SH oxidation coordinates subunits of rat brain ryanodine receptor channels activated by calcium and ATP

Ricardo Bull,1 Juan José Marengo,1,2 José Pablo Finkelstein,4 María Isabel Behrens,1,3 and Osvaldo Alvarez4

1Programa de Fisiología y Biofísica and 2Programa de Patología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 838-0453; 3Servicio de Neurología, Hospital Sótero del Río, Santiago 820-7257; and 4Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile 780-0024

 Submitted 25 June 2002; accepted in final form 4 March 2003

Bull, Ricardo, Juan José Marengo, José Pablo Finkelstein, María Isabel Behrens, and Osvaldo Alvarez. SH oxidation coordinates subunits of rat brain ryanodine receptor channels activated by calcium and ATP. Am J Physiol Cell Physiol 285: C119–C128, 2003. First published March 12, 2003; 10.1152/ajpcell.00296.2002.—We have reported that ryanodine receptor (RyR) channels display three different responses to cytoplasmic free Ca2+ concentration ([Ca2+]o) depending on their redox state (Marengo JJ, Hidalgo C, and Bull RR. Biophys J 74: 1263–1277, 1998), with low, moderate, and high maximal fractional open times (P0). Activation by ATP of single RyR channels from rat brain cortex was tested in planar lipid bilayers with 10 or 0.1 μM cytoplasmic [Ca2+]o. At 10 μM [Ca2+]o, low-P0 channels presented lower apparent affinity to activation by ATP ([ATP] for half-maximal activation (KATP) = 422 μM) than moderate-P0, channels (KATP = 82 μM). Oxidation of low-P0 channels with thimerosal or 2,2'-dithiodipyridine (DTDP) gave rise to moderate-P0 channels and decreased KATP from 422 to 82 μM. At 0.1 μM cytoplasmic [Ca2+]o, ATP induced an almost negligible activation of low-P0 channels. After oxidation to high-P0 behavior, activation by ATP was markedly increased. Noise analysis of single-channel fluctuations of low-P0 channels at 10 μM [Ca2+]o plus ATP revealed the presence of subconduction states, suggesting a conduction mechanism that involves four independent subchannels. On oxidation the subchannels opened and closed in a concerted mode.

subconductance states; calcium ion release channels; calcium ion regulation; thimerosal; 2,2'-dithiodipyridine

Ryanodine receptor (RyR) channels form a pathway that allows the release of calcium from endoplasmic reticulum (ER) and/or sarcoplasmic reticulum (SR) to the cytoplasm. This process underlies many cellular responses, such as contraction in skeletal and cardiac muscle (14, 41, 57) and synaptic plasticity and gene expression in neurons (5, 6, 10, 24). RyR channels are activated by several cytoplasmic agonists and/or modulators such as Ca2+ and ATP and by caffeine (4, 41, 57).

RyR channels are coded by three different genes in mammalian tissue. RyR-1 is the most abundant isoform expressed in skeletal muscle (23, 40, 41, 57); RyR-2 is the most abundant isoform expressed in heart and brain; and RyR-3 is expressed in small amounts in brain and in a few adult skeletal muscle types (25, 42). Rat brain expresses the three known mammalian RyR genes (14, 23). All isoforms of RyR channels comprise four identical subunits. In addition, skeletal muscle RyR-1 has four molecules of FK-506 binding protein (FKBP12) tightly associated, which stabilize the RyR-1 complex and allow the four subunits to open and close coordinately (8, 26, 44, 53). Moreover, FKBP mediates the coordination of two or more individual skeletal or cardiac muscle tetramers (37, 38).

RyR channels display multiple conductance states. This is especially evident in RyR-1 channels purified from skeletal muscle, which display subconductance levels of one-fourth, one-half, or three-fourths of the maximal channel conductance (33, 49). Recombinant RyR-1, when expressed in insect cells without the regulatory peptide FKBP12, forms channels displaying the same three subconductance states (8). The addition of FKBP12 stabilizes the channel complex, resulting in the formation of channels with full conductance (8, 44). Removal of FKBP by rapamycin or FK-506 reverses this stabilizing effect in RyR channels from skeletal and cardiac muscle (8, 28, 37, 38). FKBP12 is not tightly associated to RyR channels from brain (11).

Several studies performed in single channels obtained from cardiac or skeletal muscle and from brain tissue showed that RyR channels can display three types of responses to cytoplasmic calcium, low-, moderate-, and high-fractional open time (P0) calcium dependence (12, 13, 22, 34, 48). Low-P0 behavior has a bell-shaped response with poor activation by calcium, reaching very low P0 (low-P0 channels) (34). Moderate-P0 behavior is also characterized by a bell-shaped calcium curve with marked activation at micromolar Ca2+ concentrations ([Ca2+]o) (48) and inhibition at
layers were painted with a mixture of palmitoyl-oleoyl-phosphatidylcholine (PC) in the proportion POPE-PS-PC = 5:3:2. Lipids obtained from Avanti Polar Lipids (Birmingham, AL) were dissolved in decane to a final concentration of 33 mg/ml. ER vesicles were fused with the bilayer as described previously (9, 34). After fusion, the cis (cytoplasmic) compartment, where the vesicles were added, was perfused with 5–10 times the compartment volume of a solution containing 225 mM HEPES-Tris, pH 7.4. To obtain the desired cytoplasmic free [Ca$^{2+}$]], EGTA and/or N-2-hydroxymethyl-ethylenediamine-triacetic acid (HEDTA) were used. Free [Ca$^{2+}$] values from stock solution were checked with a calcium electrode. For the experiments at 10 μM free [Ca$^{2+}$], 10 mM total HEDTA was used. For the experiments at 0.1 μM [Ca$^{2+}$$]$, 0.5 mM total Ca$^{2+}$ and 1.45 mM total HEDTA were used. The amounts of EGTA, ATP, and Ca$^{2+}$ required for the desired free [ATP] and free [Ca$^{2+}$] were calculated with the program WinMAXC (www.stanford.edu/~cpatton/wmaxc.zip).

We showed (35) that changes in the oxidation state of RyR channels induce changes in their calcium dependencies. Several reagents that oxidize, alkylate, or S-nitrosylate critical SH residues of the channel protein activate RyR channels in bilayers and increase vesicular Ca$^{2+}$ release (1, 2, 15, 16, 18, 20, 21, 32, 50, 52). In particular, we showed (35) that the three calcium responses can be observed in the same single channel incorporated in the bilayer by modification of the redox state, implying that the different calcium dependencies can be displayed by a single isoform. SH oxidation also modifies channel modulation by other agonists and inhibitors (15, 43, 51, 54). Recent evidence suggests that RyR channels may function as intracellular redox sensors (19, 21, 54).

RyR-mediated calcium-induced calcium release (CICR) is becoming increasingly important for brain function, including synaptic plasticity and neurodegeneration (5, 7). However, brain RyR channels have been much less studied than their skeletal or cardiac counterparts. In this work we studied, at the single-channel level, the activation induced by ATP and calcium of native and oxidized RyR channels from rat brain endoplasmic reticulum. We found that ATP differentially activated RyR channels depending on their calcium response. At 10 μM [Ca$^{2+}$$]$, RyR channels revealed multiple subconductance states and SH oxidation induced a decrease in the frequency of these substates. Noise analysis of single-channel fluctuations suggests a conduction mechanism that involves four independent subchannels. After SH oxidation, the channel subunits gated in a concerted fashion, favoring closed and full open states. Part of this work was published previously in abstract form (36).

MATERIALS AND METHODS

All animal procedures used in this study complied with the “Guiding Principles for Research Involving Animals and Human Beings” of the American Physiological Society.

Isolation of membrane fractions. ER vesicles enriched in RyR were obtained from rat (Sprague-Dawley) brain cortex as described previously with dithiothreitol as the SH reducing agent during all steps of the preparation (34).

Channel recording and analysis. Planar phospholipid bilayers were painted with a mixture of palmitoyl-oleoyl-phosphatidylethanolamine (POPE), phosphatidylserine (PS), and phosphatidylcholine (PC) in the proportion POPE-PS-PC = 5:3:2. Lipids obtained from Avanti Polar Lipids (Birmingham, AL) were dissolved in decane to a final concentration of 33 mg/ml. ER vesicles were fused with the bilayer as described previously (9, 34). After fusion, the cis (cytoplasmic) compartment, where the vesicles were added, was perfused with 5–10 times the compartment volume of a solution containing 225 mM HEPES-Tris, pH 7.4. To obtain the desired cytoplasmic free [Ca$^{2+}$$], EGTA and/or N-2-hydroxymethyl-ethylenediamine-triacetic acid (HEDTA) were used. Free [Ca$^{2+}$$]$ values from stock solution were checked with a calcium electrode. For the experiments at 10 μM free [Ca$^{2+}$$,] 10 mM total HEDTA was used. For the experiments at 0.1 μM [Ca$^{2+}$$]$, 0.5 mM total Ca$^{2+}$ and 1.45 mM total HEDTA were used. The amounts of EGTA, ATP, and Ca$^{2+}$ required for the desired free [ATP] and free [Ca$^{2+}$] were calculated with the program WinMAXC (www.stanford.edu/~cpatton/wmaxc.zip).

The trans (intrareticular) compartment was replaced with 40 mM Ca-HEPES, 10 mM Tris-HEPES, pH 7.4. The charge carrier was calcium. The experiments were carried out at room temperature (22–24°C), with membranes held at 0 mV. Voltage was applied to the cis compartment, and the trans compartment was held at virtual ground through an operational amplifier in a current-to-voltage configuration.

Current signals were both recorded on tape and acquired online.

For analysis, data were filtered at 400 Hz (−3 dB) with an eight-pole low-pass Bessel-type filter (902 LPF; Frequency Devices, Haverhill, MA) and digitized at 2 kHz with a 12-bit analog-to-digital converter (Labmaster DMA interface; Scientific Solutions, Solon, OH) with Axotape software (Axon Instruments, Burlingame, CA). Fractional open times were computed from records of 60 s or longer with pCLAMP software (Axon Instruments). Fractional open time was calculated as P_{on} according to the following equation

$$P_{\text{on}} = \frac{I_{\text{mean}}}{I_{\text{max}}} \quad (1)$$

where I_{mean} is mean current and I_{max} corresponds to the current of the full open channel. I_{max} was measured as the mean current of at least eight full open events lasting >30 ms.

Channels were classified according to their calcium dependence as described previously (34). Activity was measured at least at 10 and 500 μM [Ca$^{2+}$$]$, because maximal activation is usually achieved near the first concentration and inhibition (if present) is clearly apparent at the second concentration. Low-P_{o} channels in the present study displayed P_{o} values <0.04 (0.017 ± 0.002; mean ± SE) at 10 μM [Ca$^{2+}$$]$. Moderate-$P_{o}$ channels displayed P_{o} values >0.1 at 10 μM [Ca$^{2+}$$] (0.24 ± 0.03; mean ± SE) and were inhibited by 500 μM [Ca$^{2+}$$. High-P_{o} channels showed P_{o} values >0.75 at 10 μM [Ca$^{2+}$] and were not inhibited by 500 μM [Ca$^{2+}$].

For noise analysis, mean current and current variance were measured in successive periods lasting 1 s. Data pairs were fitted with a parabolic equation as described in RESULTS. It was verified that the noise analysis performed in a simulated channel generated with the model and kinetic constants reported by Zahradniková and Palade (55) for cardiac RyR channels was not affected by a cutoff filter of 400 Hz.

Thimerosal (10–20 μM) or 2,2’-dithiodipyridine (DTDP; 100 μM) was added to the cytoplasmic compartment until a change in P_{o} was observed (30–200 s), and the reaction was stopped by removal of the nonreacted reagent through extensive perfusion of the compartment (5–10 times the compartment volume) with a solution containing 225 mM HEPES-Tris, pH 7.4 (35).
Materials. Lipids were obtained from Avanti Polar Lipids. Protease inhibitors, ATP disodium salt, and other reagents were obtained from Sigma (St. Louis, MO).

RESULTS

Activation by ATP of native RyR channels. Single-channel current recordings of calcium-release channels were obtained after fusion of vesicles isolated from rat brain cortex with planar lipid bilayers. The full open state displayed a conductance of ~ 100 pS with 40 mM calcium in the luminal (trans) compartment, as previously reported (34). Channels were divided into low, moderate, or high P_o, according to their calcium dependence as described previously (Refs. 34 and 35; see MATERIALS AND METHODS). Activation by ATP of ryanodine-sensitive channels was studied. Most of the experiments were performed with low- and moderate-P_o channels at 10 μM cytoplasmic calcium. Channels with high-P_o behavior were very infrequently observed. However, in the few experiments in which high-P_o channels were incorporated in the bilayer, activation by ATP was observed, but the low number of experiments (3), and the fact that at 10 μM [Ca$^{2+}$] they already have a high P_o, precluded calculation of the parameters of ATP activation. Therefore, the analysis was restricted to the low- and moderate-P_o channels. In the presence of ATP, both low- and moderate-P_o channels gated with fast kinetics between the closed state and poorly resolvable open states because of the low signal-to-noise ratio and the fast kinetics (Fig. 1, fourth traces). Current levels were better resolved in the moderate-P_o than in the low-P_o channels. Opening of the low-P_o channel to the full open state was occasionally observed at high [ATP] (see Fig. 1, third trace, left). To compare the activity of low-P_o and moderate-P_o channels, the fractional open time was calculated as P_o^* according to Eq. 1 as described in MATERIALS AND METHODS. The addition of ryanodine induced the characteristic substate ($\sim 40\% I_{\text{max}}, P_o \sim 1$; Ref. 45), indicating that the channels studied indeed corresponded to single ryanodine-sensitive channels (data not shown).

ATP added to the cytoplasmic compartment activated spontaneous low-P_o and moderate-P_o channels at different concentrations, as illustrated in Fig. 1. Low-P_o channels required higher [ATP] to attain an extent of activation similar to that of moderate-P_o channels. Typical examples of activation by ATP of single RyR channels with low-P_o (left) or moderate-P_o (right) calcium dependence are shown. Representative current records were obtained at 10 μM cytoplasmic free [Ca$^{2+}$] with 10 mM N-(2-hydroxyethyl)ethylenediamine-triacetic acid (HEDTA) as calcium buffer. ATP was added to the cytoplasmic compartment of a single channel that displayed low-fractional open time (P_o^*) (left) or moderate-P_o (right) calcium dependence. Free [ATP] values and average P_o^* values, calculated from at least 180 s of continuous records, are given at the top left and right, respectively, of each trace. The fourth traces represent a selected segment of the third (left) or the second (right) traces in an expanded time scale. Horizontal calibration bars represent 2 s for first 3 traces and 100 ms for the fourth traces in both panels. Membrane was held at 0 mV. Channels open upward.

Fig. 1. Activation by ATP of native single ryanodine receptor (RyR) channels that displayed different responses to cytoplasmic Ca$^{2+}$ concentration ([Ca$^{2+}$]). Representative current records were obtained at 10 μM cytoplasmic free [Ca$^{2+}$] with 10 mM N-(2-hydroxyethyl)ethylenediamine-triacetic acid (HEDTA) as calcium buffer. ATP was added to the cytoplasmic compartment of a single channel that displayed low-fractional open time (P_o^*) (left) or moderate-P_o (right) calcium dependence. Free [ATP] values and average P_o^* values, calculated from at least 180 s of continuous records, are given at the top left and right, respectively, of each trace. The fourth traces represent a selected segment of the third (left) or the second (right) traces in an expanded time scale. Horizontal calibration bars represent 2 s for first 3 traces and 100 ms for the fourth traces in both panels. Membrane was held at 0 mV. Channels open upward.
(right) calcium dependence are illustrated in Fig. 1. Representative current traces obtained in the presence of 10 μM cytoplasmic free [Ca²⁺] are depicted for both channels, before (Fig. 1, first traces) and after addition of ATP at concentrations that induced about half-maximal activation (Fig. 1, second traces) and near maximal activation (Fig. 1, third traces), respectively. Addition of 0.3 mM ATP to the cytoplasmic compartment of the low-PO₉ channel increased PO₉ from 0.01 to 0.24, and 3 mM ATP further increased PO₉ to 0.51. Addition of 0.1 mM ATP to the moderate-PO₉ channel increased PO₉ from 0.16 to 0.59 and 1 mM ATP increased PO₉ to 0.80. PO₉ remained stable throughout the recording period at each [ATP] (see below). Occasionally (~10%), some channels changed their activity during the recording and were not included in the analysis.

Figure 2 shows activation curves for ATP of both types of channels depicting mean ± SD PO₉ values obtained with low-PO₉ (N = 15) or moderate-PO₉ (N = 6) channels. Two types of ATP dependence were observed: one for channels displaying low-PO₉ calcium dependence and the other for channels displaying moderate-PO₉ calcium dependence. Mean values were fitted with the following hyperbolic equation

\[\frac{P^o}{K_{ATP} + [ATP]} \]

where PO₉ in and P₀ ATP represent the fractional open time before addition of ATP and the maximal change in PO₉ induced by ATP, respectively, and K_{ATP} is the [ATP] for half-maximal activation of the channel. K_{ATP} of moderate-PO₉ channels was significantly lower than K_{ATP} of low-PO₉ channels (82 ± 15 vs. 422 ± 62 μM), whereas P₀ ATP values were similar (see Table 1). The data of individual experiments, in which P₀ was measured at least at five different [ATP], were also fitted to Eq. 2. K_{ATP} values obtained ranged from 270 to 1,070 μM (580 ± 72 μM, mean ± SE; N = 12) for low-PO₉ channels and from 50 to 100 μM (76 ± 7 μM; N = 4) for moderate-PO₉ channels. Thus ATP activated both spontaneous low-PO₉ and moderate-PO₉ channels to a comparable extent but with about fivefold different K_{ATP} values.

Activation by ATP of oxidized RyR channels. Channels spontaneously presenting low-PO₉ behavior were oxidized to obtain moderate-PO₉ calcium dependence. Calcium dependence could be readily changed from low PO₉ to moderate PO₉ by treatment with the SH reagents thimerosal and DTDP, as reported previously (35). Figure 2 shows the activation curve induced by ATP, at 10 μM [Ca²⁺], of single channels that attained moderate-PO₉ calcium dependence after incubation with thimerosal (N = 4) or DTDP (N = 4). There was no significant difference of ATP activation with these two reagents (K_{ATP} of 93 ± 12 and 78 ± 31 μM for DTDP and thimerosal, respectively), so they were pooled as a single group. The symbols in Fig. 2 represent mean ± SD values, and the continuous line through the symbols represents the nonlinear regression curve obtained with Eq. 2. There was no difference in K_{ATP} (82 ± 15 vs. 82 ± 14 μM) or in the extent of activation by ATP (P₀ ATP 0.62 ± 0.03 vs. 0.64 ± 0.03) between spontaneous moderate-PO₉ channels and channels oxidized to the moderate-PO₉ state (see Table 1).

![Fractional open time (P₀) vs. Free [ATP], mM](image)

Fig. 2. Effect of cytoplasmic [ATP] on native and oxidized RyR channels. Native channels (circles): fractional open time (P₀) of channels spontaneously revealing low-PO₉ (filled circles) or moderate-PO₉ (open circles) calcium dependence is given as a function of cytoplasmic free [ATP]. Oxidized channels: filled triangles represent low-PO₉ channels that displayed moderate-PO₉ behavior after oxidation with thimerosal or 2,2′-dithiodipyridine (DTDP). The oxidizing agent was removed before recording as specified in MATERIALS AND METHODS. Symbols and error bars depict mean ± SD values. Solid lines represent the best nonlinear fits to Eq. 2 (see text). Fitted parameters are displayed in Table 1.

Table 1. Curve-fitting parameters for data of Fig. 2

<table>
<thead>
<tr>
<th>Type of Channels</th>
<th>K_{ATP}, μM</th>
<th>P₀ in</th>
<th>P₀ ATP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native PO₉</td>
<td>422 ± 62</td>
<td>0.003 ± 0.001</td>
<td>0.612 ± 0.021</td>
</tr>
<tr>
<td>Moderate PO₉</td>
<td>82 ± 15</td>
<td>0.170 ± 0.024</td>
<td>0.621 ± 0.029</td>
</tr>
<tr>
<td>Oxidized PO₉</td>
<td>82 ± 14</td>
<td>0.271 ± 0.022</td>
<td>0.642 ± 0.026</td>
</tr>
</tbody>
</table>

Values were obtained from the nonlinear fit ± SE of the estimate. P₀, fractional open time; PO₉ calculated PO₉ in PO₉ before addition of ATP; P₀ ATP, maximal ATP-induced change in PO₉. K_{ATP}, ATP concentration for half-maximal activation.
increased channel P_0^* from 0.04 to 0.06, whereas after oxidation it markedly increased P_0^* from 0.14 to 0.43 (Fig. 3, second traces, left and right). Similarly, higher changes in P_0^* were observed after oxidation than before oxidation at 0.3 and 1 mM ATP (Fig. 3, third and fourth traces, left and right). Therefore, differential activation by ATP of low-P_0^* and moderate-P_0^* channels could be obtained in the same single channel before and after oxidation. Similar results were obtained in three other experiments, two performed with thimerosal and one with DTDP.

Activation by ATP at resting [Ca$^{2+}$]. To analyze the activation by ATP of RyR channels at [Ca$^{2+}$] near the resting state of the cell, we performed experiments at 0.1 μM free [Ca$^{2+}$]. Figure 4 shows the activation by ATP of a low-P_0^* channel before (Fig. 4A) and after (Fig. 4B) 120-s exposure to 10 μM thimerosal. After incubation with thimerosal, the channel displayed high-P_0^* behavior (Fig. 4B, first trace). P_0^* values were near 1, both at 10 and 500 μM free [Ca$^{2+}$] (not shown). The same [ATP] induced much higher activation of the oxidized channel compared with the same channel before oxidation (Fig. 4, A and B). High-P_0^* channels showed a decrease in $K_{\text{a}}^{\text{ATP}}$ (from 1,300 μM in low-P_0^* channels to ~120 μM in high-P_0^* channels) and a marked increase in maximal P_0^* change (from 0.1 in low-P_0^* channels to 0.5 in high-P_0^* channels; Fig. 4C). Note that after oxidation the channel displayed clearly defined open and closed states.

Reversibility of ATP activation. In a recent report Dulhunty et al. (17) showed irreversible activation by ATP of skeletal RyR1 channels suggesting channel phosphorylation. To control for the possibility that phosphorylation of the channels occurred in our experimental setting, we performed the following experiment, with a low-P_0^* (Fig. 5, top panels) and a moderate-P_0^* channel (Fig. 5, bottom panels). After a control period at 10 μM [Ca$^{2+}$] (Fig. 5, left panels), the channels were exposed to 3 mM ATP for 8 min (Fig. 5, center panels) and then thoroughly washed and recorded again at 10 μM [Ca$^{2+}$] (Fig. 5, right panels). Channel activity remained stable during the whole period of exposure to ATP. Moreover, after ATP removal, channel activity returned to the level before ATP treatment. Therefore, we consider that, in our experimental conditions, the effect of ATP is not due to phosphorylation.

Noise analysis. It is apparent in Fig. 3 that after oxidation the open and closed states are better defined than before oxidation. This is especially manifest when the current histograms before oxidation and after oxidation are compared at P_0^* near 0.5. Before oxidation the histogram consists of a broad single peak (Fig. 3, fourth left histogram), where the frequencies of intermediate current values between the closed and full open states are favored. In contrast, after oxidation two peaks are clearly distinguishable, corresponding to the closed and full open states, with much less frequent intermediate current levels (Fig. 3, second right histogram).

To further analyze the change in gating induced by oxidation, we performed noise analysis of the channel current fluctuations. Figure 6 shows the current variance as a function of mean channel current, measured at 1-s intervals, obtained from the channel of the experiment shown in Fig. 3 before and after oxidation at 10 μM [Ca$^{2+}$]. To obtain the full range of mean current from the closed to the full open state, data obtained at [ATP] ranging from 0 to 3 mM were included. It is apparent that both before and after oxidation the same maximal mean current was attained. Data were fitted.
A

Before thimerosal (Low P_o channel)

Control, 0.1 μM [Ca$^{2+}$] cis

\[
P_o = 0.00
\]

0.1 mM ATP

\[
P_o = 0.01
\]

1 mM ATP

\[
P_o = 0.07
\]

B

After thimerosal (High P_o channel)

Control, 0.1 μM [Ca$^{2+}$] cis

\[
P_o = 0.18
\]

0.1 mM ATP

\[
P_o = 0.46
\]

1 mM ATP

\[
P_o = 0.60
\]

C

Fractional open time (R_o)

Free [ATP], mM

\[
\text{variance} = \text{variance}_b + i \times <I> - <I>^2/n
\]

where $<I>$ is the mean current value and variance$_b$ is the current variance independent of channel activity.

Assuming identical and independent conducting units, i corresponds to the unitary current and n to the number of conducting units.

The unitary current calculated by noise analysis was 0.75 ± 0.01 pA (estimate ± SE of the estimate) before oxidation and 1.68 ± 0.01 pA after oxidation. These values were about one-fourth and one-half of the full open channel current before and after oxidation, respectively. Because maximal mean current was the same before and after oxidation, the number of conducting levels (n) decreased accordingly from 4.03 ± 0.04 before oxidation to 1.80 ± 0.01 after oxidation. The product $i \times n$, both before and after oxidation, was near 3 pA, similar to I_{max}, the current flowing through open full channel, measured as described in MATERIALS AND METHODS (2.90 ± 0.06 pA, mean ± SD). Noise analysis of the experiment shown in Fig. 4, A and B, performed at 0.1 μM [Ca$^{2+}$], yielded a unitary current of 2.59 ± 0.01 pA and n of 1.05 ± 0.00 (estimate ± SE of the estimate) both before and after oxidation.

DISCUSSION

Activation by ATP. ATP applied to the cytoplasmic compartment reversibly activated RyR channels from the ER of rat brain cortex incorporated in planar lipid bilayers. ATP differentially activated RyR channels depending on their calcium response. Channels that showed low-P_o calcium dependence presented lower apparent affinity to activation by ATP than channels that showed moderate-P_o calcium dependence. In a recent report by Oba et al. (43) RyR channels purified from rabbit skeletal muscle were activated by an ATP analog. They found activation of “high-P_o” channels, but not of “low-P_o” channels. The level of activity of their high-P_o and low-P_o channels is similar to that of our moderate-P_o and low-P_o channels, respectively. A possible explanation of the absence of activation of low-P_o channels in their experiments could be that the level of reduction of their low-P_o channels is higher than ours and therefore no activation by ATP could be observed. Sun et al. (52) reported that each RyR subunit has several critical SH residues, the oxidation of which modifies the response to agonists.

In our experiments, channel activity remained stable during the whole recording period at each [ATP]. Spontaneous increases in channel activity, occasionally observed, could arise from oxidation induced by the ambient oxygen tension present during the experiment (19). Therefore, only stable records were included in the analysis. Moreover, the effect of ATP could be reversed by removal of ATP from the chamber; the activity after long exposures to ATP (see Fig. 5) returned to the values observed before ATP exposure. Therefore, we rule out the possibility that the activation by ATP of RyR channels in our experimental conditions is due to phosphorylation as reported by Dulhunty et al. (17) for native RyR channels from skeletal muscle.

Low-P_o channels that attained moderate-P_o behavior after oxidation with thimerosal or DTDP at 10 μM

Fig. 4. Differential activation by ATP of single RyR channels at 0.1 μM [Ca$^{2+}$]. A and B: representative current records of the same RyR channel were obtained at 0.1 μM cytoplasmic free [Ca$^{2+}$] at the indicated [ATP] before (A) and after (B) thimerosal. Average P_o values calculated from at least 120 s of continuous records are shown. Note the near absence of substates after oxidation. C: mean P_o values of 8 low-P_o channels (●) and of 2 high-P_o channels (○) recorded at the indicated [ATP]. Symbols represent means ± SE for low-P_o channels and means ± value range for high-P_o channels. Solid lines represent the best nonlinear fits to Eq. 2 (see text).
The activation by ATP of the oxidized channels was the same, both in extent and in affinity, as that exhibited by channels that spontaneously presented moderate-\(P_o \) behavior. Therefore, oxidation of critical hyperreactive SH groups would produce a channel with higher apparent affinity for different agonists such as ATP, calcium, and caffeine (35, 43). This channel behavior may be present in vivo, leading to the possibility that channel oxidation is a physiologically relevant mechanism. It could be argued that at high [ATP] and [Ca\(^{2+}\)] both low- and moderate-\(P_o \) channels would be maximally activated, making the change in apparent affinity irrelevant. However, fractional open time at those conditions is higher in moderate-\(P_o \) channels (0.9) than in low-\(P_o \) channels (0.6). Therefore, oxidation would induce a higher degree of calcium release. Moreover, the response of RyR channels to ATP depended on cytoplasmic [Ca\(^{2+}\)]; at 0.1 \(\mu \)M [Ca\(^{2+}\)] the response to ATP of low-\(P_o \) channels was negligible, whereas after oxidation it was pronounced in extent and apparent affinity (see Fig. 4). Therefore, at resting [Ca\(^{2+}\)] the effect of oxidation is even more relevant than at 10 \(\mu \)M [Ca\(^{2+}\)].
The vesicle preparation used in our experiments contains the three RyR isoforms expressed in rat brain (14, 23), as measured by Western blot with specific antibodies, RyR-2 being by far the most abundant isoform (C. Hidalgo and A. Humeres, personal communication). At equal probability of incorporation (which is not known), RyR-2 is expected to be the isoform most frequently incorporated into the bilayer. However, RyR channels from brain tissue behave differently from those of cardiac tissue, because the most frequent response to calcium in brain is low-\(P_o\) behavior, which is never observed in cardiac channels (12, 34, 35). Therefore, the brain channels studied in the present work might be RyR-2 channels with regulatory mechanisms different from those from cardiac muscle, such as FKBP association (11) or redox state. However, we cannot exclude the possibility that they correspond to RyR-1 or RyR-3 channels, and it is possible that the two different channel responses to ATP described in this work could arise from different RyR channel isoforms. However, this interpretation is unlikely, because both types of activation by ATP were obtained in the same single channel at two different oxidation states. Although we do not know which RyR channel isoform was incorporated into the bilayer, we are reasonably confident that the same isoform (the same channel) displayed both responses to ATP, one before and one after oxidation.

The \(K_{a\text{ATP}}\) value we obtained at 10 \(\mu\text{M} \text{[Ca}^{2+}\text{]}\) with low-\(P_o\) channels from rat brain cortex (0.42 mM) is similar to the \(K_{a\text{ATP}}\) values published in other tissues. Laver et al. (31) found a single \(K_{a\text{ATP}}\) of 0.36 mM in RyR channels from rabbit skeletal muscle, and KerMODE et al. (30) found a \(K_{a\text{ATP}}\) of 0.22 mM in cardiac RyR channels. Jöna et al. (27) found biphasic activation by ATP in channels from rat skeletal muscle, with two \(K_{a\text{ATP}}\) values, one of 0.019 mM and another of 0.35 mM, which are of the same order of magnitude as those obtained with moderate-\(P_o\) and low-\(P_o\) channels in our experiments, respectively. We did not find cooperativity in channel activation by ATP, neither fitting average data nor fitting data of individual experiments with more than four ATP concentrations (not shown). In RyR channels from cardiac (30) and skeletal (31) muscle, Hill coefficients for ATP activation of 1.5 or 2–4, respectively, have been reported. If we assume that channel subunits gate in an uncoordinated fashion, as seems to be the case in low-\(P_o\) channels observed in this work at 10 \(\mu\text{M} \text{[Ca}^{2+}\text{]}\) (see below), no cooperativity should be expected.

Noise analysis

RyR channels from skeletal and cardiac muscle display multiple subconductance states, especially in the absence of FKBP (8, 28, 33, 37, 38, 44, 49). Because of the difficulty in resolving the possible channel substates in our recording conditions, the low signal-to-noise ratio, and the fast kinetics observed in the presence of ATP at 10 \(\mu\text{M} \text{[Ca}^{2+}\text{]}\), we performed noise analysis of channel current fluctuations. The analysis revealed an \(n\) of 4 and an \(i\) of 0.75 pA for low-\(P_o\) channels. One simple interpretation of this result is that, in low-\(P_o\) RyR channels, the four subunits function in an uncoordinated fashion, giving rise to evenly spaced current levels. A pattern with four open current levels (\(\frac{1}{4}, \frac{1}{2}, \frac{3}{4}, \text{and} 1\) times the maximal channel current), such as that predicted by our noise analysis, was described in purified skeletal muscle (33, 49) and in RyR channels expressed heterologously without FKBP12 (8, 44). Our noise analysis results could imply that a single RyR channel has four conducting units, each carrying one-fourth of the single-channel maximal current. This can be interpreted as an indication that each of the four subunits can conduct and gate independently, as proposed by Liu et al. (33) and Ondrias et al. (44). Alternatively, the possibility that the four subunits function stochastically to form a single pore, giving rise to evenly spaced current levels, cannot be ruled out.

After oxidation, our noise analysis results indicate that brain RyR channel unitary current is one-half of single-channel maximal current and that the number of conducting units has decreased from 4 to 2. Assuming the existence of subchannels, this result implies that on oxidation the subchannels gate with a certain degree of coordination. One possibility to explain an \(n\) of 2 and an \(i\) of \(\frac{1}{2}I_{\text{max}}\) is that subchannels function in pairs after oxidation. This mode would give rise to three current levels: zero current for the closed state, \(\frac{1}{2}I_{\text{max}}, \text{and} I_{\text{max}}\). This model is consistent with a report showing that the most frequent substate in the purified RyR channel has one-half the maximal conductance of the channel (33). In our experiments, however, current histograms show that the probability of half-maximal current is small (Fig. 3, right histograms). Therefore, SH oxidation seems to induce a certain degree of concerted operation of the four channel subunits, favoring the full open and closed states and making substates less probable. The change in gating mode in our experimental conditions is clearly due to oxidation and not to phosphorylation. As can be noted in Fig. 6, even at the highest [ATP] tested, the data obtained before oxidation fall on the parabola representing four conducting units. After oxidation, even before the addition of ATP, the data fall on the parabola of two conducting units. The abundance of substates in our experiments at 10 \(\mu\text{M} \text{[Ca}^{2+}\text{]}\) could be due to the fact that FKBP12 is not tightly associated to RyR channels in brain tissue (11). Whether redox-related changes in subunit coordination involve interactions of FKBP12 with the RyR channel protein remains to be investigated.

Noise analysis of the low-\(P_o\) channel at 0.1 \(\mu\text{M} \text{[Ca}^{2+}\text{]}\) revealed the absence of substates. Therefore, no change in coordination could be observed after oxidation. The explanation for this finding is currently under investigation. At 10 \(\mu\text{M} \text{[Ca}^{2+}\text{]}, oxygenation induced both a coordinated function of channel subunits and an increase in apparent affinity for ATP. It is conceivable that to attain the full open state of an uncoordinated channel (the 4 subunits gating independently), binding of ATP to each subunit is required. Instead, in a perfectly coordinated channel, binding of ATP to a single subunit could be sufficient to induce the full open state. However, the results obtained at low [Ca\(^{2+}\)] indicate
that at least at 0.1 μM, both effects, subunit coordination and increase in affinity, are not causally related. Thus calcium activation seems to be needed to observe channel substates.

From the results reported in this study, it is proposed that RyR channels from rat brain activated by ATP and calcium function as four independent subchannels in the reduced state. Oxidation induces a coordination in the gating of the subchannels. The redox state of critical SH groups of brain RyR channels controls their response to ATP (45), as it does for cytoplasmic Ca\(^{2+}\) (35) and caffeine (43). Changes in intracellular redox potential could modify neuronal processes that depend on calcium release from the ER, including long-term potentiation and long-term depression and presumably learning and memory (3, 5, 6, 24). On the other hand, oxidative stress may enhance CICR in neurons, because oxidation not only increases RyR channel response to calcium and ATP but also suppresses the inhibition of skeletal RyR channels exerted by Mg\(^{2+}\) (15). Oxidative stress and alterations in Ca\(^{2+}\)-homeostasis have been proposed to contribute to neuronal apoptosis and excitotoxicity that could underlie the pathogenesis of several neurodegenerative disorders and stroke (7, 29, 39, 56).

We thank Marco A. Córdova for skillful help with the experiments and Dr. Cecilia Hidalgo for helpful criticism of the manuscript.

This study was supported by Fondo Nacional de Investigación Científica y Tecnológica (FONDECYT) Grant 8990009 and Fondo de Investigación Avanzada en Áreas Prioritarias Grant 15010006.

REFERENCES

12. Chu A, Fill M, Stefani E, and Entmann ML. Cytoplasmic Ca\(^{2+}\) does not inhibit the cardiac muscle sarcoplasmic reticulum ryanidine receptor Ca\(^{2+}\) channel, although Ca\(^{2+}\)-induced Ca\(^{2+}\) inactivation of Ca\(^{2+}\) release is observed in native vesicles. J Membr Biol 135: 49–59, 1993.

