Electronic structure and molecular properties of the octacyanorhenate $[\operatorname{Re}(\mathrm{CN}) 8] 3$ - and $[\operatorname{Re}(\mathrm{CN}) 8] 2$ - complexes

David, Jorge

Mendizábal, Fernando

Arratia-Pérez, Ramiro
We report scalar and four component relativistic density functional calculations on octacyanorhenate $[\operatorname{Re}(\mathrm{CN}) 8] 2$ - and $[\operatorname{Re}(\mathrm{CN}) 8] 3$ - complexes. The relativistic calculations predict that the molecular g-tensor of the paramagnetic $[\operatorname{Re}(\mathrm{CN}) 8] 2$-complex is isotropic. The calculated optical electronic transitions for both complexes with a polarizable continuum model using a time dependent density functional (TDDFT)/B3LYP formalism suggest that the $[\operatorname{Re}(\mathrm{CN}) 8] 3$ - complex may distort towards dodecahedral geometry in solution. The electronic excitations of LMCT type of $[\operatorname{Re}(\mathrm{CN}) 8] 2$ - are displaced at very high wavelengths with significant oscillator strength values which is characteristic of Re compounds having luminescent behaviour. Thus, our calculations predict that $[\operatorname{Re}(\mathrm{CN}) 8] 2-$ could be luminescent. © 2006 Elsevier B.V. All rights reserved.

