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Abstract

Dendritic cells (DCs) generated in vitro from bone marrow precursors using
granulocyte-macrophage colony-stimulating factor (GM-CSF) secrete interleukin-2
(IL-2) upon activation, an event probably associated to the initiation of adaptive
immune responses. Additionally, they produce IL-12, a cytokine related to T-cell
polarization. To analyse the effect of IL-4 on DC differentiation and function, we
assessed the capacity of murine bone marrow dendritic cells (BMDCs) different-
iated with GM-CSF in the presence or absence of IL-4 to produce IL-2 and
IL-12 upon lipopolysaccharide (LPS) activation. We found that although IL-4
enhanced DC IL-12p70 production, it strongly impaired IL-2 secretion by
BMDCs. This inhibition, which depends on the presence of IL-4 during LPS
activation, is DC specific, as IL-4 did not affect IL-2 secretion by T cells.
Interestingly, inhibition of DC IL-2 production did not prevent DC priming of
T lymphocytes. These results illustrate a new putative role for IL-4 on the
regulation of the immune response and should help clarify the controversial
reports on the effect of IL-4 on DCs.

Introduction

Dendritic cells (DCs) are antigen-presenting cells endowed
with the unique capacity to initiate primary immune
responses. In most peripheral tissues, DCs are present as
immature cells, which are unable to stimulate T cells.
However, immature DCs are extremely well equipped to
capture antigens, which, if encountered in an inflammatory
context, will induce their maturation and mobilization to
secondary lymphoid organs [1, 2]. DC maturation is a
complex process which leads to reduced endocytic and/or
phagocytic capability, enhanced expression of costimulatory
molecules (such as CD80, CD86 and CD40), increased
antigen processing and presentation, release of cytokines
and chemokines [1–4] and switch in chemokine receptor
expression [5]. The ability of DCs to regulate immune
responses strongly depends on their maturation state:
whereas steady-state DCs are thought to maintain tolerance,
mature DCs are responsible of initiating the adaptive
immune response [6–9].

Cytokines are key mediators of both innate and adaptive
immune responses. In particular, they can define the type
of immune response developed in response to a given
antigen by driving CD4þ T helper cells towards TH1 or
TH2 phenotypes. In this context, interleukin-12 (IL-12)
and IL-4 appear as the principal players in this process of
T-cell polarization, with IL-12 inducing TH1 type
responses and IL-4 a TH2 type. Exactly how and when
IL-4 and IL-12 exert their influence to polarize T-cell
responses remains an issue of controversy [10, 11]. Recent
discoveries support the hypothesis that skewing towards
either type of response can be triggered by DCs. Indeed, a
particular subset of DCs can induce either TH1 or TH2
responses depending on the dose and type of antigen and
on the environmental stimuli they encounter during
maturation [1, 4, 12]. In addition, there is accumulating
evidence for a positive role of IL-4 in TH1 differentiation,
because it can effectively enhance DC production of
IL-12p70, while reducing secretion of its antagonistic
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homodimer IL-12p40 [13–15]. Together, these data
suggest that, through their ability to release and/or respond
to cytokines, DCs play a central role in the process of
T-cell polarization.

In addition to the known pattern of cytokines secreted
by DCs, which include IL-12, it was recently observed that
DCs, but not macrophages, transiently produce IL-2 at
early time points after induction of maturation [16, 17].
The kinetics of IL-2 production by DCs are compatible
with the first appearance of major histocompatibility
complex (MHC) class II peptide complexes at their cell
surface. The importance of DC-derived IL-2 in inducing
T-cell activation has been confirmed by the observation
that activated DCs from IL-2–/– mice are severely impaired
in their ability to prime alloreactive T cells [16, 18]. In
addition, there is evidence showing functional IL-2 signal-
ling in DCs [19], suggesting that this cytokine may also
affect DCs in an autocrine fashion.

With these facts in mind, we asked whether the
cytokines involved in T-cell polarization might also
regulate IL-2 secretion by DCs. To address this question,
we investigated the effect of IL-4 on the ability of DCs to
produce IL-2 upon maturation. Moreover, IL-4, which is
known to induce TH2-cell polarization, is often used to
differentiate DCs from bone marrow progenitors ex vivo
[6, 20]. Interestingly, we found that, even though IL-4
does not prevent DCs from priming T cells, it severely and
selectively impairs the capacity of DCs to secrete IL-2.
These results indicate that secretion of IL-2 by DCs is
under the control of environmental cytokines and raises
the question as to the contribution of DCs to T-cell
activation when in the presence of IL-4.

Materials and methods

Mice and reagents. C57BL/6, B10.BR and the T-cell
receptor (TCR) transgenic AND mice were purchased
from Jackson Laboratories (Bar Harbor, ME, USA). F1
(B10.BRxAND) mice were obtained by in-house breeding.
Recombinant IL-4 and granulocyte-macrophage colony-
stimulating factor (GM-CSF) mouse cytokines were
obtained from BD PharMingen (San Diego, CA, USA),
and their specific activities were 0.25–1� 108 U/mg and
3–9� 108 U/ml, respectively. The following monoclonal
antibodies from PharMingen were used: fluorescein
isothiocyanate (FITC)-conjugated anti-I-A/I-E (2G9),
FITC-conjugated anti-CD86 (GL1), phycoerythrin (PE)-
conjugated anti-CD40 (3/23), PE-conjugated anti-CD11c
(HL3), PE-conjugated anti-CD25 (3C7), PE-conjugated
anti-CD44 (IM7), PE-conjugated anti-CD69 (H1.2F3),
PE-conjugated anti-CD62L (MEL-14) and FITC-
conjugated anti-Va11.1 (RR8-1).

Generation and purification of mouse bone marrow-
derived DCs. Bone marrow-derived DCs were generated as
described previously [21]. Briefly, bone marrow cells were

removed from femurs and tibias of 2-month-old mice.
After depletion of erythrocytes by hypotonic lysis, cells
were cultured at 1� 106/ml in RPMI 1640, supplemented
with 10% heat-inactivated fetal calf serum (FCS) and
GM-CSF (10 ng/ml) with or without IL-4 (1 ng/ml). On
day 2 and 4, 75% of the culture supernatant was carefully
removed and replaced with fresh medium. To obtain
highly purified DCs, cells were harvested on day 5 of
culture, incubated with anti-CD16-CD32 (mouse Fc
Block, BD PharMingen) and normal goat serum for
15 min at 4 �C, labelled with bead-conjugated anti-
CD11c monoclonal antibody (Miltenyi Biotec, Auburn,
CA) and submitted to positive selection through magnetic
columns (LS columns, Miltenyi Biotec) according to the
manufacturer’s instructions. DC purity of 91–95% was
consistently achieved.

Flow cytometry analyses. Cells were resuspended in
RPMI plus 2% FCS, double-stained with the relevant
monoclonal antibodies for 30 min at 4 �C, washed and
analysed on a FACScan (BD Biosciences, Mountain
View, CA, USA) using the Cellquest program.

Cytokine production. On day 5, purified CD11cþ DCs
were replated at 4� 106 cells/ml in 250 ml of RPMI 1640
supplemented with 10% FCS and GM-CSF with or with-
out IL-4. Where indicated, LPS was added at 100 ng/ml
(Sigma, St. Louis, MO, USA). After different incubation
periods, supernatants were harvested and tested for mouse
IL-12p70 and IL-2 using enzyme-linked immunosorbent
assay (ELISA) kits (BD PharMingen) according to the
manufacturer’s instructions. The detection limits for
IL-12p70 and IL-2 were 32 and 1.6 pg/ml, respectively.

Bone marrow dendritic cell thymocyte cocultures. Thymo-
cytes were obtained from 1–2-month-old and mice and
depleted of IA/IE-positive cells. These cells were then
cultured with F1 (B10.BRxAND) bone marrow dendritic
cells (BMDCs) (2 : 1 ratio), previously differentiated with
or without IL-4, in the presence of LPS (100 ng/ml) and
5 mM specific C-terminal peptide from pigeon cytochrome
c (PCC87�104) (KKAERADLIAYLKQATAK). After 48 h
of coculture, thymocytes were double-stained for Va11þ

and various activation markers and analysed by flow cyto-
metry. Supernatants harvested after 24, 48 and 120 h of
activation were tested for IL-2 production by ELISA as
described above.

mRNA purification and IL-2 RT-PCR. RNA extraction
was performed from purified BMDCs by using TRIzol
reagent as suggested by the manufacturer (Gibco-BRL).
cDNA was synthesized in 25 ml reaction containing 5 mg of
total RNA, 500 ng of oligo (dT) (Gibco-BRL), 2 U of
MMLV-RT (Promega, Madison, WI, USA), 15 U of
RNAsin (Promega), 0.5 mM dNTP and MMLV-RT buffer
(Promega) for 1 h at 42 �C. The cDNA was amplified in a
25 ml reaction volume containing 200 ng of the sense and
antisense primers, 200 mM dNTP, 1.5 mM MgCl2, 5 U of
Taq polymerase (Gibco-BRL) and AmpliTAq buffer
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(Gibco-BRL) using the following conditions: one cycle of
5 min at 94 �C; 29 cycles of 1 min at 94 �C, 1 min at
60 �C, 2 min at 72 �C and one cycle of 10 min at 72 �C.
Samples were analysed on 1.4% agarose gels containing
ethidium bromide. Primers used were as follow: mIL-2 sense
primer, 50-ACTTGTGCTCCTTGTCAACAGC-30; mIL-2
antisense primer, 50-CCATCTCCTCAGAAAGTCCACC-
30; b-actin sense primer, 50-AAATCGTGCGTGACAT
TAAGG-30 and b-actin antisense primer, 50-CCGATCCA
CACGGAGTACTT-30. Control experiments were
performed with RNA extracted from splenocytes activated
for 16 h with 1 mg/ml of ionomycin and 25 ng/ml of
phorbol 12-myristate 13-acetate.

Results and discussion

IL-2 secretion by DCs is severely impaired by the presence of

IL-4 during activation.

To assess the effect of IL-4 on IL-2 production by DCs, we
cultured bone marrow cells with GM-CSF alone or in
combination with IL-4. Although only slight differences
in CD40 and CD86 surface expression were observed
between purified BMDCs generated with or without
IL-4, two populations of cells were distinguished by their
levels of MHC class II surface expression (data not shown).
Interestingly, inclusion of IL-4 in the cultures during
differentiation increased the proportion of MHC-IIhigh

DCs (with an average of 29.5% cells CD11cþ/MHC-IIhigh

when differentiated with GM-CSF alone and 42% when
differentiated with GM-CSF plus IL-4), suggesting, as it
has been reported by others [22], that these cultures
contain a mixture of DCs at different stages of maturation.
As expected, enhanced maturation was achieved by
treating these cells with LPS during 4 h (data not shown).

We next analysed the ability of these DCs to produce
IL-2 upon LPS activation. Similar to published kinetics for
Escherichia coli-activated DCs [16], GM-CSF-differentiated
DCs showed a peak of IL-2 secretion 3 h after LPS
activation (Fig. 1A). Although the amount of IL-2 secreted
by DCs (30 pg/ml) apparently appears low when compared
to those obtained by Granucci et al. [16, 17], it should be
considered that, in those experiments, DCs were activated
with live bacteria, one of the most potent stimulus for DC
activation. As expected, no secretion of IL-2 was observed
when using the CD11c-negative fraction of cells obtained
after MACS purification or with LPS-treated DCs derived
from C3H/HeJ mice deficient in the expression of Toll-like
receptor 4 (TLR4). Moreover, no IL-2 was detected when
mature DCs isolated from spleens of Flt3L-treated mice
were activated with LPS for 4 h (data not shown), suggest-
ing that fully matured DCs present in secondary lymphoid
organs may have already stopped synthesizing IL-2.

Strikingly, we found that IL-2 production is severely
impaired in DCs that were differentiated and activated in
the presence of IL-4 (P< 0.001) (Fig. 1B). This inhibition
of IL-2 secretion was sustained for up to 24 h of activation.
In sharp contrast, IL-4 strongly enhanced the secretion of
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IL-12p70 (P< 0.001) (Fig. 1B), as previously reported by
others [13, 14]. These data indicate that impairment of
IL-2 secretion by IL-4 does not result from a broad
inhibitory effect of this cytokine but is rather specific.
Furthermore, the fact that IL-4 enhances the production
of IL-12 by LPS-activated DCs discards the possibility that
IL-4 acts by inhibiting signal transduction through the
LPS receptor TLR4.

IL-4 acts at the post-transcriptional level

Next, we asked whether IL-4 acted at the transcriptional or
posttranscriptional levels. To address this question, we first
analysed the IL-2-secreting capacity of DCs differentiated
with GM-CSF alone but activated with LPS in the
presence of IL-4. Under such conditions, we found that
IL-2 secretion at 4 h was considerably lower than IL-2
secretion in the absence of IL-4 (Fig. 2A). Furthermore,
DCs differentiated with GM-CSF plus IL-4 but deprived
of this cytokine during the LPS activation period secreted

enhanced amounts of IL-2 compared to cells that were
differentiated and matured in the presence of IL-4
(Fig. 2B). The opposite was true for IL-12 production,
which showed a significant increase when IL-4 was
included during DC activation compared to secretion
when cells were differentiated and matured in the absence
of IL-4 (Fig. 2C). DCs differentiated with GM-CSF plus
IL-4 and activated in the absence of this cytokine secreted
lower levels of IL-12 compared to DCs that were
differentiated and activated in the presence of this cytokine
(Fig. 2D). These results indicate that the presence of IL-4
only during the final activation step is sufficient to block
IL-2 secretion, suggesting that the effect of IL-4 is post-
transcriptional. This is supported by RT-PCR assays that
show that the IL-2 mRNA is actually present in DCs
differentiated with GM-CSF plus IL-4 and that this
mRNA increased after LPS activation, in spite of the
marked decrease in IL-2 secretion (Fig. 2E).

An additional issue brought up by the present work
concerns the utilization of IL-4 in the different protocols
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currently used for the generation of DCs in vitro. Our
results confirm that different procedures might generate
DCs with different functions. In agreement with results
published by others [22], we found that DCs obtained by
combining GM-CSF with IL-4 display a more mature
phenotype, as evidenced by their higher MHC class II
surface expression, decreased endocytosis and phagocytosis
(data not shown) and enhanced IL-12 secretion. This
distinctive phenotype has been associated with an increase
of the in vitro allostimulatory capacity of IL-4-
differentiated DCs as well as with enhanced protective
tumour immunity in vivo [6, 23]. Potential differences in
the ability of these various DC populations to contribute
to tolerance induction in vivo could equally apply. The
question whether IL-2 secretion contributes to these
phenotypic differences of DCs awaits further investigation.
During LPS activation, a variety of chemokines and
cytokines are induced in DCs [4]. IL-4 inhibition of
IL-2 secretion may therefore occur through an indirect
effect, for example by regulating proteins critical for DC
IL-2 production. This possibility is currently under study.

Inhibition of IL-2 secretion by IL-4 is specific to DCs

These results prompted us to examine whether the inhibi-
tory effect of IL-4 on IL-2 secretion was specific to DCs or
also affected T cells. To answer this question, we used T
cells isolated from AND mice, which are transgenic for a
TCR that recognizes a peptide from pigeon cytochrome c
(PCC87�104) in the context of I-Ek molecules. Thymocytes
from these animals were purified and incubated with
PCC87�104 plus LPS-activated F1 (B10.BRxAND)
BMDCs, previously differentiated and maintained in the
presence or absence of IL-4. The ability of the T cells to
secrete IL-2 was monitored 24 h later and for various time
points thereafter. As shown in Fig. 3A, we did not observe
any inhibitory effect of IL-4 on IL-2 production by
activated T cells. No IL-2 secretion was detected at these
time points in the absence of the peptide, demonstrating
that the measured IL-2 is produced by the activated T cells
and not by the DCs. We therefore conclude that IL-4
specifically affects the ability of DCs to secrete IL-2. As
IL-4 does not affect the capacity of T cells to secrete IL-2,
these results further suggest that DCs may use an
induction mechanism of IL-2 synthesis and/or secretion
distinct from activated T lymphocytes.

These results also suggested that IL-4-treated DCs were
still competent for activating T cells. This point was tested
directly by assessing the expression of T-cell activation
markers. When TCR transgenic T cells were incubated
with DCs plus the specific peptide (PCC87�104), there
was a significant increase in CD25, CD44, CD69 expres-
sion and an important decrease in CD62L expression,
regardless if the DCs were generated in the absence or
presence of IL-4 (Fig. 3B). This is in agreement with the

results reported by Granucci et al. [16], where IL-2-
deficient DCs were able to upregulate the expression of
the early activation marker CD69 on T cells. Our data
suggest that IL-2 produced by DCs may not be required
for the expression of these T-cell activation markers. In
this regard, it is noteworthy that a recent report
demonstrated that, in DCs, IL-2 is enriched at the sites
of contact with T cells, a fact that may increase local
concentration and effectiveness of this cytokine [17].
Thus, it is possible that, in our in vitro system, a small,
localized intracellular amount of IL-2 may be delivered
directly to the T cell during activation, in spite of the
effect of IL-4 on bulk IL-2 secretion.

The fact that IL-2 production by LPS-activated DCs is
abrogated in the presence of IL-4, a hallmark of TH2
responses, raises new questions about DC involvement in
the generation of polarized T-cell responses. Indeed, it has
been suggested that there must be other mediators than
IL-12 and IL-4 involved in T-lymphocyte polarization [10].
Thus, the inhibitory capacity of IL-4 on IL-2 production
by LPS-activated DCs may reflect the plasticity of the
immune system that can rapidly adapt to environmental
changes in order to generate a more effective response
against infectious agents. In view of these results, the role
of DC-derived IL-2 in the process of immune induction
and TH polarization should be further investigated.
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