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A B S T R A C T

In the present work, a simple route to control the growth of different crystalline titanium oxides thin films
prepared by reactive sputtering is reported. Using the film pumping speed, the oxygen consumption or “oxygen
gettering” in the reactive process is monitored, obtaining different titanium suboxides (TSO's) films with high
deposition rate in the metallic zone of the reactive process. On the other hand, it was also obtained titanium
dioxide (TiO2) thin films at the beginning of the oxidative region, without using postdeposition thermal an-
nealing. X-ray diffraction and Raman spectroscopy were used to determine the different titanium oxides ac-
cording to the oxygen percentage added to the chamber during the reactive process.

1. Introduction

Titanium oxides are one of the most studied materials over the past
decades. The most common oxide is the IV valence titanium dioxide,
TiO2. There are many different uses for this semiconductor such as
white paints and coatings [1], pharmaceutical and cosmetics industries
[2], photocatalytic degradation (mineralization) of pollutants [3], en-
ergy production by water splitting [4] or photoelectrochemical solar
cells [5], antireflective [6] and UV induced self-cleaning [7] coatings.
TiO2 has three crystalline phases: anatase, rutile and brookite. The most
common ones are rutile and anatase, which are tetragonal (space
groups I41/amd and P42/mnm, respectively), while brookite is or-
thorhombic (Pbca) [8].

In the last years, the study of different non-stoichiometric titanium
suboxides (TSO's) has attracted attention due to the high electrical
conductivity [9], remarkable visible light absorption [10] and electro-
chemical corrosion resistance [11]. These properties have made TSO's
potential candidates for various applications such as catalysts [12] and
battery electrodes [13] as well as for micro and optoelectronic devices
[14]. Among different TSO's, TiO and Ti2O3 are of great interest. Ti-
tanium monoxide (TiO) has a NaCl-type cubic structure and a compo-
sition that ranges from TiO0.6 to TiO1.25 [15]. Due to the low electrical
resistivity of TiO, it has potential uses in microelectronics devices
[16–18] and it is a promising compound for new thermoelectric ma-
terials [19]. Ti2O3 is a corundum-type rhombohedral structure with a
non-stoichiometric range from TiO1.49 to TiO1.51 [15]; it is a

semiconductor with a direct band gap of∼0.1 eV. The most remarkable
property of Ti2O3 is the metal-to-semiconductor transition at 400 K,
close to room temperature, without a change in crystal symmetry
[20,21].

TSO's are mainly prepared by reduction processes of TiO2, such as
carbothermic reduction [22], hydrogen reduction [23], and me-
tallothermic reduction [24]. Reactive sputtering is a common technique
to growth thin film compounds with high control of the stoichiometry.
Several approaches have been done theoretically and experimentally to
explain the metal-oxygen interaction during the reactive process and
the relevant sputtering parameters involved in the reactions [25–30].
For titanium oxides, the investigations are mainly related to obtain the
specific TiO2 polymorph, working in the oxidized or transition zone of
the reactive process. Substrate temperature [31], partial pressure of
oxygen [32–34], bias voltage and energy of the impinging ions [35,36]
have been reported as the main influencing parameters to control the
growth of mixed or single rutile/anatase phases. Regarding the TSO's,
studies based upon the oxygen partial pressure have mainly demon-
strated that there is a direct transition between TiO in the metallic zone
of the reactive process, to TiO2 in the oxidized zone [37–40].

This work presents the results of the relation between the oxygen
consumption and the growth of different titanium oxides, deposited by
DC reactive sputtering. The structural properties of the grown films in
the Ti-O system were obtained by X-Ray diffraction and Raman spec-
troscopy. Meanwhile, details about the morphological evolution were
obtained by Field-emission scanning electron microscopy and atomic
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force microscopy.

2. Experimental procedure

The films were grown by DC magnetron sputtering. A titanium disk
of 2″ diameter and 0.25″ thickness (Kurt Lesker 99.99%) was used as
target material. The base pressure in the vacuum system was
5× 10−6 Torr, and the target-to-substrate distance was 45mm for all
samples. Based upon preliminary experiments, the optimal growth
conditions for crystalline titanium oxides were obtained at 150W
(7.4W/cm2), corresponding to a working pressure of 5×10−3 Torr.
This working pressure was attained using different combinations of
Ar + O2 in a total flux of 15 sccm. In the following, the oxygen quantity
used for the growth of the different films is represented by the oxygen
flow percentage (OP) of the total gas flux injected into the chamber.
Table 1 shows the conditions used in this work, selected according to
the variation of the curve of oxygen integration, as it will be discussed
later in detail. The deposition time was 30min for the films with
OP<12% and 60min for the films with OP≥ 12%. The conditioning
of the target prior to deposition was done by 20min of sputtering in
pure Ar-gas at 5×10−3 Torr. Finally, for the plasma stability, the
current and voltage during sputtering were monitored.

The grain structure of the films was studied using a field emission
scanning electron microscope (FESEM) FEI Quanta 250 system. The
characterization of the surface topography of the films was done by
atomic force microscopy (AFM) using a NT-MDT NTegra Prima in
Semicontact configuration. The crystalline phases were characterized
by X-ray diffraction (XRD) in a Bruker D8 diffractometer using CuKα
radiation. The data were collected at room temperature with a step size
of 0.02° and a scan rate of 0.1°/s using the Bragg-Brentano geometry (or
coupled-scan). The lattice parameters were calculated using the in-
dexation provided by the identified Powder Diffraction Files for each
structure. The crystallite size (CS) was obtained by Scherrer equation
[41]. Raman spectra were obtained using a Witec Alpha 300 RA with
backscattering geometry and excitation wavelength of 532 nm.

3. Results and discussions

3.1. Determination of the oxygen consumption during the reactive process

Pinnow et al. [42] proposed to monitor the reactive sputtering
process considering the oxygen consumption or oxygen “gettering” that
occurs as a consequence of the integration of the reactive gas with the
metal. They used the film pumping speed as a control parameter, de-
veloping a generic curve determined by a sputtering equilibrium, which
depends on the oxygen partial pressure, the sputtering power, and the
pumping speed of the vacuum system. The parameter film pumping
speed, sf, was defined as the consumption of the reactive gas after the
plasma ignition and can be related to the variations of the oxide phase
during the deposition of metallic oxides by reactive sputtering. Based
on this they could optimized the sputtering process setting the working

point to obtain an adequate stoichiometry and higher deposition rates
for IrOx and IrO2 films [42].

In order to determine this parameter, it is necessary to define the
change in the total pressure inside the chamber that can be described
as:

= + − − ⋅dP
dt V

Q Q Q P s1 ( )in des ads t p( ) (1)

where Qin is the total gas flow entering to the chamber ( +Q QAr O2), sp is
the system pumping speed, Qdes and Qads are the total fluxes adsorbed
or desorbed by the target and chamber walls and, P is the total pressure
of the system. After the system has reached equilibrium, =dP dt/ 0, it is
assumed the balance between adsorbed and desorbed gases by the
chamber walls and the target. Hence, the total gas flow in equilibrium
can be represented as:

= ⋅Q P sin p0 (2)

where P0 is the working pressure mentioned above. After plasma igni-
tion, the film growth consumes reactive gas, changing the total pressure
inside the chamber. Consequently, Eq. (2) can be rewritten as:

= ⋅ +Q P s s( )in sp p f (3)

where Psp represents the total pressure after plasma ignition and, sf is
the film pumping speed produced by oxygen consumed during film
formation. The film pumping speed, sf, can be deduced from the com-
bination of Eq. (2) and Eq. (3) as follows:

= −s
s
P

P P( )f
p

sp
sp0

(4)

Thus, based on the results of Pinnow et al. [42], in this work it was
studied the variations of the film pumping speed in the Ti-O system. The
values of sf were obtained at different oxygen percentages of the total
flow inside the chamber (OP %), which results are plotted in Fig. 1. It
can be seen that sf increases until it reaches a maximum value at
OP=11.1%. Afterwards, it decreases to almost 0 (OP=14.2%), or
below the detection limit of the instruments, with a slight plateau be-
tween 7.4 and 8.9%. The drastic drop down of sf at higher OPs corre-
sponds to a saturation behavior, in which the oxygen consumption
reaches its maximum and oxygen starts to be adsorbed on the titanium
target surface. At high oxygen flows, the target becomes oxidized or
“poisoned” thus changing the plasma and consequently the deposition
conditions significantly. This zone is called as “saturated regime” in the
further discussion, while the zone corresponding to the metallic beha-
vior of the target is named as “unsaturated regime” of the reactive

Table 1
Oxygen flow percentages (OP) employed for sample preparation and, the re-
presentative colors, thickness and deposition rates of the different of the Ti-
oxide film samples.

Sample Oxygen flow
percentage

Color Thickness (μm) Deposition rate
(nm/min)

Silv 4.6% Silver 2.83 94
Gol-1 6.1% Golden 3.12 104
Gol-2 7.4% Golden 3.21 107
Gol-3 8.9% Golden 3.62 121
Black 11.1% Blackish 3.50 117
Tran-1 12.7% Transparent 0.73 12
Tran-2 14.2% Transparent 0.50 8

Fig. 1. Film pumping speed, sf, versus oxygen flow percentage. Insert: Current
and voltage of the magnetron source during sputtering.
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plasma deposition.
Simultaneously to the measurements of sf, the voltage and current

were monitored after plasma ignition, as a function of OP (inset in
Fig. 1). The plasma voltage is almost constant until OP reaches 11.1%.
Afterwards, a drastic increase can be observed. The current increases
until a maximum at OP=8.9% and after a slight decrease it falls
suddenly, which correlates well with the significant increase in voltage.
This phenomenon also confirms the changes in the target surface
composition from a metallic behavior at low OP to an oxidized and less
conductive behavior at high OP.

Therefore, it is of interest to understand the phenomenon of oxygen
being gettered by the film before saturation. During reactive sputtering,
the OP range of the metallic regime strongly depends on the power used
for the ignition of the plasma as shown by Pinnow et al. [42]. For lower
powers, the saturation is reached with less amount of oxygen while
increasing the power allows to extend the OP range of the metallic
regime. In this work, using a power of 150W, the metallic zone of the
reactive process can be extended to an OP of 11%.

The growth of Ti-oxide was carried out using the OP conditions
reported in Table 1. The first evident observation is that the samples
exhibited different colors (Table 1), which varied from silver (Silv) to
golden in samples Gol-1, Gol-2 and Gol-3 (OP between 6.1 and 8.9%).
The highest sf obtained at an OP=11.1% produced a blackish color in
sample Black. Finally, when sf decreased suddenly the samples Tran-1
and Tran-2 were transparent (OP=12.7 and 14.2%).

3.2. Microscopy analysis

3.2.1. Field emission scanning electron microscopy (FESEM)
Cross-section FESEM images of the thin films prepared at different

OPs are presented in Fig. 2. It can be seen that the films thickness
reaches values of nearly 3 μm (Table 1) for samples deposited in the
unsaturated regime of sf, while in the saturated regime (Tran-1 and
Tran-2) the films are sub-micrometer with values of 730 and 500 nm,
respectively. These smaller film thicknesses are related with the target

poisoning that strongly reduces the sputter yield in this stage. Based
upon the thickness and deposition times, it is possible to estimate the
deposition rate for each OP, which are given in Table 1. The low
sputtering rate of the thin films in the unsaturated regime confirms that
a reduced sf is related to target poisoning.

The relation between the deposition rate and the OP demonstrates a
typical behavior of Ti-O systems studied by reactive sputtering, in
which the deposition rate strongly decreases as the target poisoning
starts [43]. The deposition rate increases with OP until it reaches a
maximum at an OP of 8.9% (sample Gol-3) that slightly decreases in
Black sample. In the saturated stage, the low deposition rate also leads
to films with a granular structure and randomly disorder columnar
grains, as it can be seen in Fig. 2f and g for samples Black and Tran-2,
respectively.

3.2.2. Atomic force microscopy (AFM)
AFM measurements were carried out to characterize the surface of

the Ti-oxide films. Representative AFM images of the films are shown in
Fig. 3, while the root mean square roughness (RMS) is given in Table 2.
The surface morphology and roughness changes significantly as a
function of the OP. RMS has an increasing tendency with OP until it
reaches a maximum at OP=8.9%. In the saturated regime, transparent
samples Tran-1 (not shown in Fig. 3) and Tran-2 also have smooth
surfaces with RMS values of 6.5 and 4.1, respectively.

3.3. Crystalline phase analysis

3.3.1. XRD characterization
Fig. 4 shows the X-ray diffraction patterns for samples deposited at

different OPs. An evolution of the patterns according to the oxygen
gettered in the reactive process during the film deposition can be seen.
The crystalline structures identified in each pattern and their corre-
sponding lattice parameters are summarized in Table 2. Silv sample
shows the hexagonal structure of α-Ti (JCPDS 76–1644), which is a Ti-
rich phase with a structure close to that of hcp titanium. In this

Fig. 2. FESEM images of the Ti-oxides thin films prepared at different OP.
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crystalline structure, oxygen atoms are partially dissolved in octahedral
interstices [44] forming an oxide, which known as Ti3O. For the sam-
ples Gol-1, Gol-2 and Gol-3 only the TiO-type cubic structure (JCPDS
89–5010) was detected in the OP range from 6.0 to 8.9%. Particularly,
the lattice parameter of the TiO phase decreases as the OP increases.
This is in good agreement with the observations of Anderson et al. [15]
who demonstrated that the TiO phase can stabilize the same crystalline
structure with a wide range of O-content. The pattern of sample Black
exhibited a Ti2O3-like structure (JCPDS 89–4746). Interestingly, Ti2O3

is obtained at the OP that corresponds to the maximum value of sf.
Regarding the samples Tran-1 and Tran-2 prepared in the saturated
regime, XRD patterns were indexed with anatase (JCPDS 21–1272) and
rutile (JCPDS 21–1276) TiO2 phases, respectively. As a general ob-
servation of the XRD characterization, it can be deduced that as the OP
increases, the O/Ti ratio increases as well thus forming zones of specific
oxide growth. As a consequence, the color of the films correlates well
with a specific crystalline structure and oxide species. The silver zone
represents the preferred growth of the α-Ti structure, the golden zone
shows the growth of TiO structure, the narrowed blackish zone re-
presents Ti2O3 growth and the transparent zone corresponds to the
growth of the two TiO2 polymorph, i.e. anatase and rutile.

The crystallite sizes, CS, estimated by Scherrer's equation are listed
in Table 2. It can be seen that the values vary with the crystallographic
system of the Ti-oxide. It can be assumed that there is a relationship
between the RMS of the samples surface, the color of the samples and
the crystalline structure. Indeed, the silver sample has the lowest RMS
and the lowest CS, while the golden samples (Gol-1 and Gol-2) have a
columnar growth structure (see Fig. 2) with slightly increased values for
RMS and CS. Sample Gol-3 can be considered as an exception, since it
displays rather a large value for RMS combined a low value for CS. This
behavior of Gol-3 may be related to an increment of the substrate
temperature during film deposition [45] as inferred from the maximum
current measured during plasma ignition. A higher current implies
more electrons and thus a higher plasma density. In sample Black, the
change of the crystalline structure coincides with a smaller RMS and
lower CS. Finally, transparent samples Tran-1 and Tran-2 having
granular grains (see Fig. 2f and g) demonstrate low roughness and si-
milar CS. These samples further support the observation that the tem-
perature during sputtering is clearly linked to the current measured
which is in good agreement with the model presented by Thornton
[45].

3.3.2. Raman spectroscopy
Raman spectroscopy was performed to study the vibrational re-

sponse of the films prepared at different OPs. According to the selection

Fig. 3. AFM images of the Ti-oxides thin films prepared at different OPs.

Table 2
Summary of the surface roughness (RMS) measured by AFM and the results
obtained from the XRD patterns.

Sample RMS
(nm)

Phase Crystallographic
system

Crystallite
size, CS
(nm)

Lattice parameter
(nm)

a c

Silv 2.2 Ti3O Hexagonal 6 0.516 1.401
Gol-1 3.8 TiO-type Cubic 26 0.417

(1)
–

Gol-2 5.2 TiO-type Cubic 28 –
Gol-3 23.4 TiO-type Cubic 17 –
Black 3.9 Ti2O3-type Rhombohedral 16 0.514 0.137
Tran-1 6.5 TiO2 Tetragonal (A) 47

(R) 14
0.378
0.460

0.946

Tran-2 4.1 TiO2 Tetragonal (A) 43
(R) 14

0.378
0.460

0.946

Fig. 4. X-Ray diffraction pattern of the titanium oxide films deposited at dif-
ferent OP. A: Anatase; R: Rutile.
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rules, α-Ti, and TiO do not have an active first order vibrational mode
[46]. Therefore, no Raman spectra can be obtained for samples Silv,
Gol-1, Gol-2 and Gol-3. The Raman spectra of the samples Black, Tran-1
and Tran-2 are presented in Fig. 5. The sample Black shown in Fig. 5a
has characteristic peaks of five bending modes (Eg) and two stretching
modes (A1g), all matching well results of previous works based upon
tistarite, a Ti2O3 mineral recently discovered in the Allende Meteorite
[47], and the synthetic Ti2O3 [48]. The details of the peaks position are
shown in Table 3. This result confirms the Ti2O3-like phase detected by
XRD.

The vibrational modes of two different TiO2 polymorphs - anatase
(A) and rutile (R) - were observed in the Raman spectra of samples
Tran-1 and Tran-2, as shown in Fig. 5b. This matches well with the
presented XRD-results. The Castrejon-Sanchez relation was used to es-
timate the phase content (WA/WR) in these samples [50]:

= ⎡
⎣
⎢ − ⎤

⎦
⎥

W
W

B A
E R

1.01
( )
( )

0.33A

R

g

g

1 399

447 (5)

where WA/WR are the weight ratios of anatase and rutile, respectively.
B1g is the intensity of the symmetric stretching mode of the anatase at
∼399 cm−1, whereas Eg is the intensity of the symmetric stretching
mode of rutile phase at∼447 cm−1. According to Eq. (5), the estimated
weight percent of the anatase phase in Tran-1 and Tran-2 are 65 and
76%, respectively. Consequently, the sample Tran-2 shows a higher
amount of anatase compared to sample Tran-1. This may be related to
the amount of oxygen in the film growth at room temperature as it has
been previously reported by other authors [33,51].

4. Discussion and summary

In this work, using the parameter sf, it was possible to monitor the
relation between the oxygen consumption and the growth of different
titanium suboxides during reactive sputtering. This parameter mainly
depends of the percentage of oxygen present in the chamber and the
power used to ignite the plasma.

Based upon the presented results, the growth of three TSO's with
different crystalline structure and grain morphology was obtained in
the metallic regime of the reactive process, which in turns is reflected
by the color, roughness and crystallite sizes of the samples. Specifically,
at the beginning of the oxygen integration the hexagonal Ti3O (α-Ti)
structure was obtained. Afterwards, a second stage of crystallization
was observed with the formation of the TiO cubic structure. This TiOx

structure was obtained for a wide range of OPs, which was attributed to
the wide stoichiometry range of this phase (0.6 < x < 1.25). At the
end of the metallic regime, a third stage appeared when the oxygen
integration reached the maximum value thus forming rhombohedral
Ti2O3 structure. This narrower OP range can be attributed to the non-
stoichiometric range of this phase (1.49 < x < 1.51).

Lastly, the oxidative regime of the reactive process induces the
growth of mixed rutile and anatase phases of TiO2. It can be concluded
that the higher the OP is, the larger the amount of anatase is, which is a
good agreement with observations published by Refs. [33,51].

It is remarkable that all Ti-oxide thin films prepared are crystalline
without any post annealing process. Finally, the results presented in this
work are important since they can be considered as a stepping stone to
extend the potential technological applications of TSO's towards elec-
tronics on flexible or organic substrates, which are compatible with
sputtering techniques.
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Appendix A. Supplementary data

Supplementary data related to this article can be found at http://dx.
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Fig. 5. Raman spectra of samples a) Black and; b) Tran-1 and Tran-2.

Table 3
Details of Raman response for samples Black, Tran-1 and Tran-2.

Sample Ti2O3-like structure Sample TiO2

Black [47] [48] Symmetry Tran-1 Tran-2 [49] Symmetry

Wavenumber (cm−1) Wavenumber (cm−1)

207 – 209.7 A1g 143 144 144 Eg (A)
252 240 274 Eg 195 196 198 Eg (A)
300 288 300 Eg 396 396 397 B1g (A)
340 322 340 Eg 450 453 449 Eg (R)
446 426 453 Eg 515 516 516 A1g + B1g (A)
503 490 506 A1g 611 – 610 A1g (R)
565 552 558 Eg 638 638 639 Eg (A)
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