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ABSTRACT

We provide various counter examples for quantitative multiple recurrence

problems for systems with more than one transformation. We show that:

• There exists an ergodic system (X,X , μ, T1, T2) with two commuting

transformations such that, for every 0 < � < 4, there exists A ∈ X
such that

μ(A ∩ T−n
1 A ∩ T−n

2 A) < μ(A)� for every n �= 0.

• There exists an ergodic system (X,X , μ, T1, T2, T3) with three com-

muting transformations such that, for every � > 0, there exists

A ∈ X such that

μ(A ∩ T−n
1 A ∩ T−n

2 A ∩ T−n
3 A) < μ(A)� for every n �= 0.

• There exists an ergodic system (X,X , μ, T1, T2) with two transfor-

mations generating a 2-step nilpotent group such that, for every

� > 0, there exists A ∈ X such that

μ(A ∩ T−n
1 A ∩ T−n

2 A) < μ(A)� for every n �= 0.

1. Introduction

1.1. Quantitative recurrence.The Poincaré recurrence theorem states that

for every measure preserving system (X,X , μ, T ) and every A∈X with μ(A)>0,

the set

{n ∈ Z : μ(A ∩ T−nA) > 0}
is infinite. A quantitative version of it was provided by Khintchine [8], who

showed that for every ε > 0, the set {n ∈ N : μ(A ∩ T−nA) > μ(A)2 − ε} is

syndetic, meaning that it has bounded gaps.

Multiple recurrence problems concern the behavior of the set

A ∩ T−n
1 A · · · ∩ T−n

d A.

In the case Ti = T i for an ergodic transformation T , Furstenberg [7] showed

that the set

{n ∈ Z : μ(A ∩ T−nA ∩ · · · ∩ T−dnA) > 0}
is infinite. This result is now known as the Furstenberg Multiple Recurrence

Theorem.

The quantitative version of the multiple recurrence problems concerns not

only the positivity of the measure of the set A ∩ T−n
1 A ∩ · · · ∩ T−n

d A, but also

how far from 0 this measure is. More precisely, we ask:
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Question 1.1: Let (X,X , μ, T1, . . . , Td) be a measure preserving system and

F : [0, 1] → R≥0 be a non-negative function. Is the set

{n ∈ Z : μ(A ∩ T−n
1 A ∩ T−n

2 A ∩ · · · ∩ T−n
d A) ≥ F (μ(A))}

syndetic for all A ∈ X ?

If the answer to the question is affirmative for some T1, . . . , Td and F , we say

that F is good for (T1, . . . , Td). Based on the result of Khintchine [8] stating

that F (x) = x2 − ε is good for (T ) (with a single term), a natural conjecture

would be that the function F (x) = xd+1 − ε is good for (T1, . . . , Td).

The case Ti = T i was solved by Bergelson, Host and Kra [3]. They showed

that if (X,X , μ, T ) is ergodic, then F (x) = xd+1 − ε is good for (T, T 2, . . . , T d)

for all ε > 0 for d = 2 or 3. They also showed two surprising phenomena. First,

the hypothesis of ergodicity cannot be removed: there exists a non-ergodic

system (X,X , μ, T ) such that F (x) = x� is not good for (T, T 2) for all � > 0.

Secondly, if d ≥ 4, then F (x) = x� is not good for (T, T 2, . . . , T d) for all � > 0

even for ergodic systems.

In [6], Furstenberg and Katznelson proved a multiple recurrence theorem for

commuting transformations. For two commuting transformations, its quantita-

tive study was done by Chu [4] who proved that for every system (X,X , μ, T1, T2)

with two commuting transformations T1 and T2 (meaning that T1T2 = T2T1),

ergodic for 〈T1, T2〉, and every ε > 0, F (x) = x4 − ε is good for (T1, T2). Here

it is worth stressing that the exponent for (T1, T2) is 4 while the exponent for

(T, T 2) is 3. Indeed, in the same paper, Chu constructed an example showing

that F (x) = x3 is not good for (T1, T2). In a later work, Chu and Zorin-Kranich

[5] improved this example, showing that F (x) = x3.19 is not good for (T1, T2).

In this paper, we study the best exponent � ∈ R+ for which F (x) = x� is

good for (T1, . . . , Td) in an ergodic system (X,X , μ, T1, . . . , Td) with commuting

transformations. The result of Chu and Zorin-Kranich [5] suggested that the

largest � not good for (T1, T2) (for systems ergodic for 〈T1, T2〉) is between 3.19

and 4. We show that � can be sufficiently close to 4:

Theorem 1.2: There exists a measure preserving system (X,X , μ, T1, T2) with

commuting transformations T1 and T2, ergodic for 〈T1, T2〉 such that for every

0 < � < 4, F (x) = x� is not good for (T1, T2), i.e., there exists a set A ∈ X such

that
μ(A ∩ T−n

1 A ∩ T−n
2 A) < μ(A)�

for every n �= 0.
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Chu raised another question [4] on whether for some � > 0, F (x) = x� is good

for (T1, T2, . . . , Td) in an ergodic system with d commuting transformations for

d ≥ 3. We show that this is not the case:

Theorem 1.3: There exists a measure preserving system (X,μ, T1, T2, T3) with

three commuting transformations T1 , T2 and T3, ergodic for 〈T1, T2, T3〉 such

that for every � > 0, F (x) = x� is not good for (T1, T2, T3), i.e., there exists a

subset A ∈ X such that

μ(A ∩ T−n
1 A ∩ T−n

2 A ∩ T−n
3 A) < μ(A)�

for every n �= 0.

Remark 1.4: A natural question is if Theorem 1.3 is true even when the trans-

formations T1 , T2 and T3 are powers of the same ergodic transformation (for

example, T1 = T, T2 = T 2, T3 = T 4). While the theorem is not true for

T1 = T, T2 = T 2, T3 = T 3 by [3], the general situation is open.

If we relax the condition of commutativity of the transformations, the natural

condition to look at is nilpotency. Outside the abelian category, we show that

there is no polynomial quantitative recurrence even for two transformations T1

and T2 spanning a 2-step nilpotent group. We show

Theorem 1.5: There exists a measure preserving system (X,X , μ, T1, T2) such

that T1 and T2 generate a 2-step nilpotent group 〈T1, T2〉, whose actions is

ergodic and such that for every � > 0, F (x) = x� is not good for (T1, T2), i.e.,

there exists a subset A ∈ X such that

μ(A ∩ T−n
1 A ∩ T−n

2 A) < μ(A)�

for every n �= 0.

Acknowledgement. The authors thank J. Fox and T. Ziegler for pointing us

to references related to Theorem 2.2, and for the comments in Remark 1.4.

1.2. Notation and conventions. A measure preserving system (or a

system for short) is a tuple (X,X , μ, T1 , . . . , Td), where (X,X , μ) is a probabil-

ity space and T1, . . . , Td : X → X are actions such that for all A ∈ X , 1 ≤ i ≤ d,

T−1
i A ∈ X and μ(T−1

i A) = μ(A). We use 〈T1, T2, . . . , Td〉 to denote the group

spanned by the transformations T1, . . . , Td. We say that X is ergodic for

〈T1, . . . , Td〉 if A ∈ X , T−1
i A = A for all 1 ≤ i ≤ d implies that μ(A) = 0 or 1.

For a positive integer number N , the subset {1, . . . , N} is denoted by [N ].
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2. Combinatorial constructions

In this section we study subsets of N2 and N3 satisfying special combinatorial

conditions that help us construct the counter examples we need. The construc-

tion of such sets is inspired by the methods used by Salem and Spencer [11] and

Behrend [2] in building “large” subsets of [N ] with no arithmetic progressions

of length 3. The ways to make use of special subsets in Theorems 1.2, 1.3 and

1.5 are motivated by the examples constructed in Bergelson, Host and Kra [3]

and Chu [4].

We remark that the combinatorial properties studied in this section are of

independent interest.

2.1. Corner-free subsets of N2
. The first combinatorial problem we study

is how large a subset Λ ⊆ [N ]2 can be without a “corner”.

Definition 2.1: We say that a set Λ ⊆ [N ]2 is corner-free if (x, y), (x′, y) and
(x, y′) ∈ Λ and x− y = x′ − y′ implies that x = x′ and y = y′.

We have

Theorem 2.2:
1 Let ν(N) denote the largest cardinality of corner-free subsets

of [N ]2. Then

ν(N) > N2− 4 log 2+ε
log log N

as N → ∞ for all ε > 0.

Proof. Let 1 � d � n be two parameters to be chosen later and assume that

n is divisible by d2. Let Λ be the set of points (x, y) ∈ [(2d)n]2 such that the

following condition holds: expand x = x0+x1(2d−1)+· · ·+xn−1(2d−1)n−1 and

y = y0+ y1(2d−1)+ · · ·+ yn−1(2d− 1)n−1 0 ≤ xi, yi ≤ 2d−2 for 0 ≤ i ≤ n−1.

Consider the n pairs of integers (x0, y0), (x1, y1), . . . , (xn−1, yn−1). Define Λ

by (x, y) ∈ Λ if and only if among the pairs (x0, y0), (x1, y1), . . . , (xn−1, yn−1),

there are exactly n
d2 of them that are equal to (i, j) for all 0 ≤ i, j ≤ d − 1.

Recall for a set S of cardinality k and k′ that divides k, k!
(k/k′)!k′ is the number

1 It is worth noting that Atjai and Szemerédi [1] had a similar estimate for the largest

cardinality of the set Λ ⊆ [N ]2 such that (x, y), (x′, y) and (x, y′) ∈ Λ, x′ > x and

x − y = x′ − y′ implies that x = x′ and y = y′ (with an additional but not essential

assumption that x′ > x). Combining their method with the construction in [2] yields a

better estimate. But since our proof is different from their method, we write it down for

completeness. We thank J. Fox and T. Ziegler for bringing our attention to the references.
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of different partitions of S where each atom has exactly k′ elements (here the

order of the elements in each atom is taken into account). Using this formula,

we get that

|Λ| = n!

(( n
d2 )!)d

2 .

We claim that Λ satisfies the properties we are looking for. We first estimate

the size of Λ. Set n = d2ω(d), where ω : N → N is an increasing function such

that ω(d+ 1)− ω(d) = O(1), ω(d)
log d → ∞ and log ω(d)

log d → 0 as d → ∞. For every

N ∈ N, pick d ∈ N such that

(2d− 1)d
2ω(d) ≤ N < (2d+ 1)(d+1)2ω(d+1).(2.1)

By the Stirling formula, if d and n/d2 = ω(d) are large enough, we have that

n!

(( n
d2 )!)d

2 >
nn

√
2πne−n

[(n/d2)n/d2
√
2π(n/d2)e−n/d2 ]d2

1

Cd2 ≥ d2n

(γnd2 )d
2/2

=
d2d

2ω(d)

(γω(d))d2/2
,

where γ = 2πC2, and C is a constant as close to 1 as we want. So

(2.2)

log

(
N2

|L|
)

< log

(
(2d+ 1)2(d+1)2ω(d+1)

|L|

)

< log

(
(2d+ 1)2(d+1)2ω(d+1)(γω(d))d

2/2

d2d2ω(d)

)

=2(d+ 1)2ω(d+ 1) log(2d+ 1)− 2d2ω(d) log d

+
d2

2
(log γ + logω(d))

=d2ω(d)(2 log 2 + o(1)),

where in the last step we repeatedly used the properties of ω(d). On the other

hand, by (2.1), we have

logN ≥ d2ω(d) log(2d− 1)

and

log logN < 2 log(d+ 1) + logω(d+ 1) + log log(2d+ 1),

which implies that

logN

log logN
> d2ω(d)(1/2 + o(1)).(2.3)
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Combining (2.2) and (2.3), we have that

|Λ| > N2− 4 log 2+ε
log log N

as N → ∞ for all ε > 0.

Now we show that Λ is corner-free. Suppose that (x, y), (x′, y) and (x, y′)
belong to Λ and that x− y = x′ − y′. Expand

w = w0 + w1(2d− 1) + · · ·+ wn−1(2d− 1)n−1, 0 ≤ w0, . . . , wn−1 ≤ d− 1

for w = x, y, x′, y′. Since 0 ≤ xi, yi, x
′
i, y

′
i ≤ d − 1 for every 0 ≤ i ≤ n − 1, we

have that necessarily

yi − xi = y′i − x′
i(2.4)

for all 0 ≤ i ≤ n− 1.

If yi − xi = −(d− 1) for some 0 ≤ i ≤ n− 1, then by the construction of Λ,

we have xi = d − 1 and yi = 0. By (2.4), y′i − x′
i = yi − xi = −(d − 1), and so

x′
i = d− 1 and y′i = 0. Therefore xi = x′

i and yi = y′i.
Now suppose that −(d − 1) ≤ yi − xi ≤ h implies that (xi, yi) = (x′

i, y
′
i) for

all 0 ≤ i ≤ n− 1 for some −(d− 1) ≤ h ≤ d− 2. We show that yi − xi = h+ 1

also implies that (xi, yi) = (x′
i, y

′
i) for all 0 ≤ i ≤ n− 1. By the construction of

Λ, the number of the pairs (xi, yi) such that 0 ≤ yi − xi ≤ h is the same as the

number of the pairs (xi, y
′
i) such that 0 ≤ y′i − xi ≤ h, and is the same as the

number of the pairs (x′
i, yi) such that 0 ≤ yi − x′

i ≤ h. Therefore, by induction

hypothesis, if yi − xi = h+ 1, we have y′i − xi ≥ h+ 1 and yi − x′
i ≥ h+ 1. So

y′i − x′
i = (y′i − xi) + (yi − x′

i)− (yi − xi)

≥ (h+ 1) + (h+ 1)− (h+ 1) = h+ 1 = yi − xi.

By (2.4), we have that y′i − xi = yi − x′
i = h+ 1 = yi − xi, which implies that

xi = x′
i and yi = y′i and we are done.

We conclude that

ν(N) ≥ |Λ| > N2− 4 log 2+ε
log log N

as N → ∞ for all ε > 0.

2.2. Three point free subsets of N3
. We study another combinatorial

problem in this section.

Definition 2.3: Let Λ be a subset of [N ]3. We say that Λ is three point free

if (x, y, z′), (x, y′, z), (x′, y, z) ∈ Λ implies that x = x′, y = y′, z = z′.
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In particular, (x, y, z′) and (x, y, z) ∈ Λ implies that z = z′. So Λ contains

at most one point on each line parallel to Z-axis. Similarly, Λ contains at most

one point along any line parallel to the X- or Y -axis.

Remark 2.4: To a three point free set Λ ⊆ [N ]3 we can associate a N×N matrix

A(Λ) = (ai,j)i,j∈[N ]. To do so, we look at the line {(i, j, k) : k ∈ [N ]}. If there

is a point of Λ in such a line, we set ai,j to be the unique integer in [N ] such

that (i, j, ai,j) ∈ Λ. If there is no point in such a line, we just set ai,j = 0. If Λ

is a three point free set, the matrix A(Λ) has the following properties:

(1) For every k ∈ [N ], k appears at most once in each row and each column

of A(Λ).

(2) For every k ∈ [N ], if ai,j = k and ai′,j′ = k then ai,j′ = ai′,j = 0.

Conversely, if A is a N ×N matrix that satisfies conditions (1) and (2), then

there is a three point free set Λ ⊆ [N ]3 such that A = A(Λ). The set Λ is

just {(i, j, ai,j) : ai,j �= 0} and note that the cardinality of Λ is the number of

non-zero entries of A(Λ).

The combinatorial problem we study is how large such a three point free set

can be. It is clear that if Λ ⊆ [N ]3 is a three point free set, then |Λ| ≤ N2. We

show that in fact |Λ| can be sufficiently “close” to N2:

Theorem 2.5: Let w(N) denote the largest cardinality of a three point free

subset of [N ]3. Then

w(N) > N2− 4 log 2+2ε
log log N

as N → ∞ for all ε > 0.

Proof. Let n, d, N and Λ be given in the proof of Theorem 2.2. Define

V :=
{
(x, y, z) : (x, y) ∈ Λ

}
⊆ [N ]3

and

Vs :=
{
(x, y, z) ∈ V : x+ y + z = s

}
.

We have that for big enough N ,

3N−3∑
s=0

|Vs| = |V | = N ·N2− 4 log 2+ε
log log N .

So there exists 0 ≤ s ≤ 3N − 3 such that

|Vs| ≥ |V |
3N

= N2− 4 log 2+ε
log log N /3 > N2− 4 log 2+2ε

log log N
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provided N is large enough. We verify that Vs is three point free. Suppose

that (x, y, z′), (x, y′, z) and (x′, y, z) belong to Vs. Then in particular we have

that (x, y), (x, y′) and (x′, y) belong to Λ and s − x − y′ = z = s − x′ − y. So

x′ − x = y′ − y. Since Λ is corner-free, we have that x = x′ and y = y′. This

implies that z′ = s − x − y = s− x′ − y = z and we conclude that Vs is three

point free.

It follows immediately that

w(N) ≥ |Vs| ≥ N2− 4 log 2+2ε
log log N

provided that N is large enough.

3. Nilsystems and affine nilsystems

In all that follows, we make use of the class of nilsystems, specially of affine

nilsystems, and we briefly introduce them.

3.1. Affine nilsystems with a single transformation. LetG be a group.

For a, b ∈ G, [a, b] := aba−1b−1 denotes the commutator of a and b and

for A and B subsets of G, and [A,B] denotes the group generated by all the

commutators [a, b] for a ∈ A and b ∈ B. The commutator subgroups are defined

recursively as G1 = G and Gj+1 = [Gj , G], j ≥ 1. We say that G is d-step

nilpotent if Gd+1 = {1}.
Let G be a d-step nilpotent Lie group and Γ be a discrete and cocompact

subgroup ofG. The compact manifoldG/Γ is a d-step nilmanifold. The group

G acts on G/Γ by left translations and there is a unique probability measure μ

which is invariant under such action (called the Haar measure). A dynamical

system of the form (G/Γ,B(G/Γ), μ, T1, . . . , Tn) is called a nilsystem, where

B(G/Γ) is the Borel σ-algebra of G/Γ, and each Ti is given by the rotation by

a fixed τi ∈ G, i.e., Ti : G/Γ → G/Γ, x �→ τix.

An important class of such systems are the affine nilsystems. The affine

nilsystems for a single transformation are defined as follows. Let α ∈ Td and let

A be a d× d unipotent integer matrix (i.e., (A− I)d = 0). Let T : Td → Td be

the affine transformation x �→ Ax + α. Let G be the group of transformations

of Td generated by A and the translations of Td. That is, every element g ∈ G

is a map x �→ Aix+β for some i ∈ Z and β ∈ Td. The group G acts transitively
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on Td and we may identify this space with G/Γ, where Γ is the stabilizer of 0,

which consists of the powers of A. The system (Td, μ⊗d, T ) is called an affine

nilsystem (here μ is the Haar measure on T). Properties such as transitivity,

minimality, ergodicity and unique ergodicity are equivalent for a system in this

class and this can be checked by looking at the rotation induced by α on the

projection Td/Ker(A− I) [10].

3.2. Affine nilsystems with several transformations. When we con-

sider different affine transformations

Ti : T
d → Td, x �→ Aix+ αi,

where Ai is unipotent for every i = 1, . . . , n, we can still regard the system

(Td,B(Td), μ⊗d , T1, . . . , Tn) as a nilsystem as long as the matrices commute.

Indeed, let G be the group of transformations of Td generated by the matrices

A1, . . . , An and the translations of Td. Then every element g ∈ G is a map

x �→ A(g)x+ β(g), where A(g) = Am1
1 · · ·Amn

n , m1, . . . ,mn ∈ Z and β(g) ∈ Td.

A simple computation shows that if g1, g2 ∈ G, the commutator [g1, g2] is

the map x �→ x+ (A(g1)− I)β(g2) + (A(g2)− I)β(g1) and thus is a translation

of Td. On the other hand, if g ∈ G and β ∈ Td, then [g, β] is the translation

x �→x+(A(g)−I)β. It follows that the iterated commutator [· · ·[[g1, g2], g3] · · · gk]
belongs to Td and is contained in the image of (A(g3)− I) · · · (A(gk)− I). If k

is large enough, this product is trivial. So G is a nilpotent Lie group. The torus

Td can be identified with G/Γ, where Γ is the stabilizer of 0, which is the group

generated by the matrices A1, . . . , An. We refer to (Td,B(Td), μd, T1, . . . , Tn)

as an affine nilsystem with n transformations. It is worth noting that the

transformations Ti and Tj commute if (Ai − I)αj = (Aj − I)αi in Td.

By a theorem from Leibman [9], we get

Proposition 3.1 ([9], Theorem 4): Let (Td,B(Td), μd, T1, . . . , Tn) be an affine

nilsystem with n transformations. Then the properties of transitivity, mini-

mality, ergodicity and unique ergodicity under the action of 〈T1 . . . , Tn〉 are

equivalent.

Recall that (Td,B(Td), μd, T1, . . . , Tn) is minimal under 〈T1 . . . , Tn〉 if the

orbit closure of every x ∈ Td under 〈T1 . . . , Tn〉 is Td (in this paper we do not

need the concepts of transitivity and unique ergodicity). We refer to [9] for a

modern reference on nilmanifolds and nilsystems.
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4. Proofs of the main theorems

We are now ready to prove the main theorems.

Proof of Theorem 1.2. Let α, β ∈ R\Q be rationally independent numbers. Let

X = T6 with transformations

T1(x1, x2, x3; y1, y2, y3) = (x1 + α, x2 + β, x3; y1 + x1, y2, y3 + x1 + x2 + x3)

and

T2(x1, x2, x3; y1, y2, y3) = (x1, x2 + β, x3 + α; y1, y2 + x3, y3 + x1 + x2 + x3).

We have that (X,B(T6), μ⊗ μ⊗ μ⊗ μ⊗ μ⊗ μ, T1, T2) is an affine nilsystem

with two transformations, where μ is the Haar measure on T. Notice that

T1T2(x1, x2, x3; y1, y2, y3) = T2T1(x1, x2, x3; y1, y2, y3)

= (x1 + α, x2 + 2β, x3 + α; y1 + x1, y2 + x3, y3 + x1 + x2 + x3 + α+ β).

We first claim that the system is minimal and ergodic. To see this, let

(x1, x2, x3; y1, y2, y3) and (x′
1, x

′
2, x

′
3; y

′
1, y

′
2, y

′
3) ∈ T6. It is not hard to see that

(x′
1, x

′
2;x3, y

′
1, y2, y

′
3) belongs to the orbit closure of (x1, x2, x3; y1, y2, y3) under

the transformation T1. We also have that (x′
1, x

′
2, x

′
3; y

′
1, y

′
2, y

′
3) is in the orbit

closure of (x′
1, x

′
2, x3, y

′
1, y2, y

′
3) under the transformation T2 (here we use the

fact that for fixed x1, the transformation

(x2, x3, y2, y3) �→ (x2 + β, x3 + α, y2 + x3, y3 + x1 + x2 + x3)

is minimal in T4). We conclude that (x′
1, x

′
2, x

′
3, y

′
1, y

′
2, y

′
3) is in the orbit closure

of (x1, x2, x3; y1, y2, y3) under 〈T1, T2〉. Since the points are arbitrary, the system
is minimal and hence ergodic by Proposition 3.1.

Let N ∈ N be chosen later and Λ ⊆ [N ]3 be a three point free set. For

(a, b, c) ∈ [N ]3, denote

Qa,b,c =
( a

N
,
a

N
+

1

2N

)
×
( b

N
,
b

N
+

1

2N

)
×
( c

N
,
c

N
+

1

2N

)
⊆ T3

and let B =
⋃

(a,b,c)∈ΛQa,b,c, A = T3 ×B. Then

μ⊗ μ⊗ μ⊗ μ⊗ μ⊗ μ(A) =
|Λ|
8N3

.
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On the other hand,

μ⊗μ⊗ μ⊗ μ⊗ μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A)

=

∫
T6

1B(y1, y2, y3)1B(y
′
1, y2, y

′
3)1B(y1, y

′
2, y

′
3)dμ⊗ · · · ⊗ μ(x1, x2, x3; y1, y2, y3),

where

y′1 = y1 + nx1 +

(
n

2

)
α, y′2 = y2 + nx2 +

(
n

2

)
α,

y′3 = y3 + n(x1 + x2 + x3) +

(
n

2

)
(α+ β).

Suppose that the product of the functions inside the integral is nonzero.

Then we may assume that (y1, y2, y3) ∈ Qa,b,c, (y′1, y2, y
′
3) ∈ Qa′,b,c′ and

(y1, y
′
2, y

′
3) ∈ Qa,b′,c′ for some (a, b, c), (a′, b, c′) and (a, b′, c′) that belong to

Λ. Since Λ is three point free, we have that a = a′, b = b′ and c = c′. This

implies that

nx1+

(
n

2

)
α, nx2+

(
n

2

)
α, y3+n(x1+x2+x3)+

(
n

2

)
(α+β) ∈

(
− 1

2N
,

1

2N

)
.

Therefore,

μ⊗ μ⊗ μ⊗ μ⊗ μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A)

=

∫
T6

1B(y1, y2, y3)1B(y
′
1, y2, y

′
3)1B(y1, y

′
2, y

′
3)dμ⊗ · · · ⊗ μ(x1, x2, x3; y1, y2, y3)

=
1

N3

∫
T3

1B(y1, y2, y3)dμ(y1)dμ(y2)dμ(y3) =
1

N3
· |Λ|
8N3

.

We have that μ⊗μ⊗μ⊗μ⊗μ⊗μ(A∩T−n
1 A∩T−n

2 A) = |Λ|
8N6 ≤ |Λ|�

(8N3)� = μ(A)�

if and only if

(4.1) � ≤ 1 +
3

3 + log(8)
log(N) − log(|Λ|)

log(N)

.

By Theorem 2.5, we can take Λ of cardinality larger than N2−ε and thus the

right-hand side in (4.1) can be as close to 4 as we want. This finishes the

proof.

Proof of Theorem 1.5. Let α ∈ R\Q. Let X = T3 with transformations

T1(x, y, z) = (x+ α, y + x, z)
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and

T2(x, y, z) = (x+ α, y, z + x).

It is an affine nilsystem with two transformations. We first claim that the

system (X,B(T3), μ⊗μ⊗μ, T1, T2) is minimal and ergodic, where μ is the Haar

measure on T. To see this, take (x0, y0, z0) ∈ T3 and note that the closure

of the orbit of this point under the transformation T1 is T × T × {z0}. Let

(x, y, z) ∈ T3 be an arbitrary point and notice that this point is contained in

the orbit closure of (x0, y, z0) under the transformation T2. So the closure of

the orbit of (x0, y0, z0) under 〈T1, T2〉 is T3. We conclude that the system is

minimal and thus ergodic by Proposition 3.1.

It is easy to verify that [T1, T2](x, y, z) = (x, y + α, z − α) commutes with T1

and T2. So T1 and T2 generate a 2-step nilpotent group.

LetN ∈ N be chosen later and Λ ⊆ [N ]2 be a corner-free set. For (a, b) ∈ [N ]2,

denote

Qa,b =
( a

N
,
a

N
+

1

2N

)
×
( b

N
,
b

N
+

1

2N

)
⊆ T2

and let B =
⋃

(a,b)∈Λ Qa,b and A = T×B. Then

μ⊗ μ⊗ μ(A) =
|Λ|
4N2

.

On the other hand,

μ⊗μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A)

=

∫
T3

1B(y, z)1B

(
y+nx+

(
n

2

)
α, z

)
1B

(
y, z+nx+

(
n

2

)
α

)
dμ(x)dμ(y)dμ(z).

Suppose that the product of the functions inside the integral is nonzero. Write

c = nx +
(
n
2

)
α for convenience. Then we may assume that (y, z) ∈ Qa,b,

(y+ c, z) ∈ Qa′,b and (y, z+ c) ∈ Qa,b′ for some (a, b), (a′, b), (a, b′) that belong
to Λ. Since (y+ c)− y = (z+ c)− z, by the construction of the Qa,b’s, we must

have that a′ − a = b′ − b. Since Λ is L-free, we have that a = a′ and b = b′.
This implies that c = nx+

(
n
2

)
α ∈ (− 1

2N , 1
2N ). Therefore,

μ⊗ μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A)

=

∫
T3

1B(y, z)1B

(
y + nx+

(
n

2

)
α, z

)
1B

(
y, z + nx+

(
n

2

)
α
)
dμ(x)dμ(y)dμ(z)

≤ 1

N

∫
T2

1B(y, z)dμ(y)dμ(z) =
1

N
· |Λ|
4N2

.
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We have that μ⊗ μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A) = |Λ|
4N3 ≤ |Λ|�

(4N2)� = μ(A)� if and

only if

(4.2) � ≤ 1 +
1

2 + log(4)
log(N) − log(|Λ|)

log(N)

.

By Theorem 2.2, we can take Λ of cardinality larger than N2−ε and thus the

right hand side in (4.2) can be arbitrarily large. This finishes the proof.

For Theorem 1.3, we make use of the following theorem in [3] which gives a

negative answer to Question 1.1 in the non-ergodic case.

Theorem 4.1: Let (T2,B(T2), μ⊗μ, T ) be a measure preserving system on T2,

where μ is the Lebesgue measure on T and T is the transformation

(x, y) �→ (x, y+x). For every � > 0, there exists B ∈ B(T2) with μ(B) > 0 such

that

μ(B ∩ T−nB ∩ T−2nB) ≤ μ(B)�

for every n �= 0.

Remark 4.2: It is worth noting that the subset B is constructed with the help

of Behrend’s Theorem on subsets of integers with no arithmetic progressions of

length 3 [2].

The system in Theorem 4.1 is not ergodic. The idea to prove Theorem 1.3 is

to take an extension of the system in Theorem 4.1 and add a transformation to

make it ergodic.

Proof of Theorem 1.3. Let μ be the Haar measure on T and let α ∈ R \ Q.

Consider X = T× T× T and its Haar measure μ⊗ μ⊗ μ. Let

T1(x, y, z) = (x+ α, y, z + y),

T2 = T 2
1 and

T3(x, y, z) = (x, y + α, z + x).

Since

T1T3(x, y, z) = T3T1(x, y, z) = (x+ α, y + α, z + x+ y + α),

T1, T2 and T3 commute. We leave its proof to the readers that the action

generated by 〈T1, T2, T3〉 is minimal and hence ergodic in X = T × T × T by
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Proposition 3.1. By Theorem 4.1, for every � > 0, we can find a subset B ⊆ T×T

such that

μ⊗ μ(B ∩ T−nB ∩ T−2nB) ≤ μ(B)�

for all n �= 0. Now it suffices to consider the set A = T × B ⊆ T × T × T and

notice that

μ⊗ μ⊗ μ(A ∩ T−n
1 A ∩ T−n

2 A ∩ T−n
3 A) ≤ μ⊗ μ(B ∩ T−nB ∩ T−2nB)

≤ μ⊗ μ(B)�

= μ⊗ μ⊗ μ(A)�

for every n �= 0.
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formations, Journal d’Analyse Mathématoque 34 (1978), 275–291 (1979).
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