y) ∩ S ̸= ∅ or {x, y} ∈ E then
6: C := C ∪ {v}

7: if C = ∅ then
8: return ‘‘No ordering found"
9: Let C∗

⊆ C be the set of the vertices in C with maximum degree in S
10: Let v ∈ C∗ randomly chosen
11: return Greedy_Reverse_Pruning (G, v ⊙ L)

The intuition behind the fact that it seems preferable to take a vertex with maximum degree in S (Line 9 of Algorithm 2)
is clear since it will maximize the number of pairs of vertices already having a common neighbour in S (which is a required
condition to compute C on Line 5 of Algorithm 2).

Graph generation. To generate graphs with distance preserving ordering (in order to test the heuristics), we propose the
following two algorithms.

• The first algorithm (INC) creates a graph by adding the vertices one by one. Precisely, assuming that a graph G
(admitting a distance-preserving ordering) has already been created, the algorithm adds a new vertex as follows. First
a vertex x ∈ V (G) is randomly chosen. Then, the algorithm randomly chooses a set X ⊆ {w ∈ V (G) | dist(x, w) ≤ 2}
with the property that any two non-adjacent vertices in X have a common neighbour is G. Finally, a new vertex v is
added to G by making v adjacent to every vertex in X ∪ {x}. The cardinality of X can additionally be bounded.

• The second algorithm (AUG) aims at augmenting a given graph into a super-graph of it admitting a distance-preserving
ordering. For this purpose, the algorithm starts from a given graph G = (V , E) and first computes a random ordering
L = (v1, . . . , vn) of V . Then, we aim at adding edges to G in order to make L a distance-preserving ordering of the
resulting super-graph of G. Precisely, the algorithm considers the vertices one by one from v1 to vn. When considering
vi, if Gi+1 = G[{vi+1, . . . , vn}] is an isometric subgraph of Gi, then no edges are added. Otherwise, by Lemma 1, this
means that two non-adjacent neighbours x, y ∈ V (Gi+1) ∩ N(vi) of vi have no common neighbour in Gi+1. Hence, the
algorithm adds edges between every such a pair of vertices.

We have used these generators to perform basic experiments on a standard laptop, using the Sagemath open-source
mathematical software [30] to implement the algorithms and IBM Ilog CPLEX [23] to solve the ILP formulations. Our first
observation is that the ILP formulation is generally able to decide if a graph with up to 50 nodes has a distance-preserving
ordering in a few minutes (we also tried Erdős–Rényi and Barabási–Albert random graphs). However, it can hardly be
used for larger graphs due to excessive running time. Our second observation is that the Greedy_Pruning heuristic is
not effective at all. It is able to find a distance-preserving ordering on very few small graphs (less than 20 nodes) only.
The Greedy_Reverse_Pruning heuristic guided by the maximum degree is much more efficient. We have executed it on
graphs generated by the INC generator (100 n-node graphs, for each n ∈ {20, 30, . . . , 100}). The heuristic has been able to
confirm thatmore than96%of these graphs have a distance-preserving ordering. Also, this heuristic appears to be particularly
efficient on dense graphs. Precisely, we performed many experiments on Erdős–Rényi random graphs (100 n-node graphs,
for each n ∈ {100, . . . , 200} and p ∈ {0.1, 0.2, . . . , 0.5}) and our heuristic returns that more than 99% of them actually have
a distance-preserving ordering when the probability is high (p ≥ 0.3). The latter supports a recent conjecture from [27].
Further experimental and theoretical investigations are needed to determine the minimum probability upon which Erdős–
Rényi random graphs have a distance-preserving ordering asymptotically almost surely. We let this interesting question as
an open problem for future research.
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