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RELATIVISTIC EFFECTS IN LARGE SCALE STRUCTURE

En esta tesis estudiamos efectos relativistas en la estructura a gran escala del universo
en ΛCDM y modelos de enerǵıa oscura. El término observado de sobredensidad de materia
es derivado en el regimen lineal, donde se muestra de forma natural que este se encuentra
relacionado no solo a la distribución de materia oscura subyacente, sino que también es
sensible a otros efectos tales como el Redshift-space Distortion, el efecto Doppler y a lentes
gravitacionales. De la misma forma, se muestra que existen contribuciones provenientes de un
conjunto de efectos denominados ‘relativistas’, el cual consiste en el efecto Shapiro, el efecto
Sachs-Wolfe Integrado y términos de potenciales gravitacionales locales. Con lo anterior se
calcula una expresión general para el espectro angular de potencias de materia válida para
una amplia clases de modelos de enerǵıa oscura y teoŕıas de gravedad modificada ya que
se basa en una descripción fenomenológica que introduce dos parametros, Q y η, los que
capturan de una forma efectiva el clustering modificado (o constante gravitacional efectiva)
y el stress anisotrópico que puede aparecer en algunos modelos cosmológicos alternativos.

Como caso particular, en este trabajo consideramos un modelo de fluido efectivo para la
enerǵıa oscura tipo quintaesencia, el cual es caracterizado por un parámetro de ecuación de
estado w 6= −1 y una velocidad del sonido 0 ≤ c2

s ≤ 1. Ambos grados de libertad contribuyen
expĺıcitamente a los parametros efectivos Q y η aśı como también a la tasa de crecimiento de
estructuras en el universo. Exploramos el espectro angular de potencias en este modelo para
cinco valores de c2

s y comparamos los resultados con respecto a una cosmoloǵıa ΛCDM de
referencia hasta multipolos ` = 100 y redshift z = 2. En general, las desviaciones de ΛCDM
son mayores a bajo redshift ya que el fluido de enerǵıa oscura puede diferenciarse mejor de
la constante cosmológica durante el universo tard́ıo. Encontramos que en este modelo las
sobredensidades de materia vaŕıan hasta un ∼ 15% a bajo redshift, mientras que el redshift-
space distortion y efecto Doppler pueden desviarse hasta ∼ 115% respecto a ΛCDM para el
caso c2

s = 0, donde las perturbaciones en el fluido efectivo pueden crecer a cualquier escala.
A redshift mayores las diferencias en estos términos permanecen acotadas, aunque para el
caso de lentes gravitacionales se obtienen diferencias de hasta 20% en z = 2 debido a que se
trata de un efecto integrado.

Para los efectos relativistas encontramos que el retraso Shapiro y los potenciales grav-
itacionales locales se comportan de manera cualitativamente similar, mostrando diferencias
de hasta un ∼ 20% a redshift bajo. Finalmente, el efecto Sachs-Wolfe integrado muestra la
mayor influencia del modelo de enerǵıa oscura mostrando hasta ∼ 90% de diferencia relativa
con respecto a ΛCDM debido a su capacidad de probar la tasa de crecimiento de estructuras
pero también su variación temporal. Además, este efecto se ve potenciado por la tasa de
clustering del fluido oscuro y es el único sensible a la posible presencia de viscosidad en el
mismo, por lo cual representa una herramienta importante para probar modelos alternativos
a ΛCDM usando surveys de galaxias.
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Abstract

We study relativistic effects in the large scale structure of the universe in ΛCDM and alter-
native cosmological models. The observed galaxy overdensity is derived in the linear regime,
showing that it is related to the underlying dark matter density fluctuations, to standard
contributions such as Redshift-space distortion, Doppler effect and gravitational lensing, as
well as to the set of so-called relativistic effects consisting in the Shapiro time-delay effect,
the Integrated Sachs-Wolfe effect and local potential terms.

A general expression for the observed angular power spectrum of galaxies in the relativistic
regime is presented, which is valid for a wide class of dark energy/modified gravity models
as it is based on a phenomenological approach that introduces two parameters, Q and η,
quantifying the modified clustering (or effective gravitational constant) and the anisotropic
stress that may arise in some models.

In this work we consider a quintessence-like effective dark energy fluid that is charac-
terized by an equation of state parameter w 6= 1 and a sound speed 0 ≤ c2

s ≤ 1, which
directly contribute to the clustering parameter Q and also to the growth rate of structures
in the universe. We study the angular power spectra for this model considering five different
sound speed cases and we compare the predictions against a fiducial ΛCDM cosmology up
to multipoles ` ∼ 100 and redshift z = 2.

We find that, in general, deviations from ΛCDM are stronger at lower redshift, since
the dark energy fluid starts to cluster more effectively during the late time universe. We
find that matter density fluctuations deviates up to ∼ 15% at z = 0.1, while redshift-space
distortion and Doppler effect are enhanced up to ∼ 115% with respect to ΛCDM for c2

s = 0,
where the perturbations in the dark energy fluid are able to grow at all scales. At higher
redshifts, deviations in these terms decrease and remain bounded, except for gravitational
lensing which shows deviations of up to 20% at z = 2 as it is an integrated effect from source
to observer.

For the relativistic effects we find that the Shapiro time-delay and the local potential
terms behave in a qualitatively similar way, deviating up to ∼ 20% at low redshift. Finally,
the integrated Sachs-Wolfe effect shows the most impact from the dark energy fluid, as its
deviations may reach up to ∼ 90% of relative difference with respect to ΛCDM around
z = 2 due to its capacity to probe cumulatively not only the evolution of the growth rate
of structures but also the clustering rate of the dark energy fluid, which is consistent with
previous studies. Furthermore, we find that this effect is the only one able to detect the
presence of viscosity in the dark fluid, and then represents a valuable tool for testing and
constraining alternative models using galaxy surveys.
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Chapter 1

Introduction

Modern cosmology was born as one of the first applications of General Relativity for studying
the properties of the cosmos on large scales, and from there on it has become one of the main
topics in modern science. The advent of sophisticated instrumentation during the last decades
has made it possible to observe deeper in the sky and at larger distances, which has allowed
to reveal not only new features of the cosmos at different stages of its history but also key
insights about the ultimate nature of our Universe.

1.1 The Large Scale Structure of the Universe

In the last decades, large surveys have revealed that galaxies are coherently distributed in
the universe, forming structures up to very large scales. This large scale structure takes
the form of a complex network called the Cosmic Web, which consists mainly of galaxy
clusters, filaments, sheets and voids. Historically, these components were first characterized
by Zel’dovich [1] in 1970 under the assumption of a hot dark matter universe in which
large structures form first, and smaller structures form later by fragmentation. Even if this
formation process is the opposite to today’s hierarchical (bottom-up) understanding, this set
of structures is still valid to describe the large scale structure in our universe with cold dark
matter. Voids are vast and mostly empty regions which are surrounded by two-dimensional
structures, i.e. sheets, where matter is concentrated. One-dimensional structures, filaments,
are even denser than sheets, bridging galaxy clusters that reside at the nodes of filaments,
the densest regions. These structures are also related to the flow of matter, which moves
from voids to sheets, then to filaments, and finally into clusters. Examples of the observed
[2] galaxy and simulated [3] dark matter distributions are shown in Fig 1.1.

The large scale structure of the universe contains valuable information about its funda-
mental properties. Since the formation of structures is based on the growth of tiny primordial
perturbations (seeds) due to gravitational instabilities, they carry information about the ini-
tial conditions, the nature of gravity itself and the matter-energy content in our Universe.
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Figure 1.1: Left: the SDSS galaxy map. Right: a portion of the z = 0 slice of the Millenium
Simulation. The ‘cosmic web’ is evident in both matter and dark matter distributions.

Over the past decade, rapid progress in observations has been made in this field, following
the advent of large galaxy redshift surveys such as the Sloan Digital Sky Survey [2] (SDSS)
and the Two Degree Field Galaxy Redshift Survey [4] (2dFGRS), and much higher precision
measurements with larger survey volumes such as Euclid [5] and LSST [6] will open new
horizons for constraining cosmological parameters and testing cosmological theories through
galaxy distribution. In order to adequately interpret data coming from such increasingly
precise observations, an accurate description of the large scale structure of the universe is
required.

1.2 The Accelerated Cosmic Expansion and Dark En-

ergy

In 1998, almost seven decades after the discovery of the cosmic expansion by Hubble in 1929
[7], the observation and analysis of type Ia supernovae (SNIa) brought to light a completely
striking picture as astronomers pointed out that their apparent luminosities were lower than
expected in a matter dominated universe due to extra redshifting. Then, it was concluded
that the Universe was not only in phase of expansion, but for some reason this expansion
is currently accelerating [8]. The origin and nature of this accelerated cosmic expansion is
one of the most challenging puzzles in modern cosmology and physics, as this phenomenon
is not predicted in a matter dominated universe, assuming that gravity is well described
by Einstein’s General Relativity. In such case the expansion will at some point slow down
due to gravitational interaction (and maybe even recollapse the Universe). Regardless of the
fact that the accelerated cosmic expansion is well supported by a host of cosmological data
besides type Ia supernovae, such as the cosmic microwave background radiation [9] and the
large scale structure [10], we are still far from a consensus on what is the physical mechanism
responsible for such phenomenon, which is then dubbed generically as Dark Energy.
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The current standard cosmological model, ΛCDM, explains the cosmic expansion within
the framework of Friedmann-Lemâıtre-Robertson-Walker cosmology in a straightforward
manner with the inclusion of a cosmological constant Λ. Although this model is consistent
with nearly all the observational data collected over the past two decades, this explanation
gives rise to a coincidence problem, and the fine-tuning required for the extremely small value
of the cosmological constant makes it difficult to support it theoretically [11]. The elusive
nature of dark energy and the lack of a consistent fundamental description underlying this
model has encouraged to study alternative paradigms for explaining the observed late-time
accelerated expansion of our Universe, such as modified gravity and dark energy models [12].
The former approach aim at revising the geometrical description of gravity rather than intro-
ducing ‘dark’ components in the stress-energy tensor, and include theories like f(R) gravity
[13], non-local gravity [14], Dvali-Gabadadze-Porrati (DGP) model [15] and Horndeski the-
ories [16]. Dark energy models build on the latter idea and comprise quintessence [17] and
k-essence [18], among others.

1.3 Relativistic effects in the Large Scale Structure

A key realization for understanding the data collected in galaxy surveys is that for measuring
the distribution of galaxies in the universe we do not observe their actual positions, but
rather redshifted photons coming from a particular direction in the sky. Then, one can
obtain the fluctuations in the number of galaxies across the sky by pixelising galaxy maps
in bins of redshift and solid angle. The volume elements constructed using the observed
redshift and observed angle might differ from the real physical volume that the galaxies
actually occupy, and the observed flux and redshift of the source galaxies also differ from their
intrinsic properties since photons are perturbed when travelling across the universe toward
our detectors. Then, the observed galaxy number density contains additional contributions
arising from the distortion in the observable quantities, in contrast to the standard description
where galaxies simply trace the underlying matter distribution with a bias factor, an issue that
is naturally resolved if we construct theoretical predictions in terms of observable quantities.
The fact that observations are made in redshift-space rather than in position-space was
realized in the late 80’s by Kaiser [19] who introduced the phenomenon known as redshift-
space distortion (RSD), showing that the clustering in real space and redshift space were not
equivalent due to peculiar motions. The fact that the observed galaxy distribution is not only
sensitive to the underlying dark matter but also to the peculiar velocities also introduces a
Doppler effect in the observed clustering [20]. In addition, during the 90’s it was shown that
gravitational lensing also affects the observed distribution of galaxies via the magnification
bias [21, 22]. This effect relies on the fact that surveys are limited in magnitude and that
gravitational lensing changes the observed luminosity of galaxies.

During the last decade, this set of extra (and denominated standard) contributions that
appears intrinsically in the observed clustering of matter has been naturally extended by
developing a fully relativistic description of the large scale structure of the universe [23,
24, 25, 26], leading to the inclusion of a set of relativistic effects accounting for the impact
of General Relativity onto the photons’ propagation. These effects comprise gravitational
redshift, Sachs-Wolfe effect, Shapiro time delay and Integrated Sachs-Wolfe effect, and share
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the common feature of being suppressed at sub-horizon scales with respect to the standard
contributions. Nevertheless they allow to consistently interpret observables like the power
spectra of galaxies, the Cosmic Microwave Background (CMB) and gravitational waves [27],
specially at large scales, where the signature of galaxy clustering in General Relativity is
significantly different from its Newtonian description [28, 29]. As such, it has been suggested
that relativistic effects might provide a new horizon-scale test of cosmological models [30].
Compared to ΛCDM, in alternative theories the metric potentials and the velocity respond
different to the same matter distribution. It has been argued that these differences may be
prominent on very large scales, which may provide an interesting tool to probe gravity and
dark energy [31].

1.4 Outline of this thesis

In the present work we aim at extending the analysis of relativistic effects in the large
scale structure to cosmological models beyond ΛCDM. In particular, we consider dark en-
ergy and modified gravity models which can be described by a convenient phenomenological
parametrization [32, 33, 34]. Using such framework, we can calculate the observed matter
angular power spectrum for a wide class of models, which are effectively described by two
new parameters which enter directly at the level of the Einstein Equations. As a particular
realization we consider a quintessence-like dark energy fluid (instead of a cosmological con-
stant Λ) which is not completely homogeneous in space but may have non-vanishing dark
energy perturbations, namely it behaves as a fluid that might cluster at scales above a certain
sound horizon.

The rest of this thesis is organized as follows:

In Chapter 2 we review the basics of the Friedmann-Lemâıtre-Robertson-Walker (FLRW)
universe, which describes the background expansion history of the ΛCDM model as well as in
some alternative models. We present the Friedmann equations considering a universe filled
with matter, radiation, curvature and dark energy, and we discuss the solutions in some
simple but characteristic scenarios.

In Chapter 3 we discuss the inhomogeneous universe as a closer approximation to our
observable Universe, which settles the foundations of most modern cosmological models.
We introduce the general relativistic formalism of linear cosmological perturbation theory
which allows us to derive the governing equations for scalar perturbations, which are key
for studying the clustering of matter in the universe and therefore structure formation. We
introduce the concept of transfer functions and growth rate that characterize the evolution
of matter overdensities in the universe.

Chapter 4 is devoted to discuss the so-called relativistic effects in the context of the large
scale structure by carefully building the observed matter density fluctuations in terms of the
coordinate system in which we perform the measurements. For this we analyze the propaga-
tion of photons travelling from galaxies towards our detectors in presence of inhomogeneities
in the matter distribution, and we arrive at a general expression for the observed matter
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overdensity. The result is independent of the underlying cosmological model as it only relies
on the spacetime geometry of our universe but not on field equations. We then identify the
different contributions appearing in this result and classifying them in terms of their relative
scaling and redshift dependence.

In Chapter 5 we review the ΛCDM model, which represents the current cosmological
standard model, summarizing its virtues and issues. In particular, we discuss the so-called
cosmological constant problem and how it opens the door for alternative models that might
explain the accelerated cosmic expansion, i.e. modified gravity and dark energy models, and
we give a brief review of some of the most notable alternatives.

Having in mind cosmological models beyond ΛCDM, in Chapter 6 we present the phe-
nomenological parametrization used to represent them in a fairly generic way. We introduce
the effective parameter Q and the anisotropic stress parameter η at the level of Einstein
Equations, and we show that the former can be regarded either as an effective ’clustering
parameter’ or an effective Newton’s Constant Geff [33, 35], thus allowing to treat dark en-
ergy models in terms of an effective fluid description as well as modified gravity models. In
particular, we discuss a quintessence-like dark energy model under this parametrization.

In Chapter 7 we use the result for the observed matter overdensity derived in Chapter 4 and
the (Q, η) parametrization discussed in Chapter 6 to calculate the angular power spectrum
of galaxies in the relativistic regime for a generic class of cosmological models. We emphasize
that the parameters Q and η characterize the relations between the various transfer functions
of the perturbation variables as we discussed at the end of Chapter 3. We then present the
expressions for the autocorrelations of each effect as well as their cross-correlation with the
intrinsic matter density contrast, which is the contribution dominating the total angular
power spectrum.

In Chapter 8 we consider a particular application of the general result derived in the
previous chapter to study the angular power spectrum of the effective dark energy fluid
model discussed at the end of Chapter 6, which is characterized by an equation of state
parameter w and a sound speed c2

s. We consider five different sound speed cases and we
compare the predictions against a fiducial ΛCDM cosmology up to multipoles ` ∼ 100 and
redshift z = 2. We analyze each contribution appearing in the power spectrum, i.e. standard
and relativistic effects.

Finally, we wrap up this thesis by presenting our conclusions, highlights and outlooks.
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Chapter 2

The Homogeneous Universe

The cornerstone of modern cosmological models is the so-called Cosmological Principle, which
states that, at large scales, our Universe can be regarded as homogeneous and isotropic up
to a high precision. Of course, locally this assertion is not quite accurate as we can clearly
observe planets, stars, galaxies, clusters, etc., but at cosmological scales these represent only
small inhomogeneities in the distribution of matter. Then, as a first approximation we can
regard the Universe as filled by some homogeneous and isotropic fluid made up of different
kind of constituents. In this chapter we will discuss this homogeneous universe which will
fix the background dynamics of the ‘real’ universe in the perturbative approach used in the
next chapters.

2.1 Einstein’s General Relativity and the Cosmological

Constant

In Einstein’s General Relativity (herein after GR), the equations relating geometric properties
of the spacetime to the matter-energy present are (c = 1)

Gµν = 8πGNTµν , (2.1)

where the Einstein tensor Gµν is defined as

Gµν ≡ Rµν −
1

2
Rgµν . (2.2)

Here, Rµν is the Ricci tensor, R the Ricci scalar, and gµν the spacetime metric. The right hand
side of (2.1) features the energy-momentum tensor Tµν which describes the matter-energy
content of the theory, and GN is Newton’s constant. In practice, the Einstein equations are
a complex set of non-linear equations which is almost impossible to solve analytically except
for a few cases involving strong assumptions such as vacuum, homogeneity and/or isotropy.

In order to use GR for cosmological settings one needs to introduce the (in)famous cosmo-
logical constant Λ, which has a critical influence on the large scale dynamics of the universe.
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The Einstein equations (2.1) in such case transform into

Rµν −
1

2
Rgµν + Λgµν = 8πGNTµν . (2.3)

Notice that, in practice, the cosmological constant term can be absorbed into a redefinition of
the energy-momentum tensor as T̃µν = Tµν − (Λ/8πGN)gµν . Then, after dropping the tilde,
we formally rewrite (2.3) as (2.1) where we implicitly assume the presence of Λ in Tµν . In fact,
from the point of view of particle physics the cosmological constant is regarded as the energy
density of the vacuum. This identification, however, gives rise to the so-called cosmological
constant problem [11] which we will comment in Chapter 5. In our next discussion we will
assume that Einstein’s General Relativity featuring the cosmological constant Λ is the correct
theory for describing our Universe. Later, we will discuss possible alternatives to this scheme.

2.2 The Friedmann-Lemâıtre-Robertson-Walker Met-

ric

As a first approximation for describing our Universe, let us start by discussing a completely
homogeneous and isotropic. In the language of GR, this assumptions implies that the metric
describing the spacetime M must satisfy such symmetries, i.e. gµν must be invariant under
spatial translations and rotations. The most general metric satisfying these assumptions is the
so-called Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric. Adopting the (−,+,+,+)
convention for the metric, the line element in this spacetime is

ds2 = gµνdx
µdxν = −dt2 + a2(t)γijdx

idxj

= a2(τ)[−dτ 2 + γijdx
idxj] . (2.4)

Here, t is the cosmic (physical) time, τ is the conformal time, a(t) is known as conformal
factor, and γij is the metric describing a 3-dimensional space with constant curvature K
which classifies the geometry of the FLRW universe as Euclidean (K = 0), spherical (K > 0)
or hyperbolic (K < 0). The spatial metric in the general case is given by

γijdx
idxj = dr2 + χ2(r)dΩ2 , (2.5)

where the coordinate χ is given in each case by

χ(r) =


r Euclidean case, K = 0 ,

1√
K

sin(
√
Kr) spherical case, K > 0 ,

1√
|K|

sinh(
√
|K|r) hyperbolic case, K < 0 .

(2.6)

The scale factor a(t) gives the relative size of the spacelike hypersurfaces at different times,
so that the metric (2.4) may describe an expanding (or contracting) spacetime satisfying the
principles of homogeneity and isotropy at each instant in time. It is then useful to define
a quantity for comparing the size of the universe at two different instants in time. If we
consider the propagation of a light signal of any given wavelength emitted by some source
at a particular time t1, which is then received by us at the present time t0 > t1, then the

7



observed wavelength of the photons will become stretched (contracted) as the signal travels
across the universe due to its expansion (contraction). We define the redshift z of the light
signal between the emission and observation time as

1 + z ≡ a(t0)

a(t1)
. (2.7)

Then, if the scale factor increases with time it causes the wavelength to move towards infrared
(i.e. it gets redshifted) by a factor a(t0)/a(t1), and then z > 0. It is usual to normalize the
scale factor such that today a(t0) = 1, and we will adopt this convention throughout this
work.

Furthermore, since we are interested in the expansion rate of the universe itself, this is
quantified by means of the Hubble parameter

H(t) ≡ 1

a

da

dt
≡ a′

a
, (2.8)

which is positive for an expanding universe and negative for a contracting one. Current
observations show that our universe is expanding, and the Hubble constant H0 > 0 is defined
in terms of the present value of (2.8), H0 ≡ H(t0). It is useful to also define the conformal
Hubble parameter as

H(τ) ≡ ȧ

a
= aH , (2.9)

where the over-dot indicates a derivative with respect to the conformal time τ , i.e. ˙( ) ≡ d/dτ .
We will stick to these conventions to denote time derivatives throughout this thesis.

In order to study the dynamics of the homogeneous universe we need to build the geometric
quantities Rµν and R appearing in the Einstein equations (2.3) considering the FLRW metric
defined in (2.4). Let us begin by computing the Christoffel symbols (connection coefficients)
associated to this metric, which are also necessary to define covariant derivatives on the
manifold. A straightforward calculation shows that, in terms of the conformal time, the
FLRW metric in the second line of (2.4) has the following non-vanishing Christoffel symbols,

Γ0
00 = H, Γi00 = 0, Γ0

i0 = 0 , (2.10)

Γij0 = Hδij, Γ0
ij = Hγij, Γkij = (3)Γkij ,

where (3)Γkij denotes the three-dimensional Christoffel symbols associated to the spatial metric
γij. Using the previous expressions we find that the non-vanishing components of the Ricci
tensor are then

R00 = −3Ḣ, Rij = [Ḣ + 2(H2 +K2)]γij , (2.11)

so that the Ricci scalar is given by R = 6a−2(Ḣ+H2+K). Then, working out the components
of the Einstein tensor (2.2) with these expressions we find that

G00 = 3(H2 +K) , (2.12)

Gij = −(2Ḣ +H2 +K)γij . (2.13)

We then have all the ingredients for writing down the left hand side of the Einstein equation,
which is related to the geometry of spacetime. Let us next discuss the right hand side of
(2.3), related to the matter-energy content of the universe.
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2.3 The energy-momentum tensor

In order to obtain the dynamical equations for the universe we now need to specify the
matter-energy content through T µν . Due to our assumption of homogeneity and isotropy,
the energy-momentum tensor is constrained to be of the form T µν = diag(−ρ, P, P, P ) or,
explicitly

T µν = (ρ+ P )uµuν + Pδµν , (2.14)

where uµ is the relative velocity field of the fluid with respect to a rest-frame observer, ρ its
density and P the pressure. If we consider a comoving coordinate system (which scales with
a(t)), then the fluid is at rest with respect to the observers, i.e.

uµ = a−1δµ0 uµ = −aδµ0 . (2.15)

In order to completely characterize the cosmic fluid it is necessary to provide an equation of
state (herein after EoS) which relates density and pressure as

P = wρ , (2.16)

where w is known as the EoS parameter, and whose value depends on the kind of fluid under
consideration.

2.4 Conservation of the energy-momentum tensor

The conservation of the energy-momentum tensor, ∇µT
µ
ν = 0, can be studied independently

of Einstein equations. Let us consider the equation coming from the ν = 0 component of
this law. Since the energy-momentum tensor has the non-vanishing components T 0

0 = −ρ,
T ij = Pδij, and the Christoffel symbols are given by (2.10), the conservation law ∇µT

µ
0 = 0

implies the continuity equation (mass conservation) for the fluid

ρ̇+ 3H(ρ+ P ) = 0 . (2.17)

Since in general the universe consist in a mixture of matter, radiation, dark energy, etc., the
variables ρ and P appearing in (2.17) should be regarded as the sum of all the contributions
to the total energy density and pressure. If we consider the universe as dominated by a single
component, we can use (2.17) to study how each density term scales with a. Then, if each
case is parametrized by an EoS, Pi = wiρi (no sum), the solution to (2.17) assuming constant
w is

ρi ∝ a−3(1+wi) . (2.18)

Let us comment on three important cases:

• Matter: If we consider a fluid which is made up of non-relativistic particles, then
its pressure is much smaller than its energy density, i.e. |Pm| << ρm, which implies
that wm = 0. This case correspond to normal (baryonic) matter as well as cold dark
matter, which constitutes a gas of weakly interacting particles, and thus they are usually
referred to as ‘dust’. For matter domination (2.18) implies that

ρm ∝ a−3 , (2.19)
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which confirms the intuitive reasoning that as the universe expands, the particle density
dilutes as the volume V ∝ a−3.

• Radiation: A radiation gas is characterized by wr = 1/3, and may represent photons,
neutrinos, and gravitons. Then, we have

ρr ∝ a−4 . (2.20)

We note that there is an extra factor a−1 with respect to the matter solution (2.19)
which is a consequence of the redshifting of the wavelength of the radiation due to the
expansion of the universe.

• Cosmological Constant: Finally, for the cosmological constant Λ we have wΛ = −1,
i.e. it acts as a fluid with negative pressure which is able to drive an accelerated
expansion. This gives the scaling

ρΛ ∝ a0 , (2.21)

showing that the energy density of the cosmological constant term does not dilute at
all (hence the name). This result may appear striking at first glance as this means
that energy has to be created as the universe expands. However, it is the energy of
the whole gravitational system the one that needs to be conserved, which is guaranteed
from the start by the condition ∇µT

µν = 0.

2.5 The Friedmann Equations

We now turn our attention to write down the Einstein equations for the FLRW metric (2.4)
and the energy-momentum tensor (2.14). For the 00-component of the Einstein equation
(2.3) we have

H2 +K =
8πGNa

2

3
ρ , (2.22)

or, in terms of the usual Hubble parameter

H2 +
K

a2
=

8πGN

3
ρ . (2.23)

This equation is called the (first) Friedmann equation. The other relevant equation is the
trace-part of the ij-component, i.e. Gi

i = 8πGT ii . Taking the trace of (2.13) and (2.14), we
find

2Ḣ +H2 +K = −8πGNa
2P , (2.24)

which is the second Friedmann equation . Prior to solving (2.23), it is convenient to introduce
the concepts of critical density and dimensionless density parameters. If we consider (2.23)
evaluated at the present time t0, we can solve for ρ(t0) and impose the condition K = 0, so
it will gives us the value needed in order to have a flat FLRW universe today

ρcrit,0 ≡
3H2

0

8πGN

(2.25)

≈ 1.878× 10−26h2kg m−3 ,
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where h ≡ H0/(100kms−1Mpc−1) is the reduced Hubble constant. Then, we can compare the
present values of the various density terms included in ρ with respect to this critical value
ρcrit,0. We introduce a set of dimensionless density parameters as

Ωm,0 ≡
ρm,0
ρcrit,0

, (2.26)

Ωr,0 ≡
ρr,0
ρcrit,0

, (2.27)

ΩΛ,0 ≡
Λ

3H2
0

, (2.28)

ΩK,0 ≡
−K
H2

0

, (2.29)

where we have defined an analogous ‘curvature’ density parameter ΩK,0. It should be empha-
sized that the ‘0’ subscript in the Ω’s is usually dropped, and the meaning of these quantities
is implicitly understood to be defined in terms of today values (t = t0). In the following we
adopt this convention. In terms of these quantities, the Friedmann equation (2.23) evaluated
at the present time implies the constraint∑

i

Ωi = 1 , (2.30)

where i = m, r,Λ, K. Now, using the scaling (2.18) we can write the Friedmann equation
conveniently in terms of the Ω’s as

H2 = H2
0

∑
i

Ωia
−3(1+wi) . (2.31)

Then, if we consider a universe containing all the ingredients discussed so far, i.e. matter,
radiation, a cosmological constant and curvature, the previous equation is explicitly

H2 = H2
0 [Ωra

−4 + Ωma
−3 + ΩKa

−2 + ΩΛ] . (2.32)

As before, the case of a single-component universe is of natural interest since the different
scaling of radiation, matter and dark energy imply that in certain epochs of the history of the
universe one of the components has dominated over the others. In fact, we know that after
the big bang, the universe was first dominated by radiation, then by matter, and the late
universe eventually becomes dominated by dark energy. If we restrict to a single component,
the Friedmann equation (2.31) reduces to

H = H0a
− 3

2
(1+w) , (2.33)

and solving this equation for the scale factor as a function of the physical time we find that

a(t) ∝
{
t

2
3(1+w) w 6= −1 ,
eHt w = −1 .

(2.34)

In particular, the second line of (2.34) shows the exponential cosmic expansion driven by
the cosmological constant Λ, a very similar scenario to that hypothesised in the inflationary
period. Each case is shown in Table 2.1.
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w ρ(a) a(t) a(τ)

RD 1
3

a−4 t1/2 τ
MD 0 a−3 t2/3 τ 2

ΛD -1 a0 eHt −τ−1

Table 2.1: Scalings of the energy density and evolution of the scale factor for radiation dom-
inated (RD), matter dominated (MD) and cosmological constant dominated (ΛD) universes.

Finally, recalling that for photons dr = dτ (with c = 1), we can also use the Friedmann
equation (2.31) to calculate the comoving distance to an object at redshift z as

r(z) =

∫ z

0

dz′

H(z′)
. (2.35)

This last equations tells us how the comoving distance depends on cosmological parameters
through the Hubble parameter H. This concludes our review on the FLRW background
universe. The next section expands this picture by including inhomogeneities in the cosmic
fluid.
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Chapter 3

The Inhomogeneous Universe

The FLRW model studied in the previous chapter is still far from being a realistic picture
of our Universe as we know that it is far richer: we can observe several cosmic structures
like galaxies, clusters, voids, sheets, filaments, etc., which in this language represent inho-
mogeneities in the large scale distribution of matter. Nowadays, we understand that these
structures originate from tiny primordial inhomogeneities which become amplified by gravi-
tational instabilities as the universe evolves.

The theory of structure formation can be separated into two main areas:

1. The study of the mechanism for the generation of the primordial inhomo-
geneities: the most accepted picture is the inflationary theory, which states that prior
to the Big Bang the Universe experienced an epoch of exponential expansion in the
presence of an inflaton field ϕ, whose quantum fluctuations are responsible for the
’galactic seeds’ from which structures grow.

2. The study of the evolution of the primordial seeds into the present observ-
able structure of the universe: although this part is probably better understood
that the problem of the initial conditions, as the ΛCDM model has proven to be robust
up to date, it is not completely settled either since the precise nature of dark matter
and dark energy is still unclear.

In this work we focus our efforts in exploring the second point by studying the large scale
structure of the Universe. The main tool for this study is linear cosmological perturbation
theory, which relies on the background solution set by FLRW cosmology discussed in Chapter
2.

Before introducing the formalism of general relativistic perturbation theory, it is worth to
remark the main advantages of this over the so-called Newtonian approximation. In the latter
approach one regards the matter content of the universe as governed by the fluid dynamics
equations for a perfect fluid in presence of a gravitational field, and completely forget about
General Relativity. However, this simplified picture has some drawbacks:

1. It holds only for scales deep inside the cosmological horizon, i. e. k−1 << H−1. In
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other words, we neglect the curvature of spacetime.

2. It assumes that the fluid filling the universe is exclusively made up of non-relativistic
particles, i.e. v << c, or equivalently, |P | << ρ.

3. It misses intrinsic general relativistic degrees of freedom such as gravitational waves,
which may be of interest in some contexts.

Then, if we want to study perturbations near horizon scales, or if we want to consider
intrinsically relativistic objects such as photons, neutrinos or cosmic strings, we need a fully
general relativistic formalism. Nevertheless, due to its simplicity and accuracy at scales
below the horizon the Newtonian approximation is still widely used, specially in numerical
simulations, where it can effectively model the non-linear growth of structures.

3.1 Linear Relativistic Perturbation Theory

The treatment presented in this work is based on linear perturbation theory in the general
relativistic regime. This formalisms allows us to expand all the fields into a background part
plus a small perturbation, so we can study the distribution of galaxies by perturbing the
background FLRW metric (2.4).

3.1.1 The perturbed metric

The main assumption for using a perturbative approach is that the spacetimeM with metric
gµν and energy momentum tensor Tµν describing the ‘real Universe’ is somehow close to a
background FLRW universe, i.e. a spacetime M̄ with a metric ḡµν associated to a homoge-
neous and isotropic energy momentum tensor T µν . Under this assumption, the full metric of
the real universe can be approximated up to first order as

gµν = ḡµν + δgµν , (3.1)

where ḡµν is the FLRW metric (2.4). For the rest of this work we restrict to the case of
spatially flat Universe (K = 0). In such case the background metric (2.4) is conformally flat,
i.e.

ḡµν = a2(τ)(−dτ 2 + δijdx
idxj) = a2(τ)ηµν , (3.2)

where ηµν = diag(−1, 1, 1, 1) is the Minkowski metric. Furthermore, it is useful to write the
perturbation appearing in (3.1) as δgµν = a2hµν , so the metric up to first order is

gµν = a2(τ)(ηµν + hµν) . (3.3)

The main appeal of first order perturbation theory is that all the equations for fluctuations
are linear, so we can use Fourier analysis and deal with each mode k of the perturbations
independently. However, it is important to remark that in practice the linear expansion is
valid up to scales of roughly k ∼ 0.1 Mpc−1. At shorter distances the formation of small
structures is governed by nonlinear evolution which must be treated by numerical approaches
such as N -body or hydrodynamical simulations. In recent years some mixed schemes have
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been proposed for going beyond the nonlinear scale such as the effective field theory of large
scale-structure [36], which, nonetheless, at the current stage it still lacks the robustness and
consistency needed for obtaining sensible predictions as some theoretical difficulties persist.

3.1.2 The Scalar-Vector-Tensor decomposition

Since the Einstein equations (2.3) contains rank 2 symmetric tensors, in 4 dimensions in
principle it governs 10 degrees of freedom. However, since this theory is covariant under
general coordinate transformations, we must subtract 4 degrees which correspond to the
reparametrization of each coordinate x̃µ = x̃µ(x), so that only 6 degrees of freedom are
physically described.

Then, before deriving the perturbation equations it is convenient to use the so-called
Scalar-Vector-Tensor (SVT) decomposition, and divide the perturbations into scalar (S),
vector (V) and tensor (T) each one containing 4+4+2 degrees of freedom, of which 2+2+2
are physical. In the most general case we can write the metric perturbations as,

h00 = −2A, h0i = −Bi, hij = 2Hij = 2(HLδij +HT ij +Hij) , (3.4)

where A, HL, Bi and HT ij are scalar degrees of freedom, two of which can be removed
by gauge transformations, and Hij is the transverse traceless gravitational wave term (see
Appendix A for more detail on these quantities). Then, the line element in the perturbed
universe is

ds2 = a2(τ){−(1 + 2A)dτ 2 − 2Bidτdx
i + [(1 + 2HL)δij + 2HT ij + 2Hij]dx

idxj} . (3.5)

Since we are doing first order perturbation theory, we can use the background metric for
rising and lowering indexes of the perturbed metric, i.e.

hµν = ηµρhρν , hµν = ηµρηµσhρσ . (3.6)

The perturbations with raised indexes are explicitly given by

h00 = −2A, h0i = +Bi, hij = 2Hij = 2(HLδ
ij +HT ij +Hij) . (3.7)

Notice that due to our metric convention the spatial indexes can be freely raised and lowered,
e.g. Bi = Bi. Since the inverse metric must satisfy the condition gµρgρν = δµν , we find that
up to first order it is given by

gµν = a−2(ḡµν − hµν) . (3.8)

It can be shown that the perturbative expansion (3.1) does not mix the scalar (S), vector (V)
and tensor (T) degrees of freedom, thus they can be conveniently decoupled and analyzed
separately (this holds true only at the linear level). This allows us to focus on the scalar
perturbations, which are associated to density perturbations. Vector perturbations are not
usually predicted by inflationary models, and even if they were, these would quickly decay
with the expansion of the universe. Tensor perturbations, however, are important prediction
of inflation, but we will neglect them for simplicity. Then, we focus on the Einstein Equations
for scalar perturbations, which are the relevant ones for the late time universe.
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3.1.3 Gauge fixing

The general covariance of General Relativity implies that the arbitrary split between back-
ground and perturbed quantities introduces redundant degrees of freedom. In fact, we can
use this gauge freedom to set two of the metric perturbations to zero, or, alternatively, we can
define the gauge in the matter sector imposing conditions over T µν . In GR the mathematical
procedure of choosing a gauge corresponds, physically, to selecting a specific observer. The
most common gauge choices used in the framework of cosmological perturbation theory are:

• Synchronous Gauge: This was the gauge used by Lifshitz [37] and the first cosmol-
ogists who dealt with the theory of cosmological perturbations. This is defined by the
conditions A = Bi = 0, i.e. only the spatial hij components of the metric perturbation
are manifest. The drawback of this gauge is that it is not uniquely defined by this re-
quirement and there is still the freedom to make a further transformation and still stay
within this gauge. In other words, the metric perturbations are not defined uniquely,
and it is not always clear what metric perturbations are real, physical perturbations
and which of them are simply coordinate artifacts. Historically, the confusion due to
gauge modes motivated Bardeen to formulate alternative approaches that deal with
gauge-invariant quantities [38] such as the Bardeen potentials.

• Conformal Newtonian (or Longitudinal) Gauge: In the Newtonian gauge one
imposes that Bi = HT ij = 0, and then A = Ψ and HL = −Φ, where Ψ and Φ are
the Bardeen potentials. Physically, this gauge represents the coordinate system fixed
to the background universe, so that peculiar velocities and other effects caused by the
inhomogeneities in the distribution of the matter-energy content of the universe are
manifest. The main advantages of this gauge is that the metric is diagonal, and it
is in fact the most intuitive one as it has a direct Newtonian limit. However, this
gauge is restricted to scalar modes only since vector and tensor degrees of freedom are
eliminated from the beginning.

In the rest of this chapter we will use the Newtonian Gauge for our derivations.

3.1.4 The perturbed Einstein equations

The perturbed metric (3.1) implies that we must expand the Einstein equations (2.3) up to
first order, i.e.

Gµ
ν = Ḡµ

ν + δGµ
ν , (3.9)

T µν = T̄ µν + δT µν . (3.10)

By construction we know that the Einstein equation is satisfied at the background level by
the FLRW metric, i.e. Ḡµν = 8πGN T̄µν , so that the equation for the perturbations is simply

δGµ
ν = 8πGNδT

µ
ν . (3.11)

In order to obtain δGµ
ν we start by computing the Christoffel symbols Γµαβ = Γ̄µαβ + δΓµαβ

with the perturbed metric (3.5) in the Newtonian Gauge, where Γ̄µαβ are the background
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connection coefficients (2.10). The first order contributions are

δΓ0
00 = Ψ̇, δΓ0

0i = ∂iΨ δΓi00 = ∂iΨ , (3.12)

δΓij0 = −Φ̇δij, δΓ0
ij = −2H(Ψ + Φ)δij − Φ̇δij, δΓkij = −∂jΦδik − ∂kΦδij + ∂iΦδjk .

Then, we find that the first order perturbations entering into (3.11) are

δG0
0 = 2a−2[−∇2Φ + 3H(Φ̇ +HΨ)] , (3.13)

δG0
i = −2a−2∂i(Φ̇ +HΨ) , (3.14)

δGi
0 = 2a−2∂i(Φ̇ +HΨ) , (3.15)

δGi
j = a−2[2Φ̈ + 2(2Ḣ +H2)(Φ + Ψ) + 2H(2Φ̇ + Ψ̇) +∇2(Ψ− Φ)]δij + ∂i∂j(Φ−Ψ) .

(3.16)

We now turn our attention to the perturbed stress energy tensor needed for the right hand
side of (3.11).

3.1.5 The perturbed energy-momentum tensor

Recalling our discussion on the homogeneous universe in Chapter 2, the background energy-
momentum tensor of the cosmic fluid is given by

T̄ µν = (ρ̄+ P̄ )uµuν + P̄ δµν , (3.17)

where the four-velocity is
ūµ = a−1δµ0 ūµ = −aδµ0 . (3.18)

Let us now introduce a perturbation and write the stress-energy tensor as

T µν = T̄ µν + δT µν . (3.19)

Just like the metric perturbation, δT µν has 10 degrees of freedom, 6 which are physical and 4
corresponding to gauge choices. We can also perform the SVT decomposition and divide them
into scalar+vector+tensor with 4+4+2 degrees of freedom, of which 2+2+2 are physical.
Alternatively, they can be classified as 5+5 degrees of freedom related to a perfect fluid and
non-perfect fluid, respectively. The perfect fluid degrees of freedom are those which keep
the full tensor in the perfect fluid form, i.e. keeping the structure of T̄ µν . Then, they may
correspond to perturbations in the density, pressure and velocity of the fluid, namely

ρ = ρ̄+ δρ , (3.20)

P = P̄ + δP , (3.21)

ui = ūi + δui . (3.22)

Here, we have not included the perturbation δu0 since this is not and independent degrees of
freedom because of the constraint uµu

µ = −1. Furthermore, in (3.22) we have ūi = 0 since
the fluid is at rest in the background universe, and we can define the peculiar velocity as

vi ≡ aδui = aui , (3.23)
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which represents the coordinate velocity of the fluid vi ≡ dxi/dτ , as defined by a comoving
observer.

At this point it is customary to define the relative matter density perturbation, or over-
density variable, as

δ ≡ δρ

ρ̄
. (3.24)

This is the central variable for our analysis since it represents the fluctuation in the matter
density with respect to the cosmic mean ρ̄, and then allows to quantify the clustering of
matter at galactic scales.

Then, including these perturbations related to the 5 perfect fluid degrees of freedom, the
non-vanishing components of the perturbed energy momentum tensor are given by

T 0
0 = −(ρ̄+ δρ) , (3.25)

T 0
i = (ρ̄+ P̄ )vi , (3.26)

T i0 = −(ρ̄+ P̄ )vi , (3.27)

T ij = (P̄ + δP )δij . (3.28)

Let us now add the remaining 5 degrees of freedom which drive the base perfect fluid away
from such condition. These are encoded as contributions to the spatial part of the perturba-
tions δT ij as

δT ij = δPδij + Σi
j = P̄ [πLδ

i
j + Πi

j] , (3.29)

where we have defined the overpressure perturbation variable

πL ≡
δP

P̄
, (3.30)

which plays an analogous role to the overdensity variable δ. The tensor Πi
j ≡ Σi

j/P̄ is called
anisotropic stress, and correspond to a traceless tensor, i.e.

Σi
j ≡ δT ij −

1

3
δijδT

k
k , (3.31)

δP ≡ δT kk . (3.32)

For a perfect fluid one has that Πi
j = 0, but even if we consider the background fluid as

perfect, the perturbed fluid in general is not.

Summarizing, we see that the perturbation to the energy-momentum tensor δT µν brings
in the scalar perturbations δρ and δP , the 3-vector v = vi and the traceless 3-rank tensor
Πij. Analogously as for the metric perturbations, the latter two can be further decomposed
following the SVT scheme. We can decompose the perturbation vi in terms of a scalar and
a vector components as

vi = vSi + vVi , (3.33)

which satisfy the conditions

vSi = −∂iv, ∂iv
V
i = 0 . (3.34)
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Likewise, we can decompose Πij into scalar, vector and tensor parts as

Πij = ΠS
ij + ΠV

ij + ΠT
ij , (3.35)

where

ΠS
ij = (∂i∂j −

1

3
δij∇2)Π , (3.36)

ΠV
ij = −1

2
(Πi,j + Πj,i) , (3.37)

δikΠT
ij,k = 0 . (3.38)

Together with the SVT decomposition of the metric previously discussed, the SVT decom-
position of energy-momentum tensor allows us to completely decouple the evolution of each
component in first order perturbation theory.

3.1.6 Conservation of the perturbed energy-momentum tensor

Since we have the full form for the energy-momentum tensor, we may consider the equations
arising from its conservation, ∇µT

µ
ν = 0. From Chapter 2 we recall that at the background

level the ν = 0 component of this conservation law yields the continuity equation for matter.
Likewise, at the perturbation level we find the equation governing the evolution of the density
perturbation variable,

˙(δρ) = −3H(δρ+ δp) + (ρ̄+ P̄ )(−∂ivi + 3Φ̇) . (3.39)

In the right hand side of (3.39) we have the effect of the background expansion, then the
effect of velocity divergence i.e. the local fluid expansion, and finally the effect of fluctuations
in the scalar potential Φ. Similarly, from the spatial component ν = i we find the equation
for the peculiar velocity

(ρ̄+ P̄ )v̇i = −(ρ̄+ P̄ )vi + ∂i

[
δP + (ρ̄+ P̄ )Ψ +

2

3
P̄∇2Π

]
− 4H(ρ̄+ P̄ )vi . (3.40)

In the momentum perturbation equation (3.40), the left hand side and the first term on the
right represent the change in inertia times velocity. The second term (in square brackets)
represent forces due to gradients in pressure and gravitational potential, and the last term
on the right is the effect of background expansion.

The previous equations can be manipulated using the EoS of the fluid and the background
continuity equation (2.17) to write them more conveniently as

δ̇ = 3H
(
wδ − δp

ρ̄

)
+ (1 + w)(∇2v + 3Φ̇) , (3.41)

and

v̇ = −H(1− 3w)v − ẇ

1 + w
v +

δP

ρ̄(1 + w)
+

2

3

w

1 + w
∇2Π + Ψ , (3.42)

where we have used (3.34) to write vi = −∂iv.
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3.1.7 Einstein equations for scalar perturbations

We have all the ingredients for writing down the perturbation equations for scalar, vector,
and tensor perturbations, which we now that at the linear level do not mix. Here, we are
interested in the scalar perturbations only. Using the perturbed Einstein tensor (3.13) and the
perturbed stress-energy tensor (3.25) we can finally write the perturbed Einstein equations
δGµ

ν = 8πGδT µν . For the scalar perturbations they read

−∇2Φ + 3H(Φ̇ +HΨ) = −4πGNa
2δρ (00) , (3.43)

∂i(Φ̇ +HΨ) = −4πGNa
2(ρ̄+ P̄ )vi (0i) , (3.44)

Φ̈ +H(2Φ̇ + Ψ̇) + (2Ḣ +H2)Ψ +
1

3
∇2(Ψ− Φ) = 4πGNa

2δP (ii) , (3.45)

∂i∂j(Φ−Ψ) = 8πGNa
2P̄Πij (ij) . (3.46)

We can use the (0i) equation for simplifying the first one. Since in Fourier space the velocity
is written as vi = −∂iv/k, the (0i) equation implies that

(Φ̇ +HΨ) = 4πGNa
2(ρ̄+ P̄ )

v

k
(0i) . (3.47)

Substituting this expression in the (00) component, in Fourier space (3.43) reads

− k2Φ = 4πGNa
2ρD (00) , (3.48)

where we have introduced the comoving-gauge density variable

ρD ≡ δρ+ 3H(ρ̄+ P̄ )
v

k
. (3.49)

Let us now consider the spatial components (3.45) and (3.46). We note that in the case
of perfect fluids (Πij = 0) both Bardeen potentials coincide, while in general this is not
true, Φ 6= Ψ. Then, we can physically interpret their relative difference as a measure of the
anisotropic stress present in the fluid. Since Πij = ∂i∂jΠ for i 6= j, (3.46) implies that

Φ−Ψ = 8πGNa
2P̄Π (ij) . (3.50)

Then, for scalar perturbations we have a set of four independent equations (4 Einstein or 2
Einstein plus 2 conservation laws) and six variables, namely {Φ,Ψ, δ, v, πL,Π}. In order to
obtain a closed system, we must provide two additional equations. The simplest prescription
is to consider a perfect fluid, Πij = 0, which implies that we have only one degree of freedom
in the scalar metric perturbation

Φ = Ψ . (3.51)

The final closure relation comes from relating pressure and density perturbations. In general,
this is given by

δP = c2
s

[
δρ− 3(ρ̄+ P̄ )S

]
, (3.52)

where S ≡ H(δP/ ˙̄P − δρ/ ˙̄ρ) is the total entropy perturbation, and

c2
s = w − ẇ

3H(1 + w)
, (3.53)
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is the adiabatic sound speed of the fluid. Then, in the case of adiabatic fluids, or more pre-
cisely, adiabatic density perturbations1, (3.52) implies that pressure and density fluctuations
are related by

δP = c2
sδρ . (3.54)

For matter and radiation the adiabatic sound speeds are c2
s = 0 and c2

s = 1/3, respectively.
Physically, a vanishing sound speed implies that density perturbations in the fluid will not
propagate, allowing it to cluster. On the other hand, if c2

s 6= 0 then the cosmic fluid is capable
of supporting waves which propagate due to local gradients in density and pressure. This
implies the existence of a sound horizon, namely, a scale below which the matter perturbations
cannot growth due to the counteracting pressure force, and thus they are instead forced to
oscillate in time. This crossover scale is usually quantified by the Jeans length

λJ = cs

√
π

GN ρ̄
, (3.55)

where λ = 2π/k is the wavelength of the perturbation. At large scales, i.e. k < kJ , gravity
dominates over pressure and matter is able to cluster due to gravitational instability. When
the wavenumber approaches kJ the clustering process becomes increasingly difficult due to the
counteracting pressure, and at scales inside the sound horizon, i.e. k > kJ , the counteracting
pressure is able to support waves and the perturbations can no longer grow. Instead of
growing with time they behave oscillatory, just as in the process of baryon acoustic oscillations
which took place in the early universe.

3.2 Evolution of linear density perturbations

Instead of going into a detailed discussion of how to solve (3.41) in order to obtain the
evolution of density perturbations in different scenarios, we will introduce the concept of
transfer functions. Let us start by writing down the evolution equation (3.41) in terms of
the comoving-gauge density variable D. Combining (3.41) and (3.42), using (3.52) for the
adiabatic case, after a Fourier transform and some manipulations we can obtain the second
order differential equation governing the evolution of D [39]

D̈ + (1 + 3c2
s − 6w)HḊ −

[
3

2
H2
(
1 + 8w − 3w2 − 6c2

s

)
− c2

sk
2

]
D = 0 . (3.56)

The fact that this is a second order differential equation in the time coordinate τ implies two
things. First, this equation has in general two solutions

D(τ, k) = D1(τ, k) +D2(τ, k) (3.57)

representing growing and decaying modes, respectively. Since we are interested in the clus-
tering of matter, we discard the decaying mode and focus our attention in the growing one,
usually called linear growth rate and denoted by D1. It can be shown that dark matter

1In cosmology, it is customary to speak about adiabatic perturbations referring to perturbations which
were initially adiabatic. Such perturbations do not usually stay adiabatic as the universe evolves.
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perturbations grow logarithmically with the scale factor during radiation domination (i.e. in
the early universe) and when matter domination starts they grow linearly (hence the name
for D1). This era spans most of the universe history, and most of the cosmic structures that
we see today forms during it. Finally, in the late universe dark energy eventually takes over,
and even if virialized structures are already decoupled from the cosmic expansion, the growth
rate of matter perturbations is suppressed with respect to matter domination era.

In terms of (3.56) we can explicitly identify modes below and above the sound horizon by
analyzing the sign of the term in square brackets. We assert that

k << H/cs modes above sound horizon (can grow). (3.58)

k >> H/cs modes below sound horizon (cannot grow). (3.59)

Then, when a mode is above the sound horizon the fluid may cluster and form structures, but
if the mode falls inside it then the perturbations cannot grow due to pressure support. In this
picture the Hubble horizon plays an analogous role by establishing a causal horizon above
which no perturbation can grow since it is impossible for them to connect larger spacetime
regions than (H/c)−1, where c is the speed of light.

The other important consequence of the linear, second order nature of (3.56) is that in
the case of adiabatic modes (S = 0), according to linear response theory we can isolate
the time dependence in D(τ, k) and relate its value at a particular time to a single initial
metric perturbation by means of a transfer function which evolves (or ’processes’) some initial
random variable Ψin up to a given time. In fact, we can do the same for the other physical
fields as long as we consider first order perturbation theory. Then, we can write

D(τ,k) = TD(τ, k)Ψin(k) , (3.60)

V (τ,k) = TV (τ, k)Ψin(k) , (3.61)

Ψ(τ,k) = TΨ(τ, k)Ψin(k) , (3.62)

Φ(τ,k) = TΦ(τ, k)Ψin(k) , (3.63)

We may regard the statistical (quantum) fluctuations of this primordial field Ψin as the
‘seeds’ from which the present observable universe evolved from. The prevailing paradigm
for describing this primordial field is the inflationary theory. In the simplest case, its power
spectrum is characterized in terms of a spectral index ns and an amplitude As as

k3〈Ψin(k)Ψ∗in(k′)〉 = (2π)3As(kτo)
ns−1δ(k− k′) . (3.64)

Here, we have multiplied by the constant τns−1
o (the actual comoving size of the horizon) in

order to keep As dimensionless for any value of ns. Then, As represents the amplitude of the
metric perturbations at horizon scales today, k = 1/τo. The shape of the power spectrum
(3.64) will become relevant when we study the matter power spectrum in Chapter 7.

On the other hand, the actual expressions for the different transfer functions (3.60)-(3.62)
depend on the theory of gravity which relates matter and metric degrees of freedom. As
we previously discussed, the simplest case is to assume Einstein GR and to neglect the
anisotropic stress. Assuming a matter dominated era, the Einstein equations (3.48), (3.47)
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and (3.50) transforms into

TD(z, k) = − 2a

3Ωm

(
k

H0

)2

TΨ (00) , (3.65)

TV (z, k) =
2a

3Ωm

k

H2
0

(
HTΨ + ṪΨ

)
(0i) , (3.66)

TΦ(z, k) = TΨ(z, k) (ij) , (3.67)

where we have used (2.26). From this set of equations we can obtain TD, TV and TΦ as
a function of TΨ. Furthermore, within the linear approach we can decompose the transfer
function TΨ for the initial metric perturbation in terms of a growth function G and a time-
independent transfer function T (k) as [40]

TΨ(z, k) = G(a, k)T (k) . (3.68)

Here, the growth function parametrizes the growth of structures, which is sensitive to the
presence of a dark energy component in the energy-density of the Universe (or the fact that
our theory of gravity needs to be modified on large scales). Then, in order to encompass a
wide class of models, we can adopt the growth index formalism and use a fit for G in terms
of the growth index γ(k, a) as [41]

G(a, k) ≡ D1

a
= exp

(∫ a

1

da′
Ωm(a′)γ − 1

a′

)
, (3.69)

where

Ωm(a) ≡ Ωma
−3

(H/H0)2
. (3.70)

In ΛCDM, the growth index takes the constant value γ ∼ 0.545, and then G depends only
on the scale factor, i.e. G = G(a). In alternative models, however, γ may be both scale and
time dependent, and allows to parametrize possible deviations from the standard evolution.
In general, the growth factor can either be modified at the background level by considering
a different background cosmology, which leads to a different expansion history, or at the
perturbative level, where the gravitational potentials might be altered by the presence of
extra degrees of freedom in the modified gravity or dark energy model, which ultimately
impact the growth rate of dark matter.
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Chapter 4

Relativistic Effects in the Large Scale
Structure

Relativistic effects in the large scale structure appear naturally if one realizes that when
measuring the distribution of galaxies in the universe we do not observe the actual positions,
but rather redshifted photons coming from a particular direction in the sky. Then, one
obtains the fluctuations in the number of galaxies across the sky in terms of this information
by pixelising galaxy maps in bins of redshift and solid angle.

Since the photons experiment several distortions when travelling across the universe, the
volume elements constructed using the observed redshift and observed angle might differ from
the real physical volume that the observed galaxies actually occupy, and the observed flux
and redshift of the source galaxies also differ from their intrinsic properties. Therefore, the
observed galaxy number density contains additional contributions arising from the distortion
in the observable quantities in comparison to the standard description where galaxies simply
trace the underlying matter distribution with a bias factor.

In this Chapter we show a detailed derivation and discussion of the results obtained in
Ref. [26] and Ref. [28], which serve as the basis for our analysis in the following Chapters.

4.1 Galaxy number density fluctuations

In order to consistently relate theoretical predictions to observable quantities, we follow the
approach discussed in Ref. [26, 28]. The starting point is to consider that in a generic
galaxy survey the sky is pixelised in bins of redshifts and solid angles, in which one then
count the number of galaxies that lie inside (within a certain luminosity range). In such
case, the positions of the source galaxies is determined by a unit directional vector n̂(θ, ϕ) =
(sin θ cosϕ, sin θ sinϕ, cos θ) and a given redshift z. Then, one can construct a quantity that
measures the overdensity in the number of galaxies in the sky when observing in a particular
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direction n̂ at some redshift z as

∆(z, n̂) ≡ N(z, n̂)−N(z)

N(z)
, (4.1)

where N(z, n̂) is the number of galaxies detected in a pixel centered at (z, n̂) of size dz and
solid angle dΩ, and N(z) correspond to its average over all directions in the sky at a fixed
redshift. Since we want to relate the observed density variable ∆(z, n̂) to the underlying dark
matter overdensity, we express the number of galaxies as N(z, n̂) = ρ(z, n̂)V (z, n̂), where ρ
is the galaxy number density and V the volume of a pixel. Then, we can expand both ρ and
V around their background values at a given redshift as

ρ(z, n̂) = ρ̄(z) + δρ(z, n̂) , (4.2)

V (z, n̂) = V̄ (z) + δV (z, n̂) , (4.3)

which substituted into (4.1) yields, up to first order,

∆(z, n̂) =
δρ

ρ̄
+
δV

V̄
. (4.4)

Now, we can also consider fluctuations in the observed redshift with respect to a background
redshift, i.e. z = z̄ + δz, so that we can write a Taylor expansion for the density term
appearing in the denominator as

ρ̄(z) ≈ ρ̄(z̄) +
dρ̄

dz̄
δz = ρ̄(z̄) + 3

δz

(1 + z̄)
, (4.5)

where we have used that in the background universe the matter density evolves as ρ̄(z̄) ∝
a−3 ∝ (1 + z̄)3. Using this expansion in (4.4) and identifying the matter density fluctuation
as

δ(z, n̂) ≡ ρ(z, n̂)− ρ̄(z̄)

ρ̄(z̄)
, (4.6)

one finds that the observed matter fluctuation is given up to first order by

∆(z, n̂) = δz(z, n̂) +
δV (z, n̂)

V
, (4.7)

where we have defined

δz(z, n̂) ≡ δ − 3
δz

1 + z
. (4.8)

The previous equation shows that ∆ is not only connected to the underlying dark matter
distribution but it is also sensitive to possible fluctuations in the observed redshift and
observed volume of each pixel. The last two contributions are a direct consequence of the
perturbed photon propagation; they are encoded in the time component (µ = 0) and spatial
components (µ = i) of the geodesic equation, respectively. In particular, the observed volume
element is constructed in terms of the observed redshift and angles in a homogeneous universe,
while the real physical volume element needs to be constructed by tracing backwards the
photon geodesic in an inhomogeneous universe.
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4.2 Photon propagation in a perturbed Friedmann Uni-

verse

Since the FLRW universe in the K = 0 case is conformally flat as shown in (3.2), the null
geodesics are straight lines. However, when departing from this background, photons travel-
ling through a inhomogeneous universe towards our detectors follow perturbed trajectories,
resulting in various observable effects. In this analysis we consider the metric in the full rep-
resentation (3.5), i.e. without fixing the gauge, so we can distinguish physically measurable
quantities.

Let us study the motion of massless particles in the perturbed universe. In any metric
theory of gravity, the trajectories xµ = (τ, x1, x2, x3) followed by particles are solutions to
the geodesic equation

dnµ

dτ
+ Γµαβn

αnβ = 0 , (4.9)

where

nµ =
dxµ

dλ
(4.10)

is the vector tangent to the particle trajectory, and λ is the affine parameter. Since we are
interested in photons, one also need to consider the dispersion relation for massless particles
nµnµ = 0, or equivalently

ds2 = gµνdx
µdxν = 0 , (4.11)

which characterizes the null geodesics and serves as a constraint for the photon momenta.
Notice that the four-momenta of particles are usually denoted by kµ, but in order to avoid
confusion we reserve the letter k for the wavenumber appearing later in Fourier transforms.

Instead of directly studying the photon propagation in the perturbed FLRW universe, we
can exploit the fact that null geodesics are conformally invariant. Since this kind of geodesic
satisfies the null condition ds2 = 0, we can always use a conformally related metric ĝµν = a2gµν
and still automatically satisfy the null geodesic condition in this spacetime, i.e. dŝ2 = 0.
This means that both metrics share the same families of null geodesics x̂µ(λ̂) = xµ(λ), which
only differ on the affine parameter used to describe them, related by λ = aλ̂. This simple
observation allows us to swap our FLRW background universe for Minkowski spacetime,
which is particularly convenient since it has a reference frame where all Christoffel symbols
vanish.

Then, splitting terms as background plus first order contributions, at zeroth order (4.9)
reduces to

dn̄µ

dλ
= −Γ̄µαβn̄

αn̄β = 0 . (4.12)

Then, the components of n̄µ = (n̄0, n̄i) are constant along the photon trajectories. Since we
also have the condition for massless particles n̄µn̄µ = −(n̄0)2 + n̄in̄i = 0, the background
four-momenta can be chosen such that

n̄0 = 1, n̄in̄i = 1 . (4.13)
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Next, for the first order part of the geodesic equation (4.9) we have

dδnµ

dλ
= −δΓµαβn̄

αn̄β , (4.14)

which can be directly integrated between some initial and final values of the affine parameter

δnµ =

∫ λf

λi

dλδΓµαβn̄
αn̄β . (4.15)

In general, we are interested in computing fluctuations between the source position r = rs,
parametrized by λi = 0, and the observer position r = 0, parametrized by λf = rs. We will
use the result (4.15) exhaustively in the following discussion.

4.2.1 Calculation of redshift fluctuations

We now focus our attention in the calculation of the redshift fluctuation δz appearing in (4.7),
which is connected to the observed frequency of the incoming photons. We know that the
temperature of a black body distribution is proportional to the average frequency of photons
ω. If they are emitted by a body moving with velocity uµ relative to us, the temperature we
measure is proportional to −nµuµ = ω, where nµ is the four-momentum of incoming photons.
Then, if a photon is emitted at the time τs and it is received at τo, the emission (intrinsic)
temperature Ts and the observed temperature To are related to each other via

To
Ts

=
ωo
ωs

=
(nµuµ)o
(nµuµ)s

=
a(τs)

a(τo)
=

1

1 + z
, (4.16)

where a(τs) and a(τo) are the scale factors of the universe at the time of emission and
observation, respectively. Taking variations on both sides and rearranging terms we obtain
that the redshift fluctuation is given in terms of the four velocity of the fluid and photon
momentum as

δz = −(1 + z)

[
δ(nµuµ)

(nµuµ)

]o
s

. (4.17)

Expanding the last factor up to first order, and lowering indexes so that u0 = g0νu
ν = −(1+A)

and ui = giνu
ν = −Bi + vi, we find that the redshift fluctuation is given by

δz = −(1 + z)
[
δn0 + A+ n̄iBi − n̄ivi

]o
s
. (4.18)

This last equation shows that redshift fluctuations depends on perturbations in the time
component of the photon four-momenta, δn0. Its expression in terms of the metric pertur-
bations is derived using (4.15). Substituting back into (4.18) and using the explicit form for
A, after some calculations (see Appendix B) we arrive at our final expression for the redshift
fluctuation

δz = −(1 + z)

[
−Ψ|os + V · n|os −

∫ o

s

dλ(Φ̇ + Ψ̇)

]
, (4.19)

where V ≡ v−k−1ḢT is the gauge invariant velocity potential. This result coincides with that
of [26] when working in the Newtonian gauge. The first term appearing in (4.19) is the Sachs-
Wolfe (SW) effect, while the last one is known as the integrated Sachs-Wolfe (ISW) effect for
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obvious reasons, though they probe different physics. Finally, the V · n term correspond to
a dipole contribution.

Now we can go back to the matter density fluctuation (4.7) and make use of the result
(4.19). In this way we find

δz(z, n̂) = Ds − 3V · n̂ + 3Ψ + 3

∫ r

0

dr′(Φ̇ + Ψ̇) . (4.20)

Here, Ds and V correspond to gauge invariant variables describing the galaxy density and
peculiar velocity in the longitudinal gauge, respectively (see Appendix A).

4.2.2 Calculation of volume fluctuations

The next step to obtain ∆(z, n̂) in terms of observable quantities is computing the volume
fluctuation δV (z, n̂) appearing in (4.7), which is naturally related to the spatial components
of the geodesic deviation, i.e. we need the spatial deviations in the photon trajectories δxi,
which are obtained through the spatial components of the geodesic equation. To see this
connection we start by writing the volume element in terms of the photon geodesic, the four
velocity uµ and the observation coordinate system (θo, φo) ≡ (θ, φ). This is given by [24]

dV =
√
−gεµναβuµ

∂xν

∂z

∂xα

∂θs

∂xβ

∂φs
|J |dzdθodφo (4.21)

≡ v(z, θo, φo)dzdθodφo ,

where |J | is the determinant of the Jacobian of the coordinate transformation going from
the angles at the source (θs, φs) to the angles at the observer (θo, φo), and εµναβ = ε[µναβ] is
the Levi-Civita symbol. In the second line of (4.21) we have introduced the density v which
determines the actual volume perturbation appearing in (4.7), i.e.

δV

V̄
=
v(z)− v̄(z)

v̄(z)
=
δv

v̄
. (4.22)

As previously discussed, in a homogeneous and isotropic FLRW universe, photons propagates
on straight lines, so that θo = θs and φo = φs. However, in the perturbed universe the obser-
vation and emission angles do not coincide. We can write the fluctuation in the observation
angles up to first order as

θs = θo + δθ , (4.23)

φs = φo + δφ . (4.24)

Then, the volume element v defined in the second line of (4.21) is given by (see Appendix B
for detailed calculations)

v(z) = a3(1 +A+ 3HL)

[
dr

dz
r2 sin θs

(
1 +

∂δθ

∂θ
+
∂δφ

∂φ

)
−
(
A
dr̄

dz̄
+ vr

dτ

dz

)
r̄2 sin θo

]
. (4.25)
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In addition to the first order expansions (4.23) and (4.24), we can write the perturbation in
the comoving distance as r = r̄ + δr. Then, after some calculations (4.25) becomes

v(z) =
a4r̄2 sin θ

H
(4.26)

×
[
1 + 3HL +

(
cot θ +

∂

∂θ

)
δθ +

∂δφ

∂φ
− v · n + 2

δr

r
− dδr

dλ
+

1

H(1 + z̄)

dδz

dλ

]
.

where we have dropped the subscript for θo and φo (herein after these coordinates are just θ
and φ). According to (4.22), for obtaining the actual fluctuation in the volume element we
need to subtract the unperturbed part v̄(z). Writing the observed redshift as a perturbation
with respect to a background quantity as z = z̄ + δz, the second term in the numerator of
(4.22) can be expanded in Taylor series. We find that the volume element perturbation up
to first order is given by

δv

v̄
=

(
δv

v

)
Ω

+3HL−v·n+2
δr

r
− dδr
dλ

+
1

H(1 + z̄)

dδz

dλ
− 1

1 + z̄

(
−4 +

2

rH
+
Ḣ
H2

)
δz , (4.27)

where we have defined the angular part of the volume perturbation as(
δv

v

)
Ω

≡
(

cot θ +
∂

∂θ

)
δθ +

∂δφ

∂φ
. (4.28)

Then, in order to construct the final expression for the volume perturbation (4.27) in terms
of observable quantities we need to compute every perturbation appearing in the right hand
side of the above equations. We have already computed the redshift fluctuation δz in (4.19),
so we are left with the spatial fluctuations δr, δθ and δφ.

In order to express quantities in terms of the perturbed metric and peculiar velocities we
need to compute the deviation δxµ(λ) = xµ(λ) − x̄µ(λ). In the spherical coordinate system
in which we perform the observation this translates into

δr ≡ δxieri , (4.29)

δθ ≡ δxieθi
rs

, (4.30)

δφ ≡ δxieφi
rs sin θ

. (4.31)

As we mentioned, we have already dealt with the time component of the perturbed photon
propagation n0 in the derivation of (4.19). Then, for obtaining the spatial components of the
deviation we can conveniently use the following expression

dxµ

dτ
=
dxµ

dλ

dλ

dτ
=
nµ

n0
, (4.32)

which can be integrated on both sides from the emission time τs to the observation time τo.
Separating the time and spatial components and recalling that the affine parameter is chosen
such that r(λ = 0) = rs and r(λ = rs) = 0, up to first order we find that

x0(τs) = τs − τo = rs, (4.33)

xi(τs) = (τs − τo)n̄i −
∫ rs

0

dλ(δni − n̄iδn0). (4.34)
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In the second equation, the integral is carried out along the unperturbed photon path, which
is adequate within the first order regime (which is known as Born approximation). Then,
after computing δni using (4.15), the spatial fluctuation δxi is given by

δxi =

∫ rs

0

dr

(
hiαn̄

α + h0αn̄
in̄α
)

+
1

2

∫ rs

0

dr(rs − r)
(
hαβ,i + ḣαβn̄

i

)
n̄αn̄β . (4.35)

We can now compute δr ≡ δxieri = −δxin̄i. Then, after some calculations (see Appendix B)
we find

δr =

∫ rs

0

dr(Ψ + Φ) +
B

k
+

1

k2

(
dHT

dλ
− 2ḢT

)
. (4.36)

Similarly, for computing the angular perturbations δθ and δφ using (4.30) and (4.31) we
take into account that n̄ieθi = n̄ieϕi = 0 since the background geodesics are radial. Hence,
projecting (4.35) we find that

δθ =
1

rs

∫ rs

0

dr
(rs − r)

r
∂θ(hαβn̄

αn̄β) +
1

rs

∫ rs

0

dr
1

r
hiαe

i
θn̄

α . (4.37)

Analogously for the azimuthal projection we have

δϕ =
1

rs sin2 θ

∫ rs

0

dr
(rs − r)

r
∂ϕ(hαβn̄

αn̄β) +
1

sin θ

∫ rs

0

dr
1

r
hiαe

i
θn̄

α . (4.38)

Notice that the displacements δr, δθ and δϕ are all gauge dependent and hence not measurable
by themselves. Finally, substituting the expressions for the angular fluctuations (4.37) and
(4.38) we find that the angular volume fluctuation, after some calculations, is(

δv

v

)
Ω

= − 1

rs

∫ rs

0

dλ
(rs − r)

r
∆Ω(Φ + Ψ)− ∆ΩHT (τs)

k2r2
s

. (4.39)

We identify the first term appearing in the previous equation is the standard expression for
weak gravitational lensing in a perturbed FLRW universe [42]. Since this effect depends only
on the angular fluctuations of the metric perturbations along the line-of-sight, it is clear that
a constant gravitational field results in no observable effect.

4.3 The observed matter overdensity variable

We can now add up all the terms for obtaining the total volume perturbation. Combining
the result (4.39) with (4.27) and the previous expressions we obtain our final result for the
observed overdensity of matter,

∆(z, n̂) = Ds +
1

H
∂r(V · n) +

1

H
V̇ · n +

(
Ḣ
H2

+
2

rH
− 1

)
V · n +

1

H
∂rΨ

− 1

rs

∫ rs

0

dλ
rs − r
r

∆Ω(Φ + Ψ) +

(
Ḣ
H2

+
2

rH

)(
Ψ +

∫ rs

0

dλ(Φ̇ + Ψ̇)

)
+

2

rs

∫ rs

0

dr(Φ + Ψ) + Ψ− 2Φ +
1

H
Φ̇ . (4.40)
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Here, the first term on the right hand side correspond to the true fluctuation in the distribu-
tion of matter, related to the fact that baryons trace the underlying dark matter distribution
(up to a bias factor). As our previous derivation shows, all other terms in (4.40) represent
distortions in the observed redshift and incoming direction of photons, i.e. in the coordinate
system in which we are making our observations. The second term in the first line of (4.40)
correspond to the Redshift-space distortion effect, which depends on the spatial gradient of
peculiar velocities projected along the line-of-sight [19]. The second and third terms in the
first line of (4.40) correspond to Doppler effect (analogous to sound waves) which depends
directly on V projected along the line-of-sight. The rest of terms depend on the metric pertur-
bations Ψ and Φ. The first effect in the second line of (4.40) correspond to weak gravitational
lensing, as noted after (4.39). This set of effects is known as the standard effects.

The remaining terms are directly proportional to the Bardeen potentials Φ and Ψ, and
represent the so-called relativistic effects1. These depend either locally on the source redshift
z, such as gravitational redshift and Sachs-Wolfe effect, or are integrated from source to
observer along the line-of-sight, similar to gravitational lensing. Following the convention
adopted in the literature [26, 43] we group the first class of effects as local potential terms,
while the integrated terms correspond to the Shapiro time-delay effect (third line) and the
Integrated Sachs-Wolfe effect. The former reflects the fact that photons takes longer to travel
through potential wells compared to flat space, which implies that we receive them slightly
delayed and consequently more redshifted. The ISW effect on the other hand shows that
photons can gain or lose energy (and hence redshift) due to the time evolution of the scalar
potentials as they travel from the source up to z = 0.

The relativistic effects are suppressed by a factor (H/k)2 with respect to the leading terms
as can be seen from Poisson equation (3.48), and by H/k with respect to velocities as can be
seen from (3.47). Then, the magnitude of these effects is negligible on scales much smaller
than the horizon with respect to the standard terms, k >> H, while they become relevant
on large scales, k ∼ H (i.e. approaching the horizon).

According to our previous discussion, we can regard the result for the observed galaxy
overdensity (4.40) as

∆(z, n̂) =
7∑
i=1

∆i , (4.41)

1In strict sense gravitational lensing is also relativistic in nature, but we will stick to the usual convention.
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Symbol Effect Scaling z-dep. Eq.

∆D Intrinsic clustering
(
k
H

)2
δgµν local (4.42)

∆z Redshift-space distortion
(
k
H

)2
δgµν local (4.43)

∆L Gravitational lensing
(
k
H

)2
δgµν integrated (4.45)

∆V Doppler effect
(
k
H

)
δgµν local (4.44)

∆lp Potentials δgµν local (4.46)
∆std Shapiro time delay δgµν integrated (4.47)
∆isw Integrated Sachs-Wolfe δgµν integrated (4.48)

Table 4.1: Different contributions to the observed matter overdensity 4.40, indicating their
scaling and whether the effect is local or it is integrated from observer to source along the
line-of-sight.

where the different contributions can be identified as follows:

∆D = Ds , (4.42)

∆z =
1

H
∂r(V · n) , (4.43)

∆V =

(
Ḣ
H2

+
2

rH
−1

)
V · n +

1

H
V̇ · n , (4.44)

∆L = − 1

rs

∫ rs

0

dλ
rs − r
r

∆Ω(Φ + Ψ) , (4.45)

∆lp =
1

H
∂rΨ +

(
Ḣ
H2

+
2

rH
+ 1

)
Ψ− 2Φ +

1

H
Φ̇ , (4.46)

∆std =
2

rs

∫ rs

0

dr(Φ + Ψ) , (4.47)

∆isw =

(
Ḣ
H2

+
2

rH

)∫ rs

0

dλ(Φ̇ + Ψ̇) . (4.48)

A summary of all these contributions is included in Table 4.1, showing their nomenclature,
relative scaling and redshift dependence.

Finally, for complementing our discussion we can introduce by hand one last contribution
to (4.40) which is useful for practical purposes but it does not arise naturally in the previous
derivation (and we will not use it in the following Chapters). By construction, the observed
matter overdensity (4.40) does not take into account the fact that real galaxy surveys are
limited in magnitude, namely, only galaxies above a given luminosity threshold are detected.
Thus, there exist an intrinsic magnification bias, which can be introduced by adding an
additional fluctuation to the right hand side of (4.40) as

∆mb = 5sκ , (4.49)

where s is the effective number count slope and κ is the observed convergence, which contains
additional perturbations [23, 25, 26] that can be obtained solving the geodesic deviation
equation for following neighbouring rays of a light beam travelling from source to observer.
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In Ref. [23] it is shown that the fully relativistic expression for the convergence at linear
order reads

κ =
1

2r

∫ r

0

dr′
r − r′

r′
∆Ω(Φ + Ψ) +

(
1

rH
− 1

)
V · n̂− 1

r

∫ r

0

dr′(Φ + Ψ) (4.50)

−
(

1

rH
− 1

)∫ r

0

dr′(Φ̇ + Ψ̇)−
(

1

rH
− 1

)
Ψ + Φ .

Combining (4.40), (4.49) and (4.50) we have the full expression for the observed density
fluctuations at the linear order including magnification bias. It is worthwhile to emphasize
that this result is valid in any metric theory of gravity (e.g. GR, f(R), DGP, etc.), as we
have not used any particular equation of motion our derivation. We have only used the fact
that the perturbed universe can be described as a departure from the background FLRW
metric (i.e. the Cosmological Principle), and that photons travel along null geodesics.

The previous expression for ∆(z, n̂) given by (4.40) can be further simplified if we re-
strict to cosmological models in which the particles move along geodesics, i.e. the matter
components satisfy the Euler equation

V̇ · n̂ +HV · n̂ + ∂rΨ = 0 . (4.51)

We note that this can be violated in special classes of scalar-tensor theories, such as chama-
leons or symmetrons [44], in which screened objects follow trajectories determined by some
effective metric involving the extra scalar field which mediates the fifth force responsible for
such mechanism. However, violations to (4.51) are strongly suppressed in most scalar-tensor
theories of cosmological interest [43], where modifications to ΛCDM enter only through the
different relations between gravitational potentials and matter distribution.

For the rest of the analysis we assume that (4.51) is satisfied. In addition, for the sake
of simplicity we will also ignore magnification bias (4.49), i.e. we set s = 0 in our work and
take (4.40) as our full expression for the observed matter overdensity at linear order.
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Chapter 5

The ΛCDM model and alternatives

In the previous Chapters we have settled the theoretical basis of our current cosmological
models. We will now discuss the concordance cosmological model, ΛCDM, which has at-
tained such status thanks to a significant and impressive body of observational evidence that
continuously supports its theoretical predictions. This standard model is now well estab-
lished, and there seems to be little room left for any dramatic revision of this paradigm as
it has been demonstrated over the last decade how difficult it is to formulate convincing
alternatives. We next give an overview of ΛCDM model, discussing its virtues, problems and
possible alternatives.

5.1 The Concordance cosmological model

Observations have led to a prevailing cosmological model, now called ΛCDM, which represents
one of the major achievements of physics during the XX century. In this paradigm, the
Universe is spatially flat at large scales (K = 0), the gravitational interaction is described by
Einsten’s GR, and about 95% of the Universe is composed of dark energy (Λ) and cold dark
matter (CDM). The Universe begins ∼ 13.8 Gyrs ago with a spacetime singularity, followed
by a period of accelerated cosmic expansion which amplifies primordial curvature fluctuations
that are adiabatic and gaussian. In the recombination epoch, around z ∼ 1100 (380,000 yrs),
the CMB photons decouple from matter and are free to stream through the universe. After
matter starts dominating the background energy density the clustering process becomes
efficient, but it is not until z ∼ 20 (400 millions yrs) that the Dark Ages ends with the
formation of the first stars, which begin to form gravitationally bound objects that decouple
from the overall cosmic expansion. This leads to a picture of hierarchical structure formation
with small-scale structures (like stars and galaxies) forming first and then merging into larger
structures (clusters and superclusters of galaxies), thus forming the Cosmic Web. Since
matter density decays as the universe expands, around O(z) ∼ 1 the negative pressure dark
energy component starts to dominate the universe and the growth of structure is suppressed
due to the accelerated cosmic expansion.

Many of the key cosmological parameters have been determined to an accuracy of one
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or two significant figures. Particularly prominent are measurements of cosmic microwave
background (CMB) anisotropies, with the highest precision observations being those of the
Planck Satellite [45] which for temperature anisotropies supersede the iconic WMAP results
[46]. However, a robust and accurate model of the Universe requires consideration of a range
of different types of observation, with complementary probes providing consistency checks,
lifting parameter degeneracies, and enabling the strongest constraints to be placed.

The ΛCDM model has survived more than a decade of increasingly stringent precision
tests. In many ways the Planck 2015 cosmological results [45] highlight the successes of the
ΛCDM model, a summary of which is included in Table 5.1. The good fit of ΛCDM with
Planck 2015 data implies that there no convincing evidence for simple extensions to the model
yet. Nonetheless, there are still some tensions with other data, particularly those considering
observations in the local universe [47], which may give some clues in the near future.

parameter symbol 68% limits
Physical baryon density today Ωbh

2 0.02230± 0.00014
Physical cold dark matter density today Ωmh

2 0.1188± 0.0010
Expansion rate today H0 67.74± 0.46
Optical depth due to reionization τ 0.066± 0.012
Scalar spectrum index ns 0.9667± 0.0040
Primordial curvature perturbation 109As 2.142± 0.049
Dark energy density today ΩΛ 0.6911± 0.0062
Matter density today Ωmh 0.3089± 0.0062
Age of the Universe (Gyr) t0 13.799± 0.0021

Table 5.1: Cosmological parameters values for ΛCDM model from Planck 2015, considering
the temperature (TT), temperature-polarization spectrum (TE) and the polarization power
(EE) power spectra, as well as lensing reconstruction and external data set.

Despite the sequence of observational successes of ΛCDM there is a persistent interest in
extending or studying alternatives to this cosmological model. This is motivated by a range
of apparently deep theoretical issues, involving questions such as the cosmological constant
problem, the particle nature of cold dark matter, the validity of general relativity on large
scales, the anomalies in the CMB on small scales, and the predictability and testability of
the inflationary paradigm. We next briefly discuss the first issue of the previous list, which
is arguably the most common motivation for studying modified dark energy models.

5.1.1 The Cosmological Constant Problem

The success of the ΛCDM model to explain our observable Universe with a high degree
of accuracy is in deep contrast with our ignorance about the physical nature of the dark
components in the foundations of this model. In one hand, we are still lacking a direct
detection of dark matter, and there is still room for some alternatives to the standard cold,
non-interacting particle model.
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On the other hand, the interpretation of dark energy as a cosmological constant Λ is not
completely satisfactory. The so-called Cosmological Constant problem can be divided into
two major issues:

1. The fine-tuning problem: An estimation of the total vacuum energy density ρΛ

using particle physics gives a result that is way off the observed value

ρΛ

ρobs

∼ 10120 . (5.1)

This discrepancy of 120 orders of magnitude between theoretical expectations and the
observational value has been called ‘the worst theoretical prediction in the history of
physics!’ [48]. One may try to overcome this issue by adjusting the ‘bare’ cosmological
constant of the theory, but nonetheless it requires to fix such value with extremely high
precision (120 orders of magnitude), i.e. it transforms into a fine-tuning problem since
there is no physical reason supporting this ad-hoc choice.

2. The coincidence problem: The different scaling of the energy density given by (2.18)
implies that at early times the cosmological constant would be negligible, while at later
times the density of matter will approach to zero and the Universe will be mostly empty.
If Dark Energy were to dominate earlier in the history of the Universe, it is possible
that all cosmic structures that we observe today would not have had enough time to
form. The fact that the present value of ΩΛ is comparable to the present matter energy
density Ωm requires some explanation since in principle these two quantities should be
unrelated. We can compute the redshift at which both components become equal as

zc =

(
ΩΛ

Ωm

)1/3

− 1 ≈ 0.3 , (5.2)

which shows that the cross-over happened not to far into the past. The question of why
the phase of accelerated cosmic expansion began in the late Universe and not before
that is sometimes answered just by invoking the Anthropic principle.

The persistence of these issues until today makes the nature of the dark energy one of the
most challenging open puzzles in modern cosmology and encourages to revise the standard
cosmological model and propose feasible alternatives.

5.2 Alternatives to ΛCDM

The open problems of the standard cosmology leave room to explore alternative theories
that aim to describe the cosmic accelerated expansion by other mechanisms. Even if in
principle there exist several ways to look for alternatives, all of them ultimately rely on
modifying one side of the Einstein equations (2.3), as we have seen that the contribution
of the matter-energy content of the universe appears on the right hand side of the Einstein
equation, whereas the left hand side represents the geometrical description of the gravitational
interaction. Then, one may either argue that GR needs to be modified at large scales (where
the cosmic expansion drives the dynamics) or that Λ needs to be replaced by a new kind of
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dark energy component. In a fundamental approach, the Einstein Equations of GR can be
derived from a least action principle using the action

S =
c4

16GNπ

∫
dx4
√
−g(R− 2Λ) + SM , (5.3)

where

SEH =
c4

16GNπ

∫
dx4
√
−gR (5.4)

is the so-called Einstein-Hilbert action, which provides the left hand side of (2.1), and SM
accounts for the matter fields appearing in the theory, i.e. it defines Tµν . The Einstein-
Hilbert action (5.4) represents a minimal one in the sense that the Ricci scalar R appears
linearly, but in principle this does not need to be the case.

The study of possible modifications and extensions of this action has received a lot of at-
tention in the last decade as a possible way to explain the accelerated cosmic expansion of our
Universe without the need to include Λ in the theory. However, since ΛCDM has proven to
be so robust all alternative models are strongly constrained, specially on Solar System scales,
where GR has been tested up to a high degree of accuracy. Moreover, the recent ‘multimes-
senger’ detection of the binary neutron star merger [49] through a gravitational wave signal
(GW170817) followed by a gamma ray burst (GRB170817A) has put strong constraints on
the speed of propagation of tensor modes, |cT/c − 1| < 4.5 × 10−16, thus ruling out a class
of dark energy models where cT 6= c such as quartic/quintic Galileons and Gauss-Bonnet
gravity, among others [50].

We next give a non-exhaustive list and a brief description of some of the most popular
alternative models:

• f(R) gravity: Since there is no a priori reason to consider a gravitational Lagrangian
as a linear function of the Ricci scalar as GR does (5.4), this class of theories generalize
the action to

S =
c4

16GNπ

∫
dx4
√
−gf(R) , (5.5)

where the function f may include higher order terms built from R and Rµν (and their
derivatives), and also minimally and non-minimally coupled terms between scalar fields
and geometry, e.g. φ2R. In this class of theories the Einstein equations are now replaced
by the field equations

f,RRµν −
1

2
f(R)gµν − [∇µ∇ν − gµν�]f,R =

8πGN

c4
Tµν , (5.6)

where f,R = df/dR and � = gµν∇µ∇ν is the d’Alembert operator. This proposal is
interesting because one may explain the accelerated expansion without the need for
dark energy. In addition, it is sufficiently general to include all of the basic features of
modified gravity models and make connection with observations. However, since GR
works extremely well within the Solar System, the new degrees of freedom need to be
somehow hidden at small scales (or high density environments) in order to accommodate
the existing constraints. This implies the action of ‘screening mechanism’, in which
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the mass of an effective scalar field degree of freedom depends on the density of its
environment. Then, if the matter density is sufficiently high, the field acquires a heavy
mass about the potential minimum and it cannot be excited, whereas in low density
environments, i.e. large scales, it is capable of driving the accelerated cosmic expansion.
The most popular model designed to recover GR sufficiently fast at Solar System scales
is the Hu-Sawicki f(R) model [51], which has the form

f(R) = −m2 c1

(
R
m2

)2

c2

(
R
m2

)n
+ 1

, (5.7)

where m is a new mass scale related to the scalar field mass.

• Dvali-Gabadadze-Porrati (DGP) braneworld model: In this model [15] a 4-
dimensional brane is embedded in a 5-dimensional Minkowski bulk with an infinitely
large extra dimension. Matter is then confined in the 4-dimensional brane and only
gravity can propagate in the 5-dimensional bulk, leaking off the 4-dimensional brane
into the 5-dimensional bulk only on large scales. On small scales gravity is effectively
bound to the brane and 4-dimensional dynamic is recovered with very good approxi-
mation. Then, in this model the gravity leakage leads to the observed late-time cosmic
acceleration. The modified Friedmann equation for a flat universe in DGP is

H2 = ±H
rc

+
8πGN

3
ρm , (5.8)

where rc is the crossover scale separating 4D and 5D regimes. Then, we can consider
an effective dark energy component with density

ρeff ≡
3H

8πGNrc
, (5.9)

which leads to the DGP expansion history. In other words, the cosmic acceleration in
this model is not due to the presence of a dark energy component but rather to the
weakening of gravity parametrized by rc. In spite of its attractive features, the DGP
model suffers from observational disfavor and ghost instabilities. In addition, SN Ia,
BAO and CMB data show that the modified Friedmann equation is less consistent with
observations than the standard Friedmann equation from ΛCDM.

• Quintessence model: This model suggests that a canonical scalar field φ with a
potential V (φ) might be responsible for the late time acceleration. The quintessence
model is described by the action:

S =

∫
dx4
√
−g
[

c4

16πGN

R + Lφ
]

+ SM , (5.10)

where Lφ is the scalar field Lagrangian given by

Lφ = −1

2
gµν∂µ∂νφ− V (φ) . (5.11)

It can be shown that, in order to have an accelerated cosmic expansion, the potential
V (φ) needs to be shallow enough for the field to evolve slowly along with it, i.e. this
situation is very similar to inflationary cosmology, and slow-roll conditions must be
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satisfied. As a result, quintessence models are very constraint because it is difficult
to find a corresponding model in particle physics due to the low energy scale (in the
context of particle physics)

mφ =
√
V ′′(φ) ∼ H0 ∼ 10−33 eV . (5.12)

Moreover, such a light scalar field could in principle interact with ordinary matter,
which could lead to observable long-range forces and time dependence on the constants
of nature [52].

• Dark energy fluids: Besides considering scalar fields, an entire class of models exists
involving perfect fluids. At background level a perfect fluid is characterized by its
equation of state parameter w(a), which gives rise to the generic scaling

ρ ∝ a−3(1+ω̂) , (5.13)

where

ω̂(a) =
1

ln a

∫ a

1

w(a′)

a′
da′ . (5.14)

There is now the problem to parametrize w(a). As realized from the previous discus-
sions, there are different possibilities: according to the preferred model the equation
of state parameter can be a constant (as for the cosmological constant) or it can be a
function of time (as for scalar field models). There is no unique general expression for
w if we consider the dark energy as being a fluid. The easiest alternative, called the
Chevallier-Polarski-Linder (CPL) parametrization [53, 54], is to Taylor expand w(a)
around a0 = 1

w(a) = w0 + wa(1− a) , (5.15)

where w0 is the value of the parameter of equation of state today and wa gives the
variation on time of w(a). The values of the parameters are usually assumed to be
w0 ∼ −1 because observations tell us that the value of the parameter of equation of state
today has to be close to −1 and wa << 1 because we do not have any strong evidence
that the dark energy varies so much over time. Moreover, the previous expression
is very convenient because it also avoids possible complication of having unrealistic
behavior. e.g., w << −1.

• Effective field theory of dark energy: Finally, it is worth to mention the effective
field theory (EFT) approach to dark energy [55], which is not a model by itself but rather
tries to provide a unified phenomenological description of dark energy and modified
gravity, similar to Horndeski theory. It is inspired by the EFT of inflation, with the
main difference that in this case matter species are present and coupled to the metric.
In this framework one assumes a generic scalar field φ in the dark sector, which is
responsible for the late time accelerated expansion, and which allows to establish a
preferred time foliation (i.e. a 3+1 decomposition of the spacetime). The general
gravitational action in this framework is

S =

∫
d4x
√
−g
[
M2
∗

2
f(t)R− Λ(t)− c(t)g00

]
+ S

(2)
DE . (5.16)

Here, M∗ is the ‘bare’ Planck mass (or bare gravitational Constant), and the time
dependant functions f , Λ and c reflect the broken time-invariance due to the (implicit)
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presence of the scalar field φ, which is behind the mechanism for accelerated expansion
but no longer appears in the action (but can be made manifest by performing the
so-called Stückelberg trick [56]). In this approach, Λ and c are fixed by the FLRW
background model, while f depends on the actual dark energy model. In addition,
quadratic and higher-order terms in the perturbations are contained in S

(2)
DE, and will

vary from one dark energy model to the other, allowing to effectively describe and
match different theories.
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Chapter 6

Phenomenological parametrization of
dark energy models

We now go beyond ΛCDM by considering alternative dark energy models. As we discussed in
Chapter 5, they are an appealing alternative for explaining the late-time accelerated cosmic
expansion, although they are very constrained from current observations. Then, since there
are no preferred candidates at this point, we choose to parametrize potential deviations from
GR in a phenomenological, model independent approach, which is next introduced.

The present Chapter discusses the ideas of Ref. [32] and Ref. [32] which we implement to
derive our results in the next Chapters.

6.1 The (Q, η) parametrization

This approach was first discussed in Ref. [32] as a framework that is general enough to
represent both modified gravity models and alternative forms of dark energy. The key idea
is to introduce two new phenomenological parameters into the Einstein equations (3.48) and
(3.51) which directly modify the evolution of the potentials Ψ and Φ to account for possible
deviations from ΛCDM.

We know that when dark energy starts dominating the universe the potential Φ starts
to decay. Moreover, as we move into the late time universe a generic (non-smooth) dark
energy fluid is also able to clump. Then, we can introduce an effective clustering parameter
Q which takes into account deviations in Φ from the standard ΛCDM evolution and also
parametrizes the additional clustering due to the perturbations in a dark energy fluid, so
that the generalized Poisson equation (3.48) becomes

− k2Φ = 4πGNa
2Q(a, k)ρ̄mDm , (6.1)

where Dm = δ + 3HV/k is the comoving matter density contrast (often denoted by ∆m).
Clearly, this parametrization is such that, if the dark energy or modified gravity model
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does not contribute to the gravitational potential (e.g. if the dark energy is a cosmological
constant), then Q = 1. Otherwise Q will deviate from unity, and in general it is a function of
both scale and time. In the context of modified gravity models, the function Q represents a
mass screening effect due to local modifications of gravity and effectively modifies Newton’s
constant, i.e. we can properly interpret Geff(a, k) ≡ Q(a, k)GN in the previous modified
Poisson equation [33, 35].

Furthermore, in order to take into account a general class of modified gravity and dark
energy models we also need to allow for a possible non-vanishing anisotropic stress [57]. Then,
we can introduce a second parameter to the model, η, this time going into (3.51), as

Ψ = [1 + η(a, k)]Φ . (6.2)

Then, η can be regarded as a gravitational slip parameter which is non-zero only when
anisotropic stress is present, implying that the metric perturbations Ψ and Φ are no longer
equivalent at some scales and/or times. Currently, there is no sign for a non-vanishing
anisotropic stress beyond that generated by the free streaming of photons and neutrinos.
However, it is expected to be non-zero in a wide class of theories, such as anisotropic dark
energy fluids [58], models including topological defects such as cosmic strings, among others.

By construction, the introduction of two new degrees of freedom in the (Q, η) approach
allows to represent a wide class of theories such as f(R) gravity, the DGP model and other
scalar-tensor theories. Likewise, it also allows to consider effective dark energy components
beyond Λ. In this thesis we will focus our attention in a dynamical, quintessence-like dark
energy fluid model which is discussed in the next section.

6.2 Effective dark energy fluid with time-independent

properties

A possible alternative to a cosmological constant description is a dark energy fluid which is
not necessarily homogeneously distributed in the universe. Namely, dark energy could be
a kind of fluid which may also cluster over time, just as matter, and which in general may
exhibit some degree of anisotropic stress. We parametrize this kind of fluid by introducing
three constants in the model; an equation of state parameter w, a sound speed c2

s and a
viscosity term c2

v, which parametrizes the anisotropic stress. Even if most models of dark
energy are based on classical scalar fields, in which case no anisotropic stress appears [59], it
is nevertheless interesting to consider such a possibility since in fact very little is known about
the true nature of dark energy, and new degrees of freedom may eventually arise. Moreover,
many modified gravity models present anisotropic stress, and they can be reformulated as
effective dark energy fluids.

As we discussed in the previous section, in the context of dark energy fluids the clustering
parameter Q appearing in the modified Poisson equation (6.1) can be regarded as describing
the possible clustering of the dark energy fluid, i.e.

Q = 1 +
ρDEDDE

ρmDm

, (6.3)
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where ρDE represents the dark energy background density (which not necessarily constant
in time) and DDE its corresponding density contrast in the comoving gauge, as defined for
matter in (3.49). For the class of models in which both sound speed c2

s and equation of
state parameter w are constant in time, but still may depend on the scale k, the following
expression for Q(a, k) has been derived [33]

Q(a, k) = 1 +
1− Ωm

Ωm

(1 + w)
a−3w

1− 3w + 2k2ĉ2sa

3H2
0Ωm

, (6.4)

where, in general, ĉ2
s is regarded as an effective sound speed of the fluid, which is given by

ĉ2
s = c2

s +
8

3

(c2
s − w)

(1 + w)
c2
v . (6.5)

Here, c2
s is the intrinsic sound speed and c2

v is a possible viscosity contribution appearing in
this dark energy model parameterizing the coupling of the anisotropic stress to the (gauge
invariant) velocity perturbation V via

w
(

Π̇ + 3HΠ
)

= 4c2
vkV . (6.6)

This idea is based on the ‘generalized dark matter’ concept proposed in [60], and suggest that
sound speed and viscosity have a similar damping effect on density perturbations. According
to (6.6), this parametrization does not take into account models in which stress fluctuations
are not derived from density and velocity perturbations.

The expression for Q in (6.4) shows that in order to cluster, this kind of fluid needs to
have an EoS parameter w 6= −1. Also, from (6.5) we note that the effect of c2

v is enhanced
with respect to that of c2

s by a factor of 8(c2
s − w)/3(1 + w), which is approximately 10 for

w = −0.8 and very small c2
s, and then these are the situations where viscosity effects are

expected to more clearly observed.

Furthermore, it has been shown that the anisotropy parameter introduced in (6.2) for this
particular dark energy fluid model is given by [58]

η = −9

2
H2

0 (1− Ωm)(1 + w)
a−(1+3w)

k2Q

(
1− c2

s

ĉ2
s

)
. (6.7)

As shown in (6.4) and (6.7), both Q and η grow with the scale factor (in terms of absolute
values), and then their effects are more noticeable at late times since dark energy is able to
cluster, see Fig 6.1. Various test show that, even assuming a matter dominated Universe,
these parametrizations for (Q, η) are well approximated by numerical results even at late
times, when dark energy starts dominating [58].

Besides the explicit form for (Q, η), we still need one more input for totally describing our
model. As we remarked at the end of Chapter 3, the growth index is also a convenient way of
parametrize alternative models. Naturally, in this particular case it becomes modified with
respect to ΛCDM due to the presence of dark energy perturbations. In this class of effective
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Figure 6.1: Clustering and anisotropy parameters for various combinations of intrinsic and
viscous sound speeds. Left: Plot of Q−1. Right: Plot of η. All lines correspond to w = −0.8
and k = 200H0, with h = 0.67.

fluid models γ depends on the dark energy clustering parameter Q and anisotropy parameter
η as [61]

γ(a, k) =
3

5− 6w

(
1− w − (1 + η)Q− 1

1− Ωm(a)

)
, (6.8)

where Ωm(a) = Ωma
−3H2

0/H
2. This implies that the growth function G defined in (3.69)

now acquires a k-dependence which is due to the presence of a sound horizon dampening the
perturbations below that characteristic scale. While dark energy perturbations themselves
are difficult to measure unless dark energy has very low sound speed and viscosity, the growth
index on itself has proven to be a more easily detectable parameter and several ongoing and
future experiments are built to measure its value [34].

It is worthwhile to classify three characteristic regimes appearing in this particular dark
energy fluid model:

1. The case c2
s = c2

v = 0

Naturally, the simplest case in this class of models is to consider negligible viscosity
effects, i.e. c2

v = 0 which into (6.7) implies a vanishing anisotropic stress, η = 0. If in
addition we consider c2

s = 0, then the clustering parameter (6.4) as well as the growth
index (6.8) depend only on the scale factor, Q = Q(a) and γ(a). Then

Q(a) = 1 +
1− Ωm

Ωm

1 + w

1− 3w
a−3w ≡ 1 +Q0a

−3w . (6.9)

In this case there is no sound horizon, and the perturbations are free to growth at all
scales inside the Hubble horizon.

2. The case c2
s 6= 0 and c2

v = 0

In this case we allow the dark energy fluid to have a non-vanishing sound speed but
we still restrict its viscosity effects so that no anisotropic stress is present, i.e. η = 0.
Then, the clustering parameter and growth index are both scale and time dependent,
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i.e. Q = Q(a, k) and γ = γ(a, k). In this scenario the fluid will have a sound horizon
set by H/cs below which perturbations can no longer grow.

3. The case c2
s 6= 0 and c2

v 6= 0

The most general behaviour parametrized by this model is a fluid with a non-vanishing
sound speed and also viscosity effects, which contributes to ĉ2

s through the relation
(6.5). Then, all three parameters depend on both scale factor and scale, i.e. η(a, k) 6= 0,
Q = Q(a, k) and γ(a, k). In this case the dark energy will also have an effective sound
horizon set by H/ĉs below which pressure support is able to dampen the perturbations.

In the next chapter we will present our power spectrum calculations considering both
modified Einstein equations (6.1) and (6.2), so that the result will be valid for any model
encompassed by the (Q, η) parametrization. This correspond to consider the third case in
the previous list, i.e. we will not make any additional assumptions on the nature of the dark
energy fluid discussed in this section.
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Chapter 7

Angular power spectrum in dark
energy models

One of the most fundamental tools to compare observations against theoretical models of
large scale structure having stochastic initial fluctuations are power spectra. They are the
‘harmonic transforms’ of the two point correlation functions, which are a measure of the
degree of clustering in either the spatial or angular distribution of galaxies. If the initial
perturbations in the model under consideration are Gaussian (a relatively generic prediction
from inflationary models), then the power spectra contain the full statistical information, i.e.
there is no need to consider correlation functions of higher orders (such as the bispectrum).

We next focus our attention on writing down a general expression for the matter power
spectrum using the full observed density perturbation variable (4.40). At a fixed redshift, ∆
is a function on the sphere, so it is most natural to expand it in terms of spherical harmonics
as

∆(z, n̂) =
∑
`m

a`m(z)Y`(n̂) . (7.1)

The angular power spectrum C` then corresponds to the amplitude of the coefficients when
∆ is decomposed in such a base of functions, namely

δ``′δmm′C` = 〈a`ma∗`′m′〉 , (7.2)

where the brackets indicate ensemble average and the star complex conjugation. This sta-
tistical quantity has the advantage of being optimally adapted to our coordinate system in
which we perform the measurements as it exploits the statistical isotropy upon which the
cosmic metric is constructed. The expansion coefficients a`m can be computed by inverting
the previous expression through the orthogonality property of the spherical harmonics as

a`m(z) =

∫
dΩn̂Y

∗
`m(n̂)∆(z, n̂) . (7.3)

For calculating these coefficients we consider the fact that according to (4.41)-(4.48) the
observed density fluctuation consists in the sum of various terms ∆i, whose k-dependence
are given by either a perturbation variable evaluated at the source position rs = τo − τs
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(i.e. at redshift z = zs) or an integral of a perturbation variable over the unperturbed
photon trajectory (due to Born approximation). The various variables in these terms are
then decomposed in terms of a set of transfer functions, as discussed at the end of Chapter 3,
and we use the primordial power spectrum (3.64) in order to calculate the ensemble average
in (7.2). The details of the calculations are presented in the Appendix C. The final expression
for power spectrum (7.2) is

C`(z) =
2As
π

∫ ∞
0

dk

k
(kτ0)ns−1|∆`(z, k)|2 , (7.4)

where

∆`(z, k) = j`(krs)

[
TD +

(
1 +
Ḣ
H2

+
2

rsH

)
TΨ + TΦ +

1

H
ṪΦ

]
+ j′`(krs)

(
Ḣ
H2

+
2

rsH

)
TV

+
k

H
j′′` (krs)TV +

1

rs

∫ rs

0

dλj`(kλ)

(
2 +

rs − λ
λ

`(`+ 1)

)
(TΨ + TΦ)

+

(
Ḣ
H2

+
2

rsH

)∫ rs

0

dλj`(kλ)(ṪΨ + ṪΦ) . (7.5)

Here, jl(x) represents a spherical Bessel function which appear due to the Rayleigh formula
for plane waves (see Appendix C), and j′`(x) ≡ dj`(x)/dx. In addition, we have already used
the Euler equation (4.51) which simplifies some of the terms originally present in (4.40).
Now, tracking the various contributions in ∆, we can write ∆` =

∑
∆i
`, where we identify

each one as

∆D
` = j`TD , (7.6)

∆z
` =

k

H
j′′` TV , (7.7)

∆L
` =

1

rs

∫ rs

0

dλj`(kλ)
rs − λ
λ

`(`+ 1)(TΨ + TΦ) , (7.8)

∆V
` = j′`gTV , (7.9)

∆lp
` = j`

[
(g + 1)TΨ + TΦ +

1

H
ṪΦ

]
, (7.10)

∆std
` =

2

rs

∫ rs

0

dλj`(kλ)(TΨ + TΦ) , (7.11)

∆isw
` = g

∫ rs

0

dλj`(kλ)(ṪΦ + ṪΨ) , (7.12)

and g(z) ≡
(
Ḣ/H2 + 2/rsH

)
. Then the total power spectrum C` is given by

C` =
∑
ij

Cij
` , (7.13)

where ij labels any pair of effects, i.e. it includes autocorrelations as well cross-correlations.
Then, the different contributions can be systematically computed as

Cij
` =

2As
π

∫ ∞
0

dk

k
(kτ0)ns−1∆i

`∆
j
` . (7.14)
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This last set of equations gives the generic structure of the power spectrum, regardless of
the relation between the metric and energy-matter degrees of freedom. These expressions
depend explicitly on the background cosmology through the expansion terms H, Ḣ and the
comoving distance rs, which are given by (2.22), (2.24) and (2.35), respectively.

At the perturbation level, the C`’s depend on the relation among the various transfer
functions {TD, TV , TΨ, TΦ}, which are given by the actual Einstein (or field) equations of the
theory.

7.1 Angular power spectrum in the (Q, η) parametriza-

tion

The modified Einstein equations in the (Q, η) parametrization (6.1) and (6.2) imply modified
relations at the level of transfer functions with respect to GR. It is straightforward to show
that the set of relations (3.65)-(3.67) derived from the Einstein equations now takes the form

TD(z, k) = − 2a

3Ωm

(
k

H0

)2
TΨ

Q(1 + η)
(00) , (7.15)

TV (z, k) =
2a

3Ωm

k

H2
0

H
[(

1− a

(1 + η)2

∂η

∂a

)
TΨ +

a

1 + η

∂TΨ

∂a

]
(0i) , (7.16)

TΦ(z, k) =
TΨ

(1 + η)
(ij) , (7.17)

where we have used the identity
1

H
d

dτ
= a

d

da
. (7.18)

Naturally, in the case Q = 1 and η = 0 the above set of equations reduces to (3.65)-(3.67).
According to our discussion in Chapter 3, we decompose the transfer function TΨ for the
initial metric perturbation in terms of a growth rate G and a time-independent transfer
function T (k) as

TΨ(a, k) = G(a, k)Q(a, k)T (k) , (7.19)

where both G and T are influenced by the effective dark energy model. In general, the
transfer function at zero redshift T (k) needs to be computed with numerical codes such as
MGCAMB1[62] . Using these expressions we can write the various C`(z)’s using our general
result (7.14). The autocorrelations of the different contributions, as well as their correlations
with density are next given. Notice that we have omitted the (a, k) dependence in most
terms to avoid cluttered notation. We also denote j′`(x) = dj`(x)/dx and ν = `+ 1/2 for the
Limber-approximated terms [63].

1. Density:

The dominant term in the observed matter power spectrum is the intrinsic density
fluctuation, which is enhanced by a factor of (k/H)2 with respect to the relativistic

1we are explicitly including the factor Q(a, k) in (7.19) so that T (k) correspond to the actual transfer
function at z = 0 from CAMB codes.
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terms (see Table 2.1). The autocorrelation is given by:

CDD
` =

8Asτ
ns−1
0 a2

9πH4
0 Ω2

m

∫ ∞
0

dkk2+ns
j2
` (krs)G

2T 2(k)

(1 + η)2
. (7.20)

2. Redshift-space distortion:

2.1 The autocorrelation is

Czz
` =

8Asτ
ns−1
0 a2

9πH4
0 Ω2

m

× (7.21)∫ ∞
0

dkk2+ns

[(
1− a

(1 + η)2

∂η

∂a

)
GQ+

a

1 + η

∂(GQ)

∂a

]2

(j′′` (krs))
2T 2(k) .

2.2 Correlation between RSD and density:

This cross-correlation is particularly important since it scales in the same way as
the autocorrelations of density and RSD. This is given by

CDz
` =− 8Asτ

ns−1
0 a2

9πH4
0 Ω2

m

∫ ∞
0

dkk2+ns

[(
1− a

(1 + η)2

∂η

∂a

)
GQ+

a

1 + η

∂(GQ)

∂a

]
× j`(krs)j

′′
` (krs)GT

2(k)

(1 + η)
. (7.22)

3. Doppler effect:

3.1 Autocorrelation of Doppler effect is

CV V
` =

8Asτ
ns−1
0 a2

9πH4
0 Ω2

m

(
Ḣ
H

+
2

rs

)2

(7.23)

×
∫ ∞

0

dkkns

[(
1− a

(1 + η)2

∂η

∂a

)
GQ+

a

1 + η

∂(GQ)

∂a

]2

(j′`(krs))
2T 2(k) .

3.2 Correlation of Doppler effect and density:

CV D
` = −8Asτ

ns−1
0 a2

9πH4
0 Ω2

m

(
Ḣ
H

+
2

rs

)
× (7.24)∫ ∞

0

dkk1+ns

[(
1− a

(1 + η)2

∂η

∂a

)
GQ+

a

1 + η

∂(GQ)

∂a

]
j′`(krs)j`(krs)

GT 2(k)

(1 + η)
.

4. Gravitational lensing:

4.1 Using Limber approximation [63] (see Appendix) the autocorrelation is

CLL
` =

Asτ
ns−1
0 `2(`+ 1)2

r2
sν

4−ns

∫ rs

0

drT 2
(ν
r

) (rs − r)2

rns
G2
(
r,
ν

r

)
Q2
(
r,
ν

r

)
×
(

2 + η(r, ν/r)

1 + η(r, ν/r)

)2

. (7.25)
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4.2 The correlation of lensing and density after using Limber approximation is

CLD
` =− 8As(τ0ν)ns−1`(`+ 1)a

3rsΩmH2
0

√
ν

2π

∫ rs

0

dr
(rs − r)
r2+ns

j`
(
νrs
r

)
G(a, ν/r)

[1 + η(a, ν/r)]

×
[
G
(
r,
ν

r

)
Q
(
r,
ν

r

)(
1 +

1

1 + η(ν/r)

)]
T 2
(ν
r

)
. (7.26)

5. Local potentials:

5.1 The autocorrelation of the local potential terms is

CPP
` =

2Asτ
ns−1
0

π

∫ ∞
0

dkkns−2j2
` (krs)T

2(k) (7.27)

×

[
GQ

(
Ḣ
H2

+
2

rsH
+

2 + η

1 + η
− a

(1 + η)2

∂η

∂a

)
+

a

1 + η

∂(GQ)

∂a

]2

.

5.2 Correlation with density:

CPD
` = −4Asτ

ns−1
0

3πΩmH2
0

∫ ∞
0

dkknsj2
` (krs)

GT 2(k)

(1 + η)
(7.28)

×

[
GQ

(
Ḣ
H2

+
2

rsH
+

2 + η

1 + η
− a

(1 + η)2

∂η

∂a

)
+

a

1 + η

∂(GQ)

∂a

]
.

6. Shapiro time-delay:

6.1 After using Limber approximation, the autocorrelation term is

Cstd
` =

4Asτ
ns−1
0

r2
sν

4−ns

∫ rs

0

drr2−nsT 2
(ν
r

)
G2(r, ν/r)Q2(r, ν/r)

(
2 + η(r, ν/r)

1 + η(r, ν/r)

)2

.

(7.29)

6.2 The correlation with density is

CstdD
` =− 8As(τ0ν)ns−1a

3rsΩmH2
0

√
ν

2π

∫ rs

0

dr

r1+ns

j`
(
νrs
r

)
G(a, ν/r)

1 + η(a, ν/r)

×
(
G(r, ν/r)[2 + η(r, ν/r]

1 + η(r, ν/r)

)
T 2
(ν
r

)
. (7.30)

7. Integrated Sachs-Wolfe effect:

7.1 After using Limber approximation, the autocorrelation term is

Cisw
` =

Asτ
ns−1
0

ν4−ns

(
Ḣ
H2

+
2

rsH

)2

× (7.31)∫ rs

0

drr3−nsT 2
(ν
r

){
H(r)a(r)

∂

∂a

[
G
(
r,
ν

r

)
Q
(
r,
ν

r

)(2 + η(r, ν/r)

1 + η(r, ν/r)

)]}2

.
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7.2 The correlation with density using Limber approximation is

CiswD
` =− 4As(τ0ν)ns−1a

3ΩmH2
0

√
ν

2π

(
Ḣ
H2

+
2

rsH

)∫ rs

0

dr

r1+ns
T 2
(ν
r

)
× (7.32)

j`(νrs/r)G(as, ν/r)

1 + η(as, ν/r)
H(r)a(r)

∂

∂a

[
G
(
r,
ν

r

)
Q
(
r,
ν

r

)(2 + η(r, ν/r)

1 + η(r, ν/r)

)]
.

In the limit Q = 1 and η = 0, all the previous expressions reduce to those calculated in [26]
for a ΛCDM cosmology considering a scale-invariant primordial power spectrum (ns = 1).
In the next Chapter we discuss these power spectra for ΛCDM and the effective dark energy
fluid.
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Chapter 8

Results and Discussion

In this chapter we use our general result (7.20)-(7.32) for the galaxy power spectrum in the
(Q, η) parametrization to study the predictions of the dark energy fluid model discussed at
the end of Chapter 5. Since we are interested in the Universe on late times, we will assume
that it contains only two components; a matter fluid with w = δp = 0 (i.e. mostly composed
by cold dark matter) and an effective dark energy fluid which is parametrized by two degrees
of freedom: an equation of state parameter w ∼ −1 and sound speed c2

s.

For testing this model we consider the cases c2
s = {0, 10−6, 10−4, 10−2, 1} and the results

for each one are compared with respect to a fiducial ΛCDM cosmology (at this stage we
ignore viscosity terms, i.e. η = 0). The cosmological parameters used are shown in Table 8.1.
For the ΛCDM case we consider the same set of parameters except for the EoS parameter,
which is replaced by w = −1 in order to actually describe a cosmological constant Λ.

parameter symbol value
Baryon density today Ωb 0.05
Cold dark matter density today Ωc 0.27
Dark energy density today ΩΛ 0.68
Optical depth due to reionization τ 0.1
Scalar spectrum index ns 0.96
Primordial curvature perturbation 109As 2.1
Expansion rate today H0 67
Equation of state parameter w -0.8

Table 8.1: Cosmological parameters used for the effective dark energy fluid model. For
the fiducial ΛCDM cosmology we consider the same set except for the equation of state
parameter, which is replaced by w = −1.

Notice that the transfer functions at zero redshift T (k) are the only numerical input
entering in the Cl’s (7.20)-(7.32) . We compute these with MGCAMB code [62] for the dark
energy model, and with CAMB code [64] for ΛCDM, both in the linear regime (no Halofit).
We also normalize the growth function in all cases to be unity during matter domination era,
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Figure 8.1: Angular power spectrum for c2
s = 1 (solid line) and ΛCDM (dashed line) using

(8.1). The different colours represent each effect: red (density), blue (RSD), cyan (Doppler),
magenta (lensing), black (local potentials), brown (Shapiro time-delay) and black (ISW).
The apparent spikes are due to the C`’s crossing zero (we plot absolute values).

where the features of the dark energy fluid have not yet manifested1, i.e. G(a = 10−3, k) = 1.

In order to build some intuition about the angular power spectra let us start by plotting
all the contributions (7.20)-(7.32) at different redshifts for the various sound speed cases
together with ΛCDM. For any given effect shown in Fig. 8.1 we plot its autocorrelation as
well as the cross-correlation with the intrinsic density fluctuation, i.e.

Ci
` = Cii

` + 2CiD
` , (8.1)

where i labels any effect except for D itself. Unlike autocorrelations, cross-correlations may
take negative values, and these are responsible for the spikes that appear in some of the
effects, where Ci

` < 0.

Figure 8.1 (and the subsequent figures up to Fig 8.5) shows a clear hierarchy in the
different contributions to the total power spectrum. The intrinsic density fluctuation and
redshift-space distortion represent the largest contributions at all redshifts, while the rest of

1Alternatively, one may choose to normalize the growth rate of structures at the present.
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Figure 8.2: Angular power spectrum for c2
s = 10−2 (solid line) and ΛCDM (dashed line) using

(8.1). The different colours represent each effect: red (density), blue (RSD), cyan (Doppler),
magenta (lensing), black (local potentials), brown (Shapiro time-delay) and black (ISW).
The apparent spikes are due to the C`’s crossing zero (we plot absolute values).

the terms remain subdominant in every case, although their relative magnitudes change. We
find that the least prominent contributions to the total power spectrum come from terms
related to the metric perturbations, i.e. the relativistic effects, which we have divided into
local potential terms, Shapiro time-delay effect and ISW effect, the latter two corresponding
to integrated terms.

Naturally, the amplitude of the matter density fluctuations decreases with z since the
universe is more homogeneous in the past. Since in Figs 8.1 to 8.5 every term includes
its cross-correlation with density, this implies that their overall amplitudes are also smaller
for increasing z. However, the autocorrelation of some of the effects can be more relevant
in the past, and then its interplay with the cross-correlation may cause that, even if the
total amplitude of such contributions decrease, their relative weight with respect to density
fluctuations in fact increases, as shown in Fig 8.1.

We remark that terms which are integrated along the line of sight, i.e. gravitational
lensing, Shapiro time-delay and ISW effect are suppressed at low redshift with respect to
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Figure 8.3: Angular power spectrum for c2
s = 10−4 (solid line) and ΛCDM (dashed line) using

(8.1). The different colours represent each effect: red (density), blue (RSD), cyan (Doppler),
magenta (lensing), black (local potentials), brown (Shapiro time-delay) and black (ISW).
The apparent spikes are due to the C`’s crossing zero (we plot absolute values).

local terms, which dominate the total matter clustering signal. In fact, Fig 8.1 shows that
the local potentials term is the more prominent effect among the relativistic terms at all
redshifts, and it even surpasses Doppler at z = 3, while the Shapiro time-delay and ISW
effect are the weakest signals and remain several orders of magnitude below the others at all
redshifts.

At low redshift we find that the Doppler effect dominates over the local potentials and
gravitational lensing signals, since the peculiar velocities are more relevant for nearby objects.
However, at z = 0.5 the former only dominates at very large scales (small `) and the amplitude
of these three effects becomes comparable at ` ∼ 35. At z = 1 they are of similar order even
at small `, and for z = 3 the lensing signal dominates over Doppler effect at all scales. Since
gravitational lensing is an integrated effect it grows toward higher redshift as the source is
more distant and the light is more likely to be deflected by the presence of inhomogeneities.

Since we can identify this clear hierarchy of contributions to the power spectrum spanning
several orders of magnitude, we will study the imprints of the dark energy fluid model in the
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Figure 8.4: Angular power spectrum for c2
s = 10−6 (solid line) and ΛCDM (dashed line) using

(8.1). The different colours represent each effect: red (density), blue (RSD), cyan (Doppler),
magenta (lensing), black (local potentials), brown (Shapiro time-delay) and black (ISW).
The apparent spikes are due to the C`’s crossing zero (we plot absolute values).

power spectrum by analyzing each effect individually. In order to quantify possible deviations
from ΛCDM, we define the relative power spectrum of each effect as

∆Ci
` = 1− Ci

`(DE)

Ci
`(Λ)

, (8.2)

where Ci
`(DE) and Ci

`(Λ) are the power spectra for a given effect calculated with the dark
energy model and ΛCDM, respectively. We note that, as a way to disentangle the origin of
possible deviations from ΛCDM, in (8.2) we only consider pure effects, i.e. without including
its cross-correlation with density, contrary to Figs 8.1 to 8.5.

At this point it is worthwhile to remark that, as shown in Figure 8.1, the angular power
spectrum of the c2

s = 1 model is not completely equivalent to that of ΛCDM as one might
expect in principle. Even if in both models the dark energy component is completely homoge-
neous, the dark energy fluid has w = −0.8 and then the expansion history of this cosmology
is different from ΛCDM (w = −1). As a consequence, at the background level the comoving
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Figure 8.5: Angular power spectrum for c2
s = 0 (solid line) and ΛCDM (dashed line) using

(8.1). The different colours represent each effect: red (density), blue (RSD), cyan (Doppler),
magenta (lensing), black (local potentials), brown (Shapiro time-delay) and black (ISW).
The apparent spikes are due to the C`’s crossing zero (we plot absolute values).

distance to the source r(zs) differ in ∼ 1% at z = 0.1 (nearby objects), and about ∼ 4% at
z = 2, since at this redshift we are completely taking into account the different dark energy
domination eras. On the other hand, the estimates on the (conformal) age of the universe
τ0 differ in ∼ 3%, but since all the C`’s (7.20)-(7.32) depend on τns−1

0 , the deviation arising
from this factor becomes less than 0.1% (for ns = 0.96).

At the perturbative level, the amplitude of the transfer function at z = 0 (or equivalently
the matter power spectrum today P (k)) represents the major source of relative difference
with respect ΛCDM which also arise from the different equation of state parameters. This
amplitude is suppressed for greater w (i.e. closer to zero), as in such case the universe has
less time to evolve and form new structures. Naturally, the different sound speeds are also
imprinted in T (k) since the matter power spectrum is enhanced by the presence of dark
fluid clustering. In general, even if the interplay of Q, G and T (k) might approximate the
behaviour of ΛCDM in some cases, background differences arising from r(z) and τ0 will
persist.

In order to keep track of the relative intensity of possible deviations it is also useful to
quantify the relative power spectrum of each effect with respect to the total signal predicted
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by ΛCDM. Following (8.1), this is given by

∆Ci−tot
` =

Ci
`(DE)− Ci

`(Λ)

Ctot
` (Λ)

, (8.3)

where the terms in the numerator represent the contributions coming from a given effect, but
this time we include their respective cross-correlations with density, and Ctot

` (Λ) correspond
to the power spectrum of ΛCDM with all contributions in (7.20)-(7.32).

Figure 8.6 shows the fractional deviations obtained with (8.3) for the five different sound
speed cases using the same colour nomenclature for each effect as in Fig 8.1. We find that the
intrinsic density fluctuations (red) and redshift-space distortion (blue) represent the largest
weighted deviations in all cases. At z = 0.1 the strongest contributions come from the latter
effect, specially at large scales, where the cases c2

s = 0 and c2
s = 10−6 show the strongest

departures. At higher z the redshift-space distortions represent a larger contribution to the
total signal than density in models with sound speeds close to unity. On the other hand, the
relative weight of deviations in Doppler and lensing terms remain small at all redshifts.

Regarding the relativistic effects, we find that the local potential terms (black) contribute
more strongly at small ` (large scales), and their relative weight decays quickly towards small
scales. The other two relativistic effects, i.e. Shapiro time-delay (brown) and ISW (orange)
remain completely subdominant with respect to the full signal at all redshifts, which implies
that they are the most difficult to extract from the total power spectrum.

8.1 Standard Effects

In this section we start by discussing the angular power spectra of the standard terms, i.e.
those for the intrinsic density fluctuations, redshift-space distortions, Doppler effect and
gravitational lensing. Figure 8.7 shows the relative deviations with respect to ΛCDM for
each pure effect, as obtained with (8.2), for the extreme cases c2

s = 1 and c2
s = 0. Other

sound speed cases lie within the shown curves.

Figure 8.7a shows that from the standard terms, the Doppler effect (cyan) and redshift-
space distortion (blue) are the most susceptible to deviations from ΛCDM, but gravitational
lensing deviations (magenta) can become considerable at higher redshifts.

8.1.1 Matter density

Let us next analyze each standard effect separately. The first term in this set is the intrinsic
density fluctuations, which is the leading contribution to the total signal. Its angular power
spectrum is shown in Fig 8.8.
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Figure 8.6: Relative power spectrum for all effects (including cross-correlations with density)
with respect to the total ΛCDM signal obtained with (8.3). Each model is represented by
a different line style: solid (c2

s = 1), dashed (c2
s = 10−2), dotted (c2

s = 10−4), dot-dashed
(c2
s = 10−6), thin-dashed (c2

s = 0). The different colours represent each effect: red (density),
blue (RSD), cyan (Doppler), magenta (lensing), black (local potentials), brown (Shapiro
time-delay) and black (ISW).
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Figure 8.8: Relative matter density power spectrum at different source redshifts.
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Figure 8.7: Relative power spectrum for the standard (pure) effects at different source red-
shifts for c2

s = 1 (solid line) and c2
s = 0 (dashed line). The different colors represent each

effect: red (density), blue (RSD), cyan (Doppler) and magenta (lensing).

Figure 8.8a shows that at z = 0.1, the amplitude of the matter power spectrum is smaller
than in ΛCDM (corresponding to a positive ∆C` due to our sign convention in (8.2)). As
it is expected, the case of dark energy with c2

s = 1 deviates the most from ΛCDM since
the amplitudes of both present growth rate G(z = 0, k) and T (k) are the smallest for this
model. At this point we can remark that a lower sound speed implies more clustering of the
dark energy fluid, which tend to compensate the suppression of T (k) for w = −0.8 at low
z. Consequently, for low c2

s the amplitude of the matter power spectrum becomes closer to
ΛCDM than for high sound speeds.

The general picture can be understood considering Fig 8.9, which shows the evolution of
the growth function G and the dark energy density ΩDE(a) = (1 − Ωm)a−3(1+w)/(H/H0)2.
Recall that the growth rate of structures G becomes suppressed when the universe leaves the
matter domination era and dark energy start to take over, as Fig 8.9b shows for different
models. Since the dark energy fluid has w = −0.8 the dark energy domination era begins
earlier than in ΛCDM, as shown in Fig 8.9a, which results in less time for structures in the
universe to form, and consequently lower T (k) and P (k) at the present day. From Fig 8.8a we
find that at z = 0.1 the cases c2

s = 10−2 and c2
s = 10−4 are very similar, while the behaviour
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of c2
s = 10−6 is closer to c2

s = 0. As it is shown in Fig 8.9b, towards higher redshift the gap
among growth rates reduces and deviations from ΛCDM are smaller. However, the difference
in comoving distance with respect to w = −1 is greater than at z = 0.1, which imprints a
sizeable contribution to deviations at z = 2, as shown in Fig 8.8b.

The presence of wiggles in the relative power spectrum in Fig 8.8a for scales ` & 15 are
due to the misalignments of baryon acoustic oscillations (BAOs) in the dark energy fluid
model with respect to ΛCDM caused by the different expansion histories, as also pointed
out in [43]. In fact, if we consider the BAO scale rBAO ≈ 110 Mpc/h [65], we expect this
to be imprinted in the multipoles `BAO(z) = 2πr(z)/rBAO, which at z = 0.1 correspond to
`BAO ∼ 12, while at z = 2 we find `BAO ∼ 150, i.e. beyond the range of our analysis.
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Figure 8.9: Comparison of matter-energy densities and growth functions for dark energy (w =
−0.8) and ΛCDM. In all cases the latter is normalized to unity during matter domination
era.

8.1.2 Redshift-space Distortion

Let us now analyze deviations in Redshift-space distortion, which is the next to leading
contribution to the total power spectrum.

From Fig 8.10a we find that at z = 0.1 the deviations in this effect are strongly sensitive
to the clustering properties of the dark energy fluid. For the extreme cases c2

s = 1 and c2
s = 0

we observe the same deviations at all scales since the fluid does not single out any k in these
particular cases, but for 0 < c2

s < 1 the deviations are higher at larger scales (small `),
where the dark fluid can cluster. This extra clustering then enhances the peculiar velocities
of normal matter, causing a greater redshift-space distortion than in ΛCDM.

However, contrary to density fluctuations shown in Fig 8.8a,we note that the RSD power
spectrum of some models is larger that in ΛCDM (i.e. ∆C` < 0). This is due to the fact that
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Figure 8.10: Relative redshift-space distortion power spectrum at different source redshifts.

if the sound speed is too high the previous effect is not enough to counterbalance the fact
that normal matter has had less time to cluster in the dark fluid model (due to w = −0.8),
and then the RSD power spectrum in this case is still lower than in ΛCDM, as Fig 8.10a
shows for c2

s = 1 and c2
s = 10−2.

On the other hand, unlike CDD
` , the redshift-space distortion is sensitive to the growth

factor G and the clustering parameter Q through both GQ > 0 and ∂(GQ)/∂a < 0, which
then compete against each other, see (7.21). At low redshift the term ∂(GQ)/∂a has its
biggest impact, since the dark energy fluid start to cluster at late times and the growth rate
of structures keeps decreasing. At high redshift, G tends to approach a constant value (recall
that G→ 1 as we move into matter domination era), so that ∂(GQ)/∂a is smaller, and the
contribution coming from the product GQ is greater. Then, at z = 2 the deviations predicted
for redshift space distortions are considerably smaller than at low redshift, as shown in Fig
8.10b.

8.1.3 Doppler Effect

The next contribution to the total power spectrum in the hierarchy comes from the Doppler
effect. Its relative power spectrum is shown in Fig 8.11. Figure 8.11a shows that at z = 0.1
deviations in this effect behave very similar to redshift-space distortions for the same redshift
(Fig 8.10a), which is not completely unexpected since both effects probe the peculiar velocities
of the matter distribution.

As shown in (7.23), the Doppler effect is sensitive to both GQ and ∂(GQ)/∂a, similarly to
redshift-space distortions, but it also depends on the expansion rate of the universe through
the overall factor (Ḣ/H + 2/rs)

2. In fact, at z = 2 the combination Ḣ/H has a relative
difference of about 17% with respect to ΛCDM, which enhances deviations in all models
at higher redshifts with respect to redshift-space distortions, as shown in 8.11b, since such
feature is not present in the latter effect. Then, it is clear that at z = 0.1 the structure of
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Figure 8.11: Relative Doppler effect power spectrum at different source redshifts.

each curve in Fig 8.11a is very similar to RSD in Fig 8.10a, since deviations in the previous
terms become suppressed at such low redshift.

8.1.4 Lensing

The last standard effect in the hierarchy is the gravitational lensing signal, whose power
spectrum is shown in Fig 8.12.
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Figure 8.12: Relative lensing power spectrum at different source redshifts.

From Fig 8.12a we find that at low redshift deviations in lensing behave in a qualitative
similar way to redshift-space distortion and Doppler effect, see Fig 8.11a. However, the
amplitudes of lensing fluctuations are considerably smaller than the previous effects for the
lowest sound speed cases; c2

s = 0, c2
s = 10−6 and c2

s = 10−4, i.e. it is not strongly enhanced
by the dark energy fluid clustering. We can understand this by noting that, contrary to the
effects discussed so far, lensing is not a local effect but it tracks the gravitational potentials
between source and observer. Then, for nearby sources (small z) we can only explore a
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relatively small portion of the late time universe. In contrast, for redshift-space distortions
and Doppler, the peculiar velocities are more important at low z, and then deviations are
expected to be higher.

On the other hand, comparing Fig 8.12a and Fig 8.12b we find that deviations in lensing
do not decrease in amplitude as quickly as in the previous effects. Since this effect integrates
along the line of sight, increasing z allows this effect to probe a larger portion of the universe.
In particular, by choosing z = 2 we are taking into account all dark energy domination era,
where deviations between the dark energy fluid and Λ are more prominent, and then we
expect to find sizeable deviations in the lensing power spectrum such as in Fig 8.12b.

8.2 Relativistic effects

In this section we continue our discussion of each effect in the total power spectrum, this
time considering the imprints of the dark energy model in the relativistic effects, which are
the subdominant contributions to the full signal. Figure 8.13 shows deviations at various
source redshifts for the extreme cases c2

s = 1 and c2
s = 0.
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Figure 8.13: Power spectrum for the standard effects at different source redshifts for c2
s = 1

(solid line) and c2
s = 0 (dashed line). The different colors represent each effect: black (local

potentials), brown (Shapiro time-delay) and orange (ISW effect).
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We can clearly observe that the ISW effect (orange) is very sensitive to deviations from
ΛCDM, as also remarked in previous studies on scalar-tensor theories [43]. Naturally, if the
source is located at a higher redshift the ISW effect is able to track the evolution of Ψ̇ and Φ̇
over a larger period of time, although the contributions are successively smaller beyond higher
redshifts since the potentials stay constant in the matter-dominated era. On the other hand
at small redshift the ISW effect is able to probe only a fraction of the dark energy dominated
universe, and the magnitude of its deviations are comparable to the other relativistic effects.

It is interesting to note that, despite that the Shapiro time-delay (brown) also correspond
to an integrated effect between source and observer, it does not show deviations as large as
ISW at any redshift, which means that the power spectrum is more sensitive to how the
potentials vary over time, i.e. their rates of change (Φ̇+Ψ̇), rather than their evolution alone
probed by the Shapiro time-delay through (Φ + Ψ). In fact, deviations in the local potential
terms (black) are of roughly the same magnitude as in the Shapiro time-delay at all redshifts.

8.2.1 Local Potentials

We now consider each relativistic effect individually, as we did in the previous Section to
study the standard effects. The relative power spectrum for the local gravitational potential
terms is shown in Fig 8.14, which is the most dominant signal from this class.
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Figure 8.14: Relative local gravitational potentials power spectrum at different source red-
shifts.

Comparing Fig 8.14a with Fig 8.10a and Fig 8.11a, we find that the local potentials behave
in a qualitative similar way to redshift-space distortion and Doppler effect at z = 0.1. In
fact, this effect also depends on GQ and ∂(GQ)/∂a, although in a different combination, see
(7.27). However, deviations observed in this case are not as strong as in these standard effects
since contrary to terms that depend on peculiar velocities, the local potential terms probe Ψ
and Φ directly (and not their spatial variations). On the other hand, Fig 8.14b shows that at
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z = 2 deviations in the potential terms spike at ultra-large scales (` ∼ 3). While this would
be a clear signal of departures from ΛCDM, it does not allow to clearly discriminate between
the lowest sound speed cases.

8.2.2 Shapiro time-delay effect

We next consider the gravitational time delay effect, whose relative power spectrum at various
redshifts is shown in Fig 8.15.
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Figure 8.15: Relative Shapiro time-delay power spectrum at different source redshifts.

We recall that this effect probes the combination (Φ + Ψ) = 2Φ (in absence of anisotropic
stress) integrated along the line of sight. From Fig 8.15a we find that at low redshift this
effect closely resembles the potential terms shown in Fig (8.14a). This is because the latter
also probes 2Φ, but locally, and then for nearby sources both effects carry roughly the same
information.

Despite of looking at a more distant source, Fig 8.15b shows that at higher redshift
deviations in this effect do not increase considerably, and in fact there is an overall decrease.
Even if for higher z the Shapiro time-delay is larger in absolute magnitude since photons
travel more distance and are consequently more delayed by the presence of gravitational
potentials, the relative deviation with respect to ΛCDM gets nonetheless smaller since the
differences in the cosmological models reduce towards matter domination era, i.e. deviations
in the time-delay arising by the dark energy model at late times lose weight when we integrate
over a larger redshift range. On the other hand, if we consider the late time universe, where
both dark energy models are different the relative deviation becomes higher.
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8.2.3 Integrated Sachs-Wolfe Effect

The last contribution in the hierarchy of effects comes from the Integrated Sachs-Wolfe effect.
Its relative power spectrum is shown in Fig 8.16.

c2
s=1

c2
s=10

-2

c2
s=10

-4

c2
s=10

-6

c2
s=0

20 40 60 80 100

0

20

40

60

80

ℓ

ℓ(
ℓ+

1
)/

2
π
Δ

C
ℓ
[%

]

(a) z = 0.1

20 40 60 80 100

-80

-60

-40

-20

0

20

ℓ

ℓ(
ℓ+

1
)/

2
π
Δ

C
ℓ
[%

]

(b) z = 2

Figure 8.16: Relative power spectrum for the Integrated Sachs-Wolfe effect at different source
redshifts.

We find that deviations in the ISW effect at z = 0.1 can be considerably larger than
those in the previous two relativistic effects, despite that we are integrating in a relatively
small redshift range. This is because that, just like the growth rate, the metric potentials are
quickly changing in the late time universe due to the extra dark energy clustering, and then
the power spectrum is more sensitive to the rate of change (Φ̇ + Ψ̇) = 2Φ̇ than to Φ itself.

At high redshift we find large deviations from ΛCDM, despite of ISW being the smallest
contribution to the total power spectrum, reaching up to ∼ 90% of relative difference for
z = 2. The high sensitivity in this effect is due to the combination of the next two facts; firstly,
from all the effects, this is the only one that probes directly the combination ∂(GQ)/∂a,
whose deviations with respect to ΛCDM are stronger than those from GQ itself, as we have
discussed for redshift-space distortions and Doppler effect. In fact, it has been remarked that
the rate of change ∂G/∂a is an excellent discriminator of dark energy models [66], as well
as ∂Q/∂a [33, 58]. Secondly, as shown in (7.31), deviations in the ISW effect also become
enhanced by the presence of H and Ḣ, similar to our remarks on the Doppler effect in Sec
8.1.3. This means that ISW also receives a direct background contribution which depends
on the cosmological model.

Since in ∆C` we compare the dark energy angular power spectrum relative to ΛCDM,
according to (7.31) the overall enhancement of the ISW effect at the perturbative level is
governed by the magnification parameter

A ≡ ∂(G(a, k)Q(a, k))/∂a

∂G/∂a
= Q+

∂Q

∂a

G

∂G/∂a
. (8.4)

By construction, in ΛCDM (or any smooth dark energy model) we have A = 1 since QΛ = 1
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and ∂QΛ/∂a = 0. We plot the magnification parameter (8.4) in Fig 8.17 for the different
sound speed cases.

For high sound speeds the perturbations in the dark energy fluid enter the sound horizon
at early times and stay small until today, while at low sound speeds most modes stay outside
the sound horizon and the fluid can cluster. In the latter case, the dark energy perturbations
change A by about ∼ 70% for z ∼ 0.1, consistently with the ISW deviations shown in Fig
8.16a. Clearly, this effect cannot come from Q alone since this quantity deviates about 16%
with respect to Λ at z ∼ 0.1. In fact, we find that, for relatively large sound speeds, the
’clustering rate’ ∂Q/∂a appearing in the second term of (8.4) can have an impact greater than
the clustering parameter Q itself when we compare the ISW power spectrum with respect to
a smooth dark energy component.
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Figure 8.17: Left: Evolution of the magnification parameter A for the various sound speed
cases. Right: Clustering rate ∂Q/∂a of dark energy perturbations. Both plots correspond to
the mode k = 200H0.

From the definition of Q in (6.4) we have that ∂Q/∂a ≈ (Q − 1)/a, so that this factor
grows at low redshift, as shown in Fig 8.17. On the other hand, even if this term decreases
towards high redshift, it gets substantially enhanced by the factor (G−1∂G/∂a)−1 appearing
in (8.4). From the growth factor fit formula (3.69) we know that

1

G

dG

da
=

Ωm(a)γ − 1

a
. (8.5)

Then, at high redshift we have ∂G/∂a << G, so that the contribution coming from ∂Q/∂a
gets strongly boosted by the inverse of the factor (8.5). On the other hand, at low redshift
(8.5) implies that |∂G/∂a| ≈ G but now the clustering rate ∂Q/∂a increases, so we also find
a sizeable contribution to A.

Notice that, as shown in Fig 8.17, in terms of sound speed the magnification parameter
behaves in opposite way to T (k), i.e. lower c2

s implies stronger deviations with respect to
ΛCDM. Since the ISW power spectrum (7.31) depends on the product TA, the hierarchy of
sound speed cases is broken in this effect. In fact, at every redshift included in Fig 8.16 we
can observe that ISW deviations for 0 < c2

s < 1 do not lie between c2
s = 0 and c2

s = 1. In
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particular, we find that the case c2
s = 10−2 is below c2

s = 1 at all redshifts, and shows the
largest deviations from ΛCDM at z = 2.

In order to have an overview of the results shown in the two previous Sections we include
Table 8.2, which gives a summary of the maximum deviations found in each effect for the
effective dark energy fluid model relative to ΛCDM. For complementing the w = −0.8 case
considered in the previous discussion we also show the results for the w = −0.95 case, which is
a more realistic value if we consider observational constraints on the EoS parameter [45] and
also that upcoming galaxy surveys like DESI and Euclid aim at testing the power spectrum
at the ∼ 1% level accuracy.

w = −0.8 w = −0.95

effect z = 0.1 z = 2 z = 0.1 z = 2

Density 15 4 3 1
RSD 115 9 25 1
Doppler 115 15 25 5
Lensing 18 17 4 5
Local P. 20 15 5 3
Shapiro 20 18 4 4
ISW 80 80 27 18

Table 8.2: Summary of maximum relative deviations (rough percentages) with respect to
ΛCDM in standard and relativistic effects for the effective dark energy fluid model considering
w = −0.8 and w = −0.95.

8.3 Viscosity effects

To finish our discussion, in this Section we will briefly comment about the imprints of a
potential dark energy fluid viscosity on the angular power spectrum. Following our discussion
in Sec. 6.2, in term of our parametrization this implies the presence of a new sound speed
parameter c2

v which give rise to a non-vanishing anisotropic stress, η 6= 0, so that the metric
potentials Φ and Ψ are no longer equivalent. Mathematically, this case takes full advantage
of our calculations (7.20)-(7.32) which were derived generically.

Equation (6.5) shows that the viscosity term introduces an effective sound speed ĉ2
s given

by a combination of c2
s and c2

v, which increases the possible cases to explore the degrees of
freedom in our model. Here we consider two scenarios: the combination (c2

s, c
2
v) = (10−6, 10−3)

and (c2
s, c

2
v) = (0, 10−5), corresponding to the effective sound speeds ĉ2

s ≈ 10−2 and ĉ2
s ≈ 10−4,

respectively. As we discussed in Sec. 6.2, the cases where c2
s << c2

v are more likely to exhibit
the potential behaviour of the viscosity term in the fluid.

Figure 8.18 shows the relative power spectra for the standard effects with respect to ΛCDM
for the two cases above mentioned, as well as for the cases c2

s = 10−2 and c2
s = 10−4 (which

were included in the previous Sections). In this way we can compare the viscosity cases to
their equivalent counterparts with η = 0 but featuring the same effective sound speed c2

s.
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Figure 8.18: Deviations in standard effects with respect to ΛCDM. Left panels: (c2
s, c

2
v) =

(10−6, 10−3) (solid line) and c2
s = 10−2 (dashed line). Right panels: (c2

s, c
2
v) = (0, 10−5) (solid

line) and c2
s = 10−4 (dashed line).

Notice that according to (6.4) the clustering parameter Q does not depend on the intrinsic
sound speeds but on ĉ2

s, so that it is degenerated with respect to c2
s and c2

v. However, (6.8)
shows that the growth index γ (which appears in the growth rate G) does depend directly
on c2

v through η. From Fig 8.18 we find that, nonetheless, the standard effects cannot
distinguish between viscosity and non-viscosity scenarios as the power spectra for the same
effective sound speeds are completely equivalent, exhibiting no appreciable deviation at any
redshift.

On the other hand, Fig 8.19 shows that the ISW effect is partially sensitive to the viscosity
term c2

v and is able to reveal its features at high redshift and very large scales. In the same
fashion as we discussed in the previous Section, this effect has the advantage of probing the
term rate of change in the anisotropic stress ∂η/∂a in a cumulative way. Since in ΛCDM
we have η = 0 this new contribution, despite being small, is able to enhance the ISW power
spectrum in combination with the magnification factor A given in (8.4), thus introducing
sizeable deviations from the case where ĉ2

s = c2
s. Comparing both cases shown in Fig 8.19 we

find that for cs = 0 the presence of viscosity is best detected, even if deviations with respect
to ΛCDM are lower than for ĉ2

s = 10−2.
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Figure 8.19: Deviations in relativistic effects with respect to ΛCDM. Left panels: (c2
s, c

2
v) =

(10−6, 10−3) (solid line) and c2
s = 10−2 (dashed line). Right panels: (c2

s, c
2
v) = (0, 10−5) (solid

line) and c2
s = 10−4 (dashed line).
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Figure 8.20: Rate of change of the anisotropic stress due to the presence of viscosity. Left:
perturbation mode k = 200H0. Right: perturbation mode k = 10H0.
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Figure 8.20 shows the rate of change in the anisotropic stress ∂η/∂a for two different
perturbation modes. We note that this is roughly two orders of magnitude larger (in absolute
value) for the perturbation mode k = 10H0 ∼ 10−3Mpc−1 than for k = 200H0 ∼ 10−2Mpc−1,
which is consistent with the fact that anisotropic stress effects at very large scales are able
imprint its features in the ISW power spectrum at low multipoles (` ≤ 5) for z = 2.
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Conclusion

In this work we have studied the observed angular power spectrum of a quintessence-like ef-
fective dark energy fluid model which is characterized by two degrees of freedom; an equation
of state parameter w 6= 1 and a sound speed 0 ≤ c2

s ≤ 1. We explored five different sound
speed cases between c2

s = 0 and c2
s = 1, and we have compared the predictions against a

fiducial ΛCDM cosmology up to multipoles ` ∼ 100 and redshift z = 2.

We have found that, overall, deviations from ΛCDM are stronger at low redshift, since
the dark energy fluid starts to cluster more effectively during the late time universe. We
find that matter density fluctuations deviates up to ∼ 15% at z = 0.1, while redshift-space
distortion and Doppler effect are enhanced up to ∼ 115% with respect to ΛCDM for c2

s = 0,
where the dark energy fluid can cluster at all scales. At higher redshifts, deviations in these
terms decrease and remain bounded, except for gravitational lensing which shows deviations
of up to 20% at z = 2 as it is an integrated effect from source to observer. For the relativistic
effects we have shown that the Shapiro time-delay and the local potential terms behave in a
qualitatively similar way, deviating up to ∼ 20% at low redshift. The latter can also deviate
at very large scales at higher redshifts. Finally, the integrated Sachs-Wolfe effect shows the
most impact from the dark energy fluid, as its deviations may reach up to ∼ 80% of relative
difference with respect to ΛCDM around z = 2 due to its capacity to probe cumulatively not
only the rate of growth of G itself but also its evolution, which is consistent with previous
studies [33, 66]. In addition, this effect might be sensible to the presence of viscosity in the
dark energy fluid at high redshift, converting it in a particularly valuable tool for testing and
constraining dark energy models using galaxy surveys. However, the amplitude of this effect
is the weakest of the full power spectrum, and then it needs to be extracted or isolated from
the full signal very carefully.

It is important to remind that in order to make the effect of dark energy perturbations
stronger in the studied model we have used a value of the equation of state parameter
w = −0.8. For values close enough to w = −1 the effects on the observables due to the
dark energy perturbations are drastically reduced, as all the phenomenological functions
used (e.g. Q and η) have a contribution which is modulated by the combination (1 + w).
Likewise, in such case the amplitude of the power spectrum (or transfer functions) would
become closer to ΛCDM. At the background level this also implies a smaller difference in
the comoving distances and expansion histories. We also emphasize that the angular power
spectrum calculated adopting the (Q, η) parametrization in Chapter 7 is not restricted to the
dark energy fluid description studied in this thesis but it allows to test a broad class of dark
energy and modified gravity models that might be taken into account in such a framework,
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as f(R) gravity and DGP model, among others.

Even if the observational evidence keeps reducing the range of viable dark energy models
[50], and thus providing additional support to ΛCDM, the study of this kind of theories and
their observational consequences remain transcendent not only as an attempt to unveil the
physical origin of the accelerated cosmic expansion, but also to keep pushing the boundaries
of our current cosmological picture and testing the concordance model in all regimes.
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Appendix A

Conventions

In Chapter 4 we work with the general representation of the metric, i.e. without choosing
any particular gauge. This is useful for determining whether a given expression is gauge
invariant and hence physically observable. The perturbed FLRW metric is

ds2 = a2
(
− (1 + 2A)dτ 2 − 2Bidτdx

i + [(1 + 2HL)δij + 2HT ij + 2Hij] dx
idxj

)
, (A.1)

where A, HL, Bi and HTij are scalar degrees of freedom, two of which can be removed by
gauge transformations, and Hij is the transverse traceless gravitational wave term, which is
set to zero throughout the present analysis. The metric perturbations Bi and HT ij in terms
of their Fourier transforms are

Bi(k, t) = −1

k
∂iB , (A.2)

HT ij(k, t) =
1

k2
∂i∂jHT +

1

3
δijHT . (A.3)

The variables Φ and Ψ represent the gauge invariant Bardeen potentials [38], which are given
by

Φ ≡ −HL −
1

3
HT +

H
k2
ḢL −

H
k
B , (A.4)

Ψ ≡ A+
H
k
B +

1

k
Ḃ − H

k2
ḢL −

1

k2
ḦT . (A.5)

In the Newtonian (or longitudinal) gauge we have that B = HT = 0 and these potentials
reduce to Ψ = A, Φ = −HL, so that the metric in such case takes the well-known form

ds2 = a2[−(1 + 2Ψ)dτ 2 + (1− 2Φ)δijdx
idxj] . (A.6)

The Christoffel symbols (connection coefficients) are given by

Γµαβ =
1

2
gµλ(∂αgλβ + ∂βgλα − ∂λgαβ) . (A.7)

With this, the Ricci tensor is computed as

Rµν = ∂αΓαµν − ∂νΓαµα + ΓββαΓαµν − ΓαµβΓβνα (A.8)

and the Ricci scalar is given by the contraction

R = gµνRµν . (A.9)
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Appendix B

Relativistic effects calculations

In this appendix we include some calculations complementing the discussion in Chapter 4.

B.1 Calculation of redshift fluctuations

As we discussed in Sec. 4.2.1, if a photon is emitted at the time ts and it is received at to,
the temperature at emission Ts and the observed temperature To are related to each other
via

To
Ts

=
ωo
ωs

=
(nµuµ)o
(nµuµ)s

=
a(ts)

a(to)
=

1

1 + z
, (B.1)

where a(ts) and a(to) are the scale factors of the universe at the time of emission and obser-
vation, respectively. Taking variations on both sides we find

δ

(
To
Ts

)
= δ

(
(nµuµ)o
(nµuµ)s

)
= δ

(
1

1 + z

)
= − 1

(1 + z)2
δz . (B.2)

The left hand side of the previous expression can be simplified further since up to first order
this can be written as

δ

(
(nµuµ)o
(nµuµ)s

)
=

1

1 + z

(
δ(nµuµ)o
(nµuµ)o

− δ(nµuµ)s
(nµuµ)s

)
≡ 1

1 + z

[
δ(nµuµ)

(nµuµ)

]o
s

. (B.3)

Then, using the right hand side of (B.2) we obtain that the redshift fluctuation is given in
terms of the four-velocity of the fluid and photon momenta as

δz = −(1 + z)

[
δ(nµuµ)

(nµuµ)

]o
s

. (B.4)

Since uµ = a−1[(1− A), vi], where vi is the peculiar velocity of the matter, once the photon
four-momentum nµ is known we can then compute the redshift fluctuation in terms of ob-
servable quantities using (B.4). Notice that at zeroth order we have n̄µūµ = n̄0ū0 = ū0 since
vi is perturbative quantity and n̄0 = 1. Then, the last factor in the above equation can be
expanded up to first order as
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δ(nµuµ)

nµuµ
=
δnµuµ + nµδuµ

nµuµ
≈ δnµūµ + n̄µδuµ

n̄0ū0

= δn0 +
δu0 + n̄iδui

ū0

. (B.5)

Finally, lowering indexes so that u0 = g0νu
ν = −(1 + A) and ui = giνu

ν = −Bi + vi, we find
that the redshift fluctuation is given by

δz = −(1 + z)
[
δn0 + A+ n̄iBi − n̄ivi

]o
s
, (B.6)

which correspond to the result presented in Sec. 4.2.1. Notice that δz depends on the
fluctuation in the time component of the photon four-momenta, δn0. Then, we next study
the µ = 0 component of the geodesic equation at first order for computing such contribution.
As discussed in Chapter 2, in term of conformal coordinates the background Christoffel
symbols vanish, then the µ = 0 component of the geodesic equation at first order is simply

dδn0

dλ
= −δΓ0

αβn̄
αn̄β . (B.7)

The perturbed quantities δΓ0
αβ written in terms of the metric perturbations are given by

δΓ0
αβ = −1

2

[
h0α,β + h0β,α − ḣαβ

]
, (B.8)

and then, integrating (B.7) from the source to the observer position, we have

δn0 = [h00 + h0jn
j]rs0 −

1

2

∫ rs

0

dλḣαβn
αnβ . (B.9)

Working out the term inside the last integral we find that

ḣαβn
αnβ = 2

[
−(Ψ + Φ) +

1

k

dḂ

dλ
+

1

k2

(
d2ḢT

dλ2
− 2

dḦT

dλ

)]
. (B.10)

Finally, substituting back into (B.6) and using the explicit form for A given by (A.5) we
arrive at our final expression for the redshift fluctuation

δz = −(1 + z)

[
−Ψ|os + V · n|os −

∫ o

s

dλ(Φ̇ + Ψ̇)

]
, (B.11)

where V ≡ v − k−1ḢT is the gauge invariant velocity potential. This is the result presented
at the end of Sec. 4.2.1.

B.2 Calculation of volume fluctuations

In this section we present the details of the calculations presented in Sec. 4.2.2. We start by
writing the volume element in terms of the observational coordinate system

dV =
√
−gεµναβuµ

∂xν

∂z

∂xα

∂θs

∂xβ

∂φs
|J |dzdθodφo (B.12)

≡ v(z, θo, φo)dzdθodφo ,

82



where |J | is the determinant of the Jacobian of the coordinate transformation going from
the angles at the source (θs, φs) to the angles at the observer (θo, φo), and εµναβ = ε[µναβ] is
the Levi-Civita symbol. In the second line of (B.12) we have introduced the density v which
determines the actual volume perturbation appearing in (4.7), i.e.

δV

V̄
=
v(z)− v̄(z)

v̄(z)
=
δv

v̄
. (B.13)

As previously discussed, in a homogeneous and isotropic FLRW universe, photons propagates
on straight lines, so that θo = θs and φo = φs. However, in the perturbed universe the obser-
vation and emission angles do not coincide. We can write the fluctuation in the observation
angle up to first order as

θs = θo + δθ , (B.14)

φs = φo + δφ . (B.15)

implying that |J | = 1 + ∂δθ/∂θ + ∂δφ/∂φ. Also, for the metric determinant we find
√
−g =

a4(1 + A + 3HL) = a4(1 + Ψ − 3Φ). The background physical volume element dV̄ = d3x̄ in
spherical coordinates is then

dV̄ (z̄) =
r̄2

(1 + z̄)4H
dz̄ sin θodθodφo . (B.16)

Here, the relation between the original differential element dr and the actual dz appearing in
this volume element is understood by recalling that at the background level a(t) = 1/(1 + z)
and along a photon geodesic we have that dr̄ = −dt (using c = 1). Then

dr̄

dz̄
= − dt

dz̄
=

ȧ

a2
=
H
a
. (B.17)

Using the previous expressions we find that the volume element v defined in the second line
of (B.12) is

v(z) = a3(1 +A+ 3HL)

[
dr

dz
r2 sin θs

(
1 +

∂δθ

∂θ
+
∂δφ

∂φ

)
−
(
A
dr̄

dz̄
+ vr

dt

dz

)
r̄2 sin θo

]
, (B.18)

where we already know the redshift perturbation δz from (B.11). At linear order we can
write the change in comoving distance r = r̄ + δr with redshift along the perturbed photon
geodesic as

dr

dz
=
dr̄

dz
+
dδr

dz̄
− dδz

dz̄

dr̄

dz̄
=

(
dr̄

dt
+
dδr

dλ
− dδz

dλ

dr̄

dz̄

)
dt

dz̄
, (B.19)

where we have used that at background level dt = dλ. The last term of the previous equation
contains the redshift-space distortion effect, which represents the largest correction to the
matter power spectrum. Now, using that dr̄ = −dt, then dr̄/dz̄ = −dt/dz̄ = H/a, and with
this the volume element becomes,

v(z) =
a4

H

[
−
(
dr̄

dt
+
dδr

dλ
− dδz

dλ

dr̄

dz̄

)
r2 sin θs + r̄2 sin θo

(
∂δθ

∂θ
+
∂δφ

∂φ
− A− vr

)]
. (B.20)
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The first term can be reduced using that up to first order r2 = r̄2 + 2r̄δr and sin θs =
sin(θo + δθ) = sin θo + cos θoδθ. Then, rearranging terms we obtain (herein after we drop the
superscript in θ and φ)

v(z) =
a4r̄2 sin θ

H
× (B.21)[

1 + 3HL +

(
cot θ +

∂

∂θ

)
δθ +

∂δφ

∂φ
− v · n + 2

δr

r
− dδr

dλ
+

1

H(1 + z̄)

dδz

dλ

]
,

where we have used that vr = v · n. Notice that the expression (B.21) is evaluated at the
observed redshift, and to obtain the fluctuation appearing in (B.13) we need to subtract the
unperturbed part v̄(z). Then, writing the observed redshift as a perturbation with respect
to a background quantity as z = z̄ + δz, the second term in the numerator can be expanded
in Taylor series as

v̄(z) ≈ v̄(z̄) +
∂v̄

∂z

∣∣∣∣
z̄

δz , (B.22)

and comparing with (B.21) we have that the background term is

v̄(z̄) =
r̄2 sin θ

(1 + z̄)4H
, (B.23)

then, taking the derivative with respect to z̄ and using the Leibniz rule for the three factors
we find that

∂v̄

∂z̄
=

v̄(z̄)

1 + z̄

(
−4 +

2

r

dr̄

dz̄
+ (1 + z̄)

1

H
dH
dz̄

)
. (B.24)

Now, using that for background quantities dr = −dt so that dH/dz̄ = (dt/dz̄)(dH/dt̄) =
−aḢ/H = −(1 + z̄)−1Ḣ/H, the previous expressions reduces to

∂v̄

∂z̄
=

v̄(z̄)

1 + z̄

(
−4 +

2

rH
+
Ḣ
H2

)
. (B.25)

Then, combining (B.18), (B.22) and (B.25) into (B.13) we find that the volume element
perturbation up to first order is given by

δv

v̄
(z) ≈ v(z)− v̄(z̄)− v̄′(z̄)δz

v̄(z̄)
= 3HL +

(
δv

v

)
Ω

− v · n + 2
δr

r
− dδr

dλ
+

1

H(1 + z̄)

dδz

dλ

− 1

1 + z̄

(
−4 +

2

rH
+
Ḣ
H2

)
δz , (B.26)

where we have defined the angular part of the volume perturbation as(
δv

v

)
Ω

≡
(

cot θ +
∂

∂θ

)
δθ +

∂δφ

∂φ
. (B.27)

Then, in order to obtain the volume fluctuation we need to compute every perturbation
appearing in the right hand side of the previous equation. We have already computed the
redshift fluctuation δz appearing in the second line of the above expression in (B.11), and
the contribution from the rightmost term in the first line can be computed by differentiating
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the former. Omitting the ’unmeasurable quantities’ evaluated at the observer position and
using the Leibniz rule for differentiating both round and square parentheses, we find

1

H(1 + z̄)

dδz

dλ
=

[
−Ψ + V · n−

∫ o

s

(
∂Φ

∂t
− ∂Ψ

∂t

)
dt

]
(B.28)

− 1

H
d

dλ

[
−Ψ + V · n−

∫ o

s

(
∂Φ

∂t
− ∂Ψ

∂t

)
dt

]
. (B.29)

Next, using that at background level n̄i∂i+∂t = d/dλ = d/dt we can differentiate the integral
term for obtaining

1

H(1 + z̄)

dδz

dλ
= −Ψ+V·n−

∫ rs

0

dλ(Φ̇−Ψ̇)− 1

H

[
−dΨ

dλ
+
d(V · n)

dλ
− d

dλ

∫ o

s

(
∂Φ

∂t
− ∂Ψ

∂t

)
dt

]
.

(B.30)
This expression is then substituted back into (B.26).

Next, we need to calculate the spatial fluctuations δr, δθ and δφ in order to construct the
final expression for the volume perturbation (B.26) in terms of observables.

As we discussed in Sec. 4.2.2 the fluctuation in the photon momenta at an arbitrary
position r, giving

δni(r) =

∫ r

0

dr′δΓiαβn̄
αn̄β . (B.31)

As previously stated, here and in the following analysis we are neglecting perturbations
evaluated at the observer position r = 0 (λ = rs) since, as already mentioned, they contribute
with an unmeasurable monopole term or a dipole term [26]. The Christoffel symbols with
upper time and spatial indexes in this metric are given by

δΓ0
αβ = −1

2

[
h0α,β + h0β,α − ḣαβ

]
, (B.32)

δΓiαβ = +
1

2
[hiα,β + hiβ,α − hαβ,i] , (B.33)

and when contracted with n̄αn̄β they yield, respectively

δΓ0
αβn̄

αn̄β = +
d

dr
(h0αn̄

α) +
1

2
ḣαβn̄

αn̄β , (B.34)

δΓiαβn̄
αn̄β = − d

dr
(hiαn̄

α)− 1

2
hαβ,in̄

αn̄β , (B.35)

Now, substituting (B.31) back into δxi = −
∫ rs

0
dλ(δni − n̄iδn0) = −

∫ rs
0
dr(δni − n̄iδn0) and

using the above expressions, we find

δxi = −
∫ rs

0

dr

[ ∫ r

0

dr′
(
− d

dr′
(hiαn̄

α)−1

2
hαβ,in̄

αn̄β
)
−n̄i

∫ r

0

dr′
(
d

dr′
(h0αn̄

α)+
1

2
ḣαβn̄

αn̄β
)]

,

(B.36)
rearranging terms we find

δxi =

∫ rs

0

dr

∫ r

0

dr′
d

dr′

(
hiαn̄

α + h0αn̄
in̄α
)

+
1

2

∫ rs

0

dr

∫ r

0

dr′
(
hαβ,i + ḣαβn̄

i

)
n̄αn̄β . (B.37)
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The total derivative in the first term allows to get rid of one of the integrals, while the
integrals of the second term can be permuted identifying correctly the integration limits as∫ rs

0

dr

∫ r

0

dr′ =

∫ rs

0

dr′
∫ rs

r′
dr , (B.38)

which allows to reduce the second term to∫ rs

0

dr

∫ r

0

dr′
(
hαβ,i + ḣαβn̄

i

)
n̄αn̄β =

∫ rs

0

dr′(rs − r′)
(
hαβ,i + ḣαβn̄

i

)
n̄αn̄β . (B.39)

Then, after dropping the primes in the latter term, the spatial fluctuation δxi is given by

δxi =

∫ rs

0

dr

(
hiαn̄

α + h0αn̄
in̄α
)

+
1

2

∫ rs

0

dr(rs − r)
(
hαβ,i + ḣαβn̄

i

)
n̄αn̄β . (B.40)

We can now compute δr ≡ δxieri = −δxin̄i. Using that n̄in̄i = 1, n̄i = n̄i and n̄i∂i + ∂0 =
d/dλ = −d/dr we find that

δr = −
∫ rs

0

dr

(
hiαn̄

in̄α + h0αn̄
α

)
+

1

2

∫ rs

0

dr(rs − r)
d

dr

(
hαβn̄

αn̄β
)

(B.41)

= −
∫ rs

0

dr

(
hαβn̄

αn̄β
)

+
1

2

∫ rs

0

dr(rs − r)
d

dr

(
hαβn̄

αn̄β
)
. (B.42)

The second integral can be reduced by using integration by parts, i.e. passing the total
derivative to the first factor. Since d(rs − r)/dr = −1 this term is carried out as∫ rs

0

dr(rs − r)
d

dr

(
hαβn̄

αn̄β
)

= (rs − r)
(
hαβn̄

αn̄β
)∣∣∣rs

0
−
∫ rs

0

dr

(
hαβn̄

αn̄β
)

(−1) (B.43)

= 0 +

∫ rs

0

dr

(
hαβn̄

αn̄β
)
. (B.44)

Thus, substituting in the previous expression we can add both integrals and obtain

δr = −1

2

∫ rs

0

dr

(
hαβn̄

αn̄β
)
, (B.45)

which in term of the components of the metric perturbation is explicitly given by

δr =

∫ rs

0

dr(Ψ + Φ) +
B

k
+

1

k2

(
dHT

dλ
− 2ḢT

)
. (B.46)

Similarly, for computing the angular perturbations δθ ≡ δxieθi/rs and δφ ≡ δxieφi/rs sin θ
we take into account that n̄ieθi = n̄ieϕi = 0 as the background geodesics are radial. Hence,
projecting (B.40) we find that

δθ =
1

rs

∫ rs

0

dλ(hαieθi)n̄
α +

1

2rs

∫ rs

0

dλ(rs − r) (hαβ,ieθi) n̄
αn̄β , (B.47)

the second term in the integral can be rearranged using that

eiθ∂i(hαβ)n̄αn̄β =
1

r
∂θ(hαβ)n̄αn̄β =

1

r
∂θ(hαβn̄

αn̄β)− 1

r
hαβ∂θ(n̄

αn̄β) , (B.48)
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which allows to write (B.47) as

δθ =
1

rs

∫ rs

0

dr
(rs − r)

r
∂θ(hαβn̄

αn̄β) +
1

rs

∫ rs

0

dr

[
hαin

αeiθ −
(rs − s)

r
hαβ∂θ(n

αnβ)

]
. (B.49)

Using that ∂θn̄
α = −eiθδiα the last term inside the integral becomes hαβ∂θ(n

αnβ) = −2hiαe
i
θn

α,
so that we find

δθ =
1

rs

∫ rs

0

dr
(rs − r)

r
∂θ(hαβn̄

αn̄β) +
1

rs

∫ rs

0

dr
1

r
hiαe

i
θn

α . (B.50)

Analogously, for the azimuthal projection we have

δϕ =
1

rs sin θ

[∫ rs

0

dλ(hαieϕi)n̄
α +

∫ rs

0

dλ(rs − r) (hαβ,ieϕi) n̄
αn̄β
]
, (B.51)

the second term in the integral can be rearranged using that

eiϕ∂i(hαβ)n̄αn̄β =
1

r sin θ
∂ϕ(hαβ)n̄αn̄β =

1

r sin θ
∂ϕ(hαβn̄

αn̄β)− hαβ
r sin θ

∂ϕ(n̄αn̄β) , (B.52)

so that the fluctuation in the azimuthal coordinates is given by

δϕ =
1

rs sin2 θ

∫ rs

0

dr
(rs − r)

r
∂ϕ(hαβn̄

αn̄β) +
1

sin θ

∫ rs

0

dr
1

r
hiαe

i
θn

α . (B.53)

Note that the displacements δr, δθ and δϕ are all gauge dependent and hence not measurable
by themselves. Finally, substituting the expressions for the angular fluctuations (B.47) and
(B.53) the angular contribution for the volume is then(

δv

v

)
Ω

=

∫ rs

0

dλ
(rs − r)

2rsr
∆Ωhαβn̄

αn̄β

+

∫ rs

0

dλ
1

r

[
(cot θ + ∂θ)hiαe

i
θn̄

α +
1

sin θ
∂ϕhiαe

i
ϕn̄

α

]
, (B.54)

where ∆Ω = cot θ∂θ +∂2
θ +∂2

ϕ/sin
2 θ denotes the angular part of the Laplacian operator. The

first term in the previous equation can be simplified as follows. First, the contracted term is
explicitly given by

hαβn̄
αn̄β = 2

[
−(Ψ + Φ) +

1

k

dB

dλ
+

1

k2

(
d2HT

dλ2
− 2

dḢT

dλ

)]
. (B.55)

Apart from the Bardeen potentials, the rest of terms can be written as a total derivative,
df/dλ. Then, substituting back into the integral and using that dr = −dλ they can be
integrated by parts as

1

rs
∆Ω

∫ rs

0

dr
(rs − r)

r

df

dr
= −∆Ω

∫ rs

0

dλ
1

r2

[
B

k
+

1

k2

(
dHT

dλ
− 2ḢT

)]
, (B.56)

by other hand, using that

hiαe
i
θn̄

α =
1

kr
∂θB + 2

[
∂θ
k2r

(
dHT

dλ
− ḢT

)
+

∂θ
(kr)2

HT

]
, (B.57)

hiαe
i
ϕn̄

α =
1

kr sin θ
∂ϕB + 2

[
∂ϕ

k2r sin θ

(
dHT

dλ
− ḢT

)
+

∂ϕ
k2r2 sin θ

HT

]
, (B.58)
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the last integral in (B.54) can be reduced to∫ rs

0

dλ
1

r

[
(cot θ + ∂θ)hiαe

i
θn̄

α +
1

sin θ
∂ϕhiαe

i
ϕn̄

α

]
= ∆Ω

∫ rs

0

dλ (B.59)

× 1

r2

[
B

k
+

2

k2

(
dHT

dλ
− ḢT +

HT

r

)]
.

Collecting the previous expressions, after some direct cancellations we find that(
δv

v

)
Ω

= − 1

rs

∫ rs

0

dλ
(rs − r)

r
∆Ω(Φ + Ψ) + ∆Ω

∫ rs

0

dλ
2

k2r3
HT + ∆Ω

∫ rs

0

dλ
2

k2r2

dHT

dλ
.

(B.60)
Finally, after integrating by parts the last term it cancels the second integral, while the
boundary term evaluated at the source position survives. Then, we find that the angular
volume fluctuation is given by(

δv

v

)
Ω

= − 1

rs

∫ rs

0

dλ
(rs − r)

r
∆Ω(Φ + Ψ)− ∆ΩHT (ts)

k2r2
s

. (B.61)

Notice that the first term appearing in the previous equation is the standard expression
for weak gravitational lensing in a perturbed FRW universe [42]. Since this effect depends
only on the derivatives of the metric perturbations along the line-of-sight, it is clear that a
constant gravitational field results in no observable effect.

We can now add up all the terms for obtaining the total volume perturbation.

δv

v
= −2(Ψ + Φ)− 4V · n +

1

H

[
Φ̇ + ∂rΨ−

d(V · n)

dλ

]
(B.62)

+

(
Ḣ
H2

+
2

rH

)(
Ψ + V · n +

∫ rs

0

dλ(Φ̇ + Ψ̇)

)
− 3

∫ rs

0

dλ(Φ̇ + Ψ̇) +
2

rs

∫ rs

0

dλ(Φ + Ψ)− 1

rs

∫ rs

0

dλ
rs − r
r

∆Ω(Φ + Ψ) .

Combining this result with the previous one we obtain our final expression for the observed
overdensity of matter as

∆(z, n̂) = Ds +
1

H
∂r(V · n) +

1

H
V̇ · n +

(
Ḣ
H2

+
2

rH
− 1

)
V · n +

1

H
∂rΨ (B.63)

− 1

rs

∫ rs

0

dλ
rs − r
r

∆Ω(Φ + Ψ)

+

(
Ḣ
H2

+
2

rH

)(
Ψ +

∫ rs

0

dλ(Φ̇ + Ψ̇)

)
+

2

rs

∫ rs

0

dr(Φ + Ψ) + Ψ− 2Φ +
1

H
Φ̇.

This is the final result presented in Chapter 4.
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Appendix C

Power spectrum calculations

Here we present the complementary calculations to those shown in Chapter 7 for deriving
the angular power spectrum. We want to calculate the coefficients

a`m(z) =

∫
dΩn̂Y

∗
`m(n̂)∆(z, n̂) , (C.1)

from which the angular power spectrum is obtained as

δ``′δmm′C` = 〈a`ma∗`′m′〉 . (C.2)

For calculating these coefficients, notice that according to (4.41)-(4.48) the observed density
fluctuation consists of a linear combination of various terms ∆i, whose k-dependence are given
by either a perturbation variable evaluated at the source position rs = |x| or an integral of a
perturbation variable over the unperturbed photon trajectory (due to Born approximation).

Let us first consider a contribution coming from a generic term belonging to the first class,
for instance Ψ, which appears in (4.46). We calculate in detail the coefficient aΨ

`m coming
from such term using the definition (C.1) as

aΨ
`m(z) =

∫
dΩn̂Y

∗
`m(n̂)Ψ(τ,k) . (C.3)

Next, the field Ψ(x, t) is expanded in terms of its Fourier transform using the following
convention

Ψ(τ,x) =
1

(2π)3

∫
d3kΨ(τ,k)e−ik·x . (C.4)

Substituting back this Fourier expansion into (C.3) we find that

aΨ
`m(z) =

1

(2π)3

∫
d3k

∫
dΩn̂Y

∗
`m(n̂)Ψ(τ,k)e−ik·x . (C.5)

We now use the so-called Rayleigh formula which allows to decompose a plane wave in terms
of spherical harmonics and spherical Bessel functions as

e−ik·x = 4π
∑
`m

i`j`(kx)Y`m(n̂)Y ∗`m(k̂) , (C.6)
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where k = |k| and x = |x|. Substituting back into the previous expression we obtain

aΨ
`m(z) =

4π

(2π)3

∫
d3k

∫
dΩn̂Y

∗
`m(n̂)Ψ(τ,k)

∑
`′m′

i`j`′(kx)Y`′m′(n̂)Y ∗`′m′(k̂) . (C.7)

Finally, we can make use of the orthonormality condition
∫
dΩn̂Y

∗
`m(n̂)Y`′m′(n̂) = δ``′δmm′ to

get rid of the integral over the solid angle and the sum. Thus, we arrive at the final expression
for this coefficient

aΨ
`m(z) =

i`

2π2

∫
d3kΨ(τ,k)j`(kx)Y ∗`m(k̂) . (C.8)

Likewise, we can compute the contribution coming from an integral term
∫ rs

0
dλf(x(λ), τ(λ))

which belongs to the second class mentioned above. Using the Fourier transform of the term
inside the integral

f(x, t) =
1

(2π)3

∫
d3kf(τ,k)e−ik·x . (C.9)

a similar calculation leads to

a
∫
f

`m (z) =
i`

2π2

∫ rs

0

dλ

∫
d3kf(τ,k)j`(kλ)Y ∗`m(k̂) , (C.10)

where we have chosen the parametrization x = |x| = λ. Next, we calculate the coefficient
due to the term V · n, i.e.

aV·n(z) =

∫
dΩn̂Y

∗
`m(n̂)(V · n) . (C.11)

We use the Fourier transform for the velocity

V (τ,x) =
1

(2π)3

∫
d3kV (τ,k)e−ik·x . (C.12)

Notice that in Fourier space V(τ,k) = ik̂V (τ,k), so we can write the identity

V · nei(k·n)r = V i(k̂ · n)ei(k̂·n)kr = V ∂kre
i(k·n)r , (C.13)

where the position vector is written as x = |x|n̂ = rn̂. Substituting this back into (C.11) and
using the Rayleigh decomposition, the derivative ∂kr will act on the Bessel function, so we
define j′`(kr) ≡ ∂krj`(kx). Then, following the same steps as before we find that the related
coefficient is

aV·n(z) =
i`

2π2

∫
d3kV (τ,k)j′`(kx)Y ∗`m(k̂) . (C.14)

Finally, for the redshift-space distortion we have that ∂r(V·n) = −ni∂i(V·n) = −n·∇(V·n),
so we can use the identity (C.13) twice and we arrive at

a∂r(V·n)(z) =
i`

2π2

∫
d3k

V (τ,k)

k
j′′` (kx)Y ∗`m(k̂) . (C.15)
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Now, according to the discussion at the end of Chapter 3, we decompose each variable in
terms of a set of transfer functions which evolve the primordial field Ψin(k) as

D(τ,k) = TD(τ, k)Ψin(k) , (C.16)

V (τ,k) = TV (τ, k)Ψin(k) , (C.17)

Ψ(τ,k) = TΨ(τ, k)Ψin(k) , (C.18)

Φ(τ,k) = TΦ(τ, k)Ψin(k) . (C.19)

Next, we use the simplest form for the power spectrum for the primordial perturbation Ψin,
which is characterized in terms of a spectral index ns and an amplitude A as

k3〈Ψin(k)Ψ∗in(k′)〉 = (2π)3As(kτo)
ns−1δ(k− k′) . (C.20)

Here, we have multiplied by the constant τns−1
o , the actual comoving size of the horizon, in

order to keep As dimensionless for all values of ns. Then, As represents the amplitude of the
metric perturbations at horizon scale today, k = 1/τo.

We can now compute the various C ′`s that contribute to (C.2). For instance, if we consider
the potential term we have

CΨΨ
` = 〈aΨ

`ma
Ψ∗
`′m′〉 =

1

4π4

∫
d3k

∫
d3k′〈Ψ(τ,k)Ψ(k′, τ)〉j`(kx)j`′(k

′x)Y ∗`m(k̂)Y`′m′(k̂
′
)

=
1

4π4

∫
d3k

∫
d3k′TΨ(τ, k)TΨ(τ, k′)〈Ψin(k)Ψin(k′)〉j`(kx)j`′(k

′x)Y ∗`m(k̂)Y`′m′(k̂
′
)

=
2As
π

∫
d3k

∫
d3k′TΨ(τ, k)TΨ(τ, k′)

(kτ0)ns−1

k3
δ(k− k′)j`(kx)j`′(k

′x)Y ∗`m(k̂)Y`′m′(k̂
′
)

=
2As
π

∫
d3kT 2

Ψ(τ, k)
(kτ0)ns−1

k3
j`(kx)j`′(kx)Y ∗`m(k̂)Y`′m′(k̂) , (C.21)

where in the second and third steps, respectively, we have used the primordial power spectrum
(C.20) and the Dirac delta that it contributes to get rid of the integral over d3k′. In terms
of spherical coordinates d3k =

∫∞
0
dkk2

∫
dΩk̂. Then we have

CΨΨ
` =

2As
π

∫ ∞
0

dk

k
T 2

Ψ(τ, k)(kτ0)ns−1j`(kx)j`′(kx)

∫
dΩk̂Y

∗
`m(k̂)Y`′m′(k̂) . (C.22)

Finally, using the orthogonality condition for the spherical harmonics
∫
dΩk̂Y

∗
`m(k̂)Y`′m′(k̂) =

δ``′δmm′ we find

CΨΨ
` =

2As
π

∫ ∞
0

dk

k
(kτ0)ns−1T 2

Ψ(t, k)j2
` (kx) . (C.23)

Using this methodology we can repeat the calculations for the other terms and include the
contributions coming from all the a`m’s. In this way, the full calculation gives

C`(zs) =
2As
π

∫ ∞
0

dk

k
(kτ0)ns−1|∆`(zs, k)|2 , (C.24)
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where

∆`(zs, k) = j`(krs)

[
TD +

(
1 +
Ḣ
H2

+
2

rsH

)
TΨ + TΦ +

1

H
ṪΦ

]
+ j′`(krs)

(
Ḣ
H2

+
2

rsH

)
TV

+
k

H
j′′` (krs)TV +

1

rs

∫ rs

0

dλj`(kλ)

(
2 +

rs − λ
λ

`(`+ 1)

)
(TΨ + TΦ)

+

(
Ḣ
H2

+
2

rsH

)∫ rs

0

dλj`(kλ)(ṪΨ + ṪΦ) , (C.25)

which is the general expression presented in Chapter 7.
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Appendix D

The Limber approximation

In Chapter 7 we use the Limber approximation [63] for computing the C`’s involving integrals
over k and r, i.e. for gravitational lensing, Shapiro time-delay and ISW effect, as well as their
cross-correlations with density. Let us consider a generic integral with the form of (7.14),
which involves two of these terms labelled as i and j

Cij
` =

2

π

∫
dkk2Pij(k)

∫
dr1Fi(r1)j`(kr1)

∫
dr2Fj(r2)j`(kr2) . (D.1)

The spherical Bessel functions are related to the Bessel functions of the first kind by

j`(x) =

√
π

2x
J`+1/2(x) . (D.2)

Substituting this last expression, we can rewrite the correlation between the two effects as

Cij
` =

∫
dkkPij(k)

∫
dr1fi(r1)J`+1/2(kr1)

∫
dr2fj(r2)J`+1/2(kr2) , (D.3)

where we have defined

fi(r) ≡
Fi(r)√
r
, fj(r) ≡

Fj(r)√
r
. (D.4)

The integrals of the generic functions f(r)’s multiplied by Bessel functions have a series
representation in terms of (`+ 1/2)−1 ≡ ν−1 that allows to rewrite the correlation as [63]

Cij
` =

∫
dkkPij(k)

(
1

k
fi(r) + ...

)(
1

k
fj(r) + ...

)
, (D.5)

where kr = ν = `+ 1/2. Then, eliminating k in favour of r, up to first order we are left with
the result

Cij
` =

∫
dr

r
Pij

(
`+ 1/2

r

)
fi(r)fj(r) . (D.6)

Then, comparing with (D.1) we see that using this approximation we can reduce the
number of integrals in the C`’s from three to one, which allows to reduce the numerical
calculations significantly.
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