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Quantization of the gravitational constant in odd dimensions
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It is pointed out that the action recently proposed by Baifiados, Teitelboim, and Zanelli for the
study of black holes in odd dimensions higher (and lower) than four provides a natural quantization
for the gravitational constant. These theories possess no dimensionful parameters and hence they

may be power counting renormalizable.
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Gravitation in dimensions greater than 2 is best de-
scribed by the so-called Lovelock action [1]. This is a
linear combination of the dimensional continuations to D
dimensions of all the Euler classes of dimensions 2p < D
[2,3]. The Lovelock Lagrangian could be defined by the
previous statement, but it can also be derived in three
other seemingly independent ways: (i) It is the most gen-
eral invariant constructed out of the metric and curva-
ture that yields second-order covariant field equations [1];
(ii) it is the most general local D-form invariant under
tangent space rotations, constructed out of the vielbein,
the spin connection, and their exterior derivatives with-

p

out using the Hodge* dual [4]; (iii) it is the most general
low-energy effective theory of gravity that can be derived
from string theory [5].

In a recent article, Bafiados et al. [6] have considered
a particular form of the Lovelock action which results
from embedding the group of tangent space rotations,!
SO(D), into SO(D + 1). For odd dimensions there is a
particular choice that makes the action invariant under
SO(D + 1), whereas for even D that possibility does not
exist.

The proposed Lagrangian for D = 2n — 1 dimensions
reads
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Here & is the gravitational constant analogous to New-
ton’s in D = 4, | is a constant with dimension of length,
R is the curvature two-form, and e® are the vielbein.
As is shown in Ref. [6], this is the Euler-Chern-Simons
density. That is, Ly,—1 is a (2n — 1)-form whose exte-
rior derivative is the Euler class &£, for (2n)-dimensional
manifolds:

dA Lan—1 = Kan, (2)

with
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where A,B,C,... = 1,...,.2n. Here RAP is the 2n-

dimensional curvature two-form associated with the
(anti-) de Sitter group:
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'For brevity here SO(D) will denote the group of rotations in
D dimensions or any of its complex extensions SO(p, q), with
p + q = D. We shall make the distinction below when com-
menting on the spacetime signature and the Wick rotation.
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where T® = de® + wg A e® is the torsion two-form.

L3, is the analogue of the Pontryagin Chern-Simons
form encountered in gauge theories. In gravity there is
also a Pontryagin form, often called the Hirzebruch class,
in D = 4n and a corresponding Chern-Simons density in
D = 4n —1 (see, e.g., [7]), but we will not consider them
here as they cannot be dimensionally continued.

For a non-Abelian gauge theory in 2+1 dimensions
with the gauge group G the existence of large gauge
transformations within a nontrivial homotopy class im-
plies the quantization of the coupling constant g that
multiplies the Chern-Simons action [8,9]. Roughly speak-
ing, if 73(G) # 0, g must be quantized.

The same argument applied to asymptotically flat
gravitation theory in 2+1 dimensions does not lead to the
quantization of Newton’s constant because in that case
the relevant group is ISO(2, 1), and w3(ISO(2,1)) = 0 [9].

On the other hand, the theories considered in [6] have
a cosmological constant; their solutions are not asymp-
totically flat and hence the relevant groups are anti-de
Sitter SO(2n — 2,2); so the nonquantization argument
does not apply here.

Our argument for the quantization of x, however, does
not rely on the existence of large gauge transforma-
tions but on the possibility of rewriting the (2n — 1)-
dimensional gravity action as a topological theory on a
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2n-dimensional manifold whose boundary is the space-
time one wants to describe. This is similar to the stan-
dard discussion leading to the quantization of the cou-
pling constant in the Wess-Zumino-Witten (WZW) the-
ory [10].

Let us consider the particular case of a compact (2n —
1)-dimensional, simply connected manifold M that is the
boundary of some 2n-dimensional orientable manifold
(for definiteness, M could be taken to be $?"~1). Then,
by Stokes’ theorem, the action for M can be expressed
as

Sa[M] = « /n Ean. (5)

Obviously, there is a large freedom in the choice of €2,
as there are infinitely many ways to extend M. How-
ever, since the action Sq[M] is to describe the dynamical
properties of M, it is reasonable to demand that the ob-
servables of the system should be insensitive to changing
in Eq. (5) by a different 2n-manifold, ', with the same
boundary (M) [11]:

90 =M = 8. (6)

SQ[M]=,</Q£=N(/Q£—/’5)+RLI£
N(Ls+/_9’£)+sgl[M].

The first term on the right hand side of the last equal-
ity is x times the Euler class of the manifold formed by
joining Q and —§’ smoothly along M. The minus sign
accounts for the fact that the orientation of one of the
two halves must be reversed in order for their union to
possess a well-defined orientation throughout. Thus, we
finally have

SQ[M] = Kkx[QU —Q’] + SQ'[M]. (7)

Although the action of any classical system is defined
modulo an arbitrary additive constant, quantum me-
chanically this constant must be an integer multiple of
Planck’s constant h so that the path integral of the sys-
tem will be unaffected. This implies, in particular, that
under continuous transformations of the fields the addi-
tive constant cannot change.

On the other hand, the replacement Q@ — €' could
not be attainable through a continuous transformation if
Q and Q' have different topologies. This means that the
difference Sq:[M]— Sq[M] must be an integer multiple of
h, and one concludes from (7) that since x is an integer,
x must be quantized. [The same argument does not hold
for gravity in 2n dimensions because there is no analogue
of Eq. (2) in that case and hence the even dimensional
action cannot be written as the integral of an exact (2n+
1)-form.]

Our point rests on the assumption that there exists a
manifold of the form QU —Q’ with a nonzero Euler char-
acteristic. It is actually not difficult to envision many

examples of this type; e.g., Q2 and Q' can be two halves
of a 2n-sphere with any number of “handles” attached to
each hemisphere. A different question is whether QU —’
could be a classical solution for a 2n-dimensional the-
ory. This question is related to the existence of instan-
tons such as the D’Auria-Regge solution [12] in four-
dimensional Euclidean gravity (that instanton, however,
is not a solution of pure gravity but requires torsion and
matter fields). The existence of such solutions is not
required for the validity of our argument and does not
concern us here since we are taking the point of view
that the fundamental theory is the one defined in 2n — 1
dimensions.

The quantization argument is valid regardless of the
signature of spacetime. This is because the Euler char-
acteristic is a topological invariant and hence insensitive
to changes in the signature of the metric. The action is
constructed entirely out of form fields which are indepen-
dent of the coordinates and therefore invariant under co-
ordinate changes, including Wick rotations. Thus, both
in the hyperbolic and the Euclidean signature the inte-
grand of the path integral is exp(5S[M]), where S[M]
is the (real) action constructed as in (1).

It might seem paradoxical that the action is insensitive
to the signature of the metric, especially in view of the ex-
plicit dependence of Ly, _; on the vielbein. The paradox
is resolved by noting that the Wick rotation must be per-
formed simultaneously on the spacetime coordinates and
on the tangent space, as this is the only consistent way to
maintain the relationship between the spacetime metric
and that of its tangent space (soldering), g, = nabeZeﬁ.
Since in the end all (spacetime and tangent space) in-
dices are contracted in the Lagrangian, no extra factors
of ¢ appear in the Euclidean action.

Actions whose construction require the Hodge*-dual
(such as 8,40 $+/|g|d*x or F**F,, \/|g|d*z) do change
under Wick rotations because they explicitly involve the
€ symbol, which is a pseudoscalar and hence transforms
with an additional factor of 2. The usual Euclidean action
for gravity, Ig = i [ d*zg,/ggR, carries an extra i that
can be viewed, in the language of forms, as resulting from
the substitution €,pca —+ i€apca When going from SO(3,1)
to SO(4). Our point of view here is that this is not nec-
essary (in odd dimensional spacetimes), but if one insists
on introducing an ¢ when the group is changed, the def-
inition of the theory should be such that the Euclidean
sector gives an imaginary phase for the path integral.
This is consistent with the requirement that time rever-
sal be equivalent to conjugation in the path integral (see,
e.g., [13]).

The proposal of Ref. [6] for a gravitation theory in
odd dimensions possesses a number of interesting fea-
tures and, as we have shown here, its coupling constant
is quantized under standard assumptions. An interest-
ing consequence of the quantization of the gravitational
constant is that the Hilbert space for 2+1 gravity with
cosmological constant has finite-dimensional unitary rep-
resentations [14].

In addition, the action (1), written in terms of the
rescaled vielbein e* — le®, has no dimensionful constants
and all fields have canonical dimension 1. Furthermore,
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the fields wg and e® are different components of the con-
nection and the action describes a bona fide SO(D + 1)
gauge system. The corresponding quantum theory would
be renormalizable by power counting and possibly finite.
Witten has shown this to be the case in three dimensions
using the fact that the diffeomorphism constraints can be
solved classically for D = 3, leaving only a discrete set
degrees of freedom to be quantized [15].

For D > 3, however, the construction of a quantum
theory might be a formidable task. In fact, a construction
analogous to that of Ref. [15] may not exist at all.

Note added. After this paper was submitted, it was
pointed out to the author that the Lagrangian (1) was
also independently studied by Chamseddine [16], who
concluded that the gravitational constant k was not nec-
essarily quantized. The argument there was based on
the nonexistence of topologically nontrivial (large) gauge
transformations in M. That argument clearly does not
contradict our results, based on the independence of the

action under changes of .
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