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THE FINITE SUBGROUPS
OF MAXIMAL ARITHMETIC KLEINIAN GROUPS

by T. CHINBURG*, E. FRIEDMAN**

1. Introduction.

The finite subgroups of PGL(2,C) have been known since Klein's
time to be isomorphic to a cyclic group, a dihedral group, A4, 84 or A5. In
the study of hyperbolic 3-orbifolds, especially in connection with volumes
estimates [7] [8] [9], it is useful to know which of these finite groups appear
as subgroups of a given Kleinian group F C PGL(2,C). In this generality,
it seems that the problem can only be solved at the level of finding an
algorithm which computes, in terms of a presentation, all the isomorphism
classes of finite groups which are realized as subgroups of F. We treat
here the more restricted problem of computing the finite subgroups of
a Kleinian group corresponding to a minimal arithmetic hyperbolic 3-
orbifold, where minimal means that the orbifold does not properly cover
any other orbifold. The arithmetic hyperbolic 3-manifold of smallest volume
has been identified recently using a combination of computational Kleinian
group theory, analytic number theory, lists of number fields of small degree
and the results of this paper [4].
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** Research partially supported by FONDECYT grant 198-1170.
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Math. classification: 20G30 - 11F06 - 11R52.



1766 T. CHINBURG, E. FRIEDMAN

While our interest in the subject of finite subgroups of arithmetic
Kleinian groups originated in the study of hyperbolic 3-manifolds, it turned
out that the subject is linked to interesting aspects of indefinite quaternion
algebras over a number field. Thus, the results of this paper required a
prior study [2] of the embeddability of a commutative order into a maximal
order. This uncovered, in certain exceptional cases, the existence of a global
obstruction affecting exactly half of the maximal orders. Another surprising
aspect is an assignment, linked to dihedral subgroups of arithmetic Kleinian
groups, of an ideal class to a pair of global Hilbert symbols. This is discussed
following Theorem B below.

Borel [1] associated to an arithmetic Kleinian group F C PGL(2, C)
a quaternion algebra B over a number field k. The field k has exactly
one complex place and the algebra B ramifies at a set of places Ram(B)
which includes all real places of k. Let V be a maximal order of B, and
let S be a finite set of prime ideals of k such that S H Ram(B) = (f). Borel
defined a subgroup r^,z> C B*/A;* C PGL(2,C) for each such P and 5',
and showed that F is conjugate to a subgroup of TS,T> for some T> and
S. Thus, arithmetic Kleinian groups F can be identified with subgroups of
some B * / k * and maximal F are among the F^p.

When S = (f) is empty, we have by definition

r^p == Fp = {x e B*/A;*| xVx~1 = v}.

Here x e B * / k * denotes the class of x e B*. The complex place of k is
used to embed Fp into PGL(2,C). For a general 5, the definition of F^p
is similar, except for a local twist at the places in 5'. Details are given in §3.

In this paper we identify the finite subgroups of F^p up to B * / k * ~
conjugacy. First, in §2, we determine explicit parameters (i. e., invariants)
for all finite subgroups H C B* /A;*, where H is taken up to B* / k * -
conjugacy. The main tools used in §2 are Klein's list and the classical
theory of quaternion algebras. In the case of A4, 84 and As, we relied on
Alan Reid's kind help, as well as on the results of [8, §9]. The net result is
that, up to conjugation, there is in B * / k * at most one subgroup isomorphic
to each of A4, 84, As or to a cyclic group of order at least 3. In each
case we give necessary and sufficient conditions for this subgroup to exist.
Thus, no parameters are needed to identify these subgroups. On the other
hand, there are infinitely many non-conjugate dihedral subgroups of B * / k *
and we give parameters for them. We do the same for cyclic subgroups of
order 2.
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FINITE SUBGROUPS OF ARITHMETIC KLEINIAN GROUPS 1767

Next, in Theorem 3.3, §3, we identify the cyclic subgroups of B * / k *
which are actually in F^-p. We give here the result for Fp.

THEOREM A. — Let B be a quaternion algebra over a number field k
having exactly one complex place, let B ramify at all real places ofk, let Ok
denote the ring of algebraic integers ofk, and suppose n > 2 is an integer.
If k contains a primitive n-th root of unity Cn, then Fp contains a cyclic
subgroup Cn of order n if and only ifB is isomorphic to the matrix algebra
M(2, k). Assume now that <n ^ k. Then F^p contains a Cn-subgroup if and
only if conditions (1) and (2) below hold:

(1) There is an Ok-embedding ofO^n} mto V.Ifn= 2^ for some
prime £ ^ 3, then also the full ring of integers Ok^rz) G^eds into T>.

(2) If a prime [ of k divides a rational prime £ ^ 2, n = 2^ and
I ^ Ram(B), then the absolute ramification index e\ is divisible by (p{n),
where y? is the Euler function.

For most n, Theorem A simplifies to

COROLLARY. — Let B and Cn be as above and assume that n > 2 is
not twice a prime power. IfC,n ^ k, then F-p contains a Cn-subgroup if and
only ifB ^ M(2, k). If^n ^ k, then Fp contains a Cn-subgroup if and only
if T> contains a primitive n-th root of unity.

The case n = 2 of Theorem A is given in Theorem 3.6 below.
Condition (1) in Theorem A, which is the only one involving Z>, is analyzed
in [2]. In Theorem 3.3 below we give simple necessary and sufficient
conditions under which an embeddability obstruction vanishes, so that (1)
can be replaced by an elementary criterion (1') that only involves k and
Ram(B).

In §4 we study dihedral subgroups of PGI^F), where F is a local
field. In §5 we put this together with the results of §2 to list, for a given
non-cyclic finite subgroup H C B*/A;*, the TS,T> which contain a conjugate
of H. Such a subgroup H, unlike a cyclic one, "selects" only a few F^ p, as
we now explain.

Define two maximal orders T and P of B to be in the same S-type
if there is an a; € B* such that the p-adic completions of V and 7 satisfy
^p = xT>^x~1 for all p ^ S. The reason for introducing 5-types is that F^ p
is conjugate to F^ if T and Z> belong to the same 5-type. When S is
empty, an <S'-type is just a conjugacy class of maximal orders, i. e., a type
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1768 T. CHINBURG, E. FRIEDMAN

in the usual sense [5] [13]. Just as in the classical case, the set of 5'-types of
maximal orders is finite and in bijection with a quotient Ts of the 2-part
of the narrow ideal class group of k [13, p. 88] [2, Lemma 3.2].

The results of §5 can be summarized as

THEOREM B. — Let the algebra B be as in Theorem A and let H be
a non-cyclic finite subgroup ofB* fk*. Then there exist two Gnite sets 5m
and SM of primes ofk, and an SM-typQ T(H) of maximal orders ofB with
the following property: a B* / k*-conjugate ofH is contained in F^p if and
only ifV belongs to the Su-type T{H) and Sm C S C SM'

We give in the proof of Theorem 5.1 an explicit description of Sm and
SM in terms of the invariants of H described in §2. In §6 we compute some
examples of Theorems A and B of varying complexity.

The assignment given in Theorem B of an 5'M-type T(H) to a non-
cyclic subgroup H remains mysterious in the case of dihedral subgroups.
Take, for example, the case of a 4-group, so H ^ Z/2Z x Z/2Z. In Lemma
2.4 we show that such subgroups of B * / k * are classified, up to B* / k * -
conjugacy, by pairs (a,&) € k* / k * 2 x k * / k * 2 such that their global Hilbert
symbol coincides with that of the quaternion algebra B. Thus, H = Ha,b- It
is perfectly straightforward (see §5) to determine Sm {Ha,b) and SM (Ha,b)
from (a,^). However, we are at a loss to give a global description of the
function given by (a, b) >—>• T(Ha,b) assigning an 5'M-type to a symbol. Our
proof yields only a description of this map in terms of local maximal orders.

To make this problem more concrete, we replace types by ideal classes
as follows. There is a canonical "distance map" p between two SM-types,
with values in a quotient Ts^ of the narrow ideal class group of k (see §3).
Fixing SM? this gives rise to a canonical map

((a,^),(c,d)) ̂  (Ha^Hc^d) ̂  p(T(Ha^^T(Hc,d))

which associates to two pairs (a, b) and (c, d), with coinciding global Hilbert
symbols and satisfying certain local conditions, a well-defined class in Ts^.
It would be interesting to elucidate this map using solely the arithmetic
of A;.

Finally, we note that while our main interest is in finite subgroups
of a maximal arithmetic Kleinian group F C PGL(2,C), we actually deal
throughout with the more general case of a maximal irreducible arithmetic
group F C PGL(2,R)71 x PGL(2,C)m.
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2. Finite subgroups of B*/A;*.

In this section we describe the finite subgroups of B*/^*, where B is a
quaternion algebra over a number field k. Thus, A; is a finite extension of Q
and the algebra B is a 4-dimensional ^-vector space with basis l,x,y and
xy with the multiplication rules

x2 = c, y2 == d, yx = -xy,

where c (= c ' l),d e k* and 1 is the multiplicative identity of B. We
summarize this by saying that B has Hilbert symbol (c,d), or simply
B = (c,d). In this section B may be definite or indefinite at any real
place of k.

We denote the reduced norm, reduced trace and canonical involution
[13, p. 1] of B by nr, tr and L, respectively. We use p, (, and "prime of k"
exclusively to denote non-archimedean places of k.

LEMMA 2.1. — Let n> 2 be an integer and let Cn be a primitive n-th
root of unity in some algebraic closure ofk. Then B * / k * contains a cyclic
subgroup Cn of order n if and only if (1) and (2) below hold:

(1) Cn + Cn'1 C k . I f B is a division algebra, (n ^ k.

(2) If p e Ram(B), then p is not split in the quadratic extension
k((:n)/k.

The subgroup Cn is unique up to conjugation by an element of B * / k * .
It can be described as follows. If (,n € k, so B = M(2,A;), then the class
of ̂  ^ in PGL(2,k) = B* /A;* generates a Cn. If, on the other hand,
Cn ^ k, then conditions (1) and (2) are equivalent to the existence of a
C € B* satisfying (n = 1, (^n/d ^ 1 for any proper divisor d of n. For any
such C, k((,)/k is a quadratic field extension, k(C;y/k" C B*/A;* contains
a unique Cn and the class of 1 + C in B*/A;* generates Cn. Moreover, ifn
is odd and C,n i k (respectively, Cn C k ) then the class of C (respectively,

[ -i } ) 8^so generates Cn-
\ ° Cn /

We note that the lemma implies that for odd n, any Cn C B * / k ^ is
contained in a Can-

Proof. — As before, we denote by x an element of B * / k * represented
by x e B*. Let us prove the existence of a Cn when (1) and (2) hold.

TOME 50 (2000), FASCICULE 6



1770 T. CHINBURG, E. FRIEDMAN

Suppose first that Cn e k. Then (1) implies B = M(2, k), so that (^ ° }
represents an element of B* / k * generating a Cn. Now suppose Cn ^ A;.
Condition (2) implies that A;(Cn)A embeds in B [13], p. 78. Let C be the
image of Cn under this embedding, and let d be the order of C in B * / k * .
Then d|n and Cn e A;, so (1) implies Q(Cn -+- Cn^Cn) C fc. Because Cn ^ k,
we conclude that d = n if n is odd and d = n/2 if n is even. Hence
(1 + C)2^ = 2 + C + <-1 € A;*, shows that TTC generates a Cn.

Suppose now that B* / k * contains a Cn' Equivalently, suppose there
exists an x e B* satisfying a:71 € A;*, x71^ ^ k for any proper divisor d
of n. We first consider the case in which k(x) C B is not a field. Then
B ^ M(2,fc), so (2) is vacuously true. The eigenvalues of x must lie in
k, since otherwise k(x) would be a field. Hence x € B* ^ GL(2,A;) is
conjugate, by an element of GL(2,A;), to a scalar multiple of ( ~ ( ) or

( „ , ) for some t and A in k. The first matrix we may discard since it is
either the identity (if t = 0) or of infinite order in PGL(2, k). The second
matrix has order n in PGL(2, k) if and only if A € A;* is a primitive n-th
root of unity. Thus, Cn ^ k. In particular, Cn + Cn"1 c ^ proving (1) in the
case that k{x) is not a field. We have also shown that up to conjugation
there is at most one subgroup of Cn C B * / k * of order n > 2 having a
generator represented by an a; € B* such that k(x) is not a field. Such a
Cn exists if and only if Cn € A; and B ^ M(2, A;).

Suppose now that A;(rz;) C B is a quadratic field extension of A;, as
is necessarily the case if B is a division algebra. Let a be the non-trivial
automorphism of k{x) fixing k. Let C = a ( x ) / x . Then, as rr71 € A;, we
have C71 = cr^x^/x1"' = 1. If for some proper divisor d of n, C^^ = 1,
then (T(xn/d) = a;71^, which contradicts x^^ ^ A;. Hence C is a primitive
n-th root of unity. Since x = cr(a(x)) = a(^x) = a(^)^x, we find that
^'(C) :== C~1' As n > 2, we conclude that C ^ k. Therefore k contains no
primitive n-th root of unity Cn- From Tr^)/^) = C + C~1 we conclude
that Cn+Cn1 ^ Q(C+C~1) C A;, which proves (1). Since k(x) = A;(C) ^ A;(Cn)
(where C maps to some Cn)? we see tnat k{(^n)/k embeds in B. Hence no
prime in Ram(JE?) splits in k(^)/k [13], p. 78. This proves (2). We note
that by replacing x by x3 for some integer j relatively prime to n, we may
assume that C is mapped to Cn under the A;-isomorphism A;(C) ^ A;(Cn)-

We now prove the uniqueness claimed for Cn in the case that k{x) is
a field. From Tr^w^a;) = x-}-o~(x) = a;(l-|-C) ̂ d n > 2 we see that x and
1 + C generate the same subgroup of B* /A;*. But, by the Skolem-Noether
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theorem [13], p. 6, 1 + C e B is the unique (up to conjugation) solution
of its minimal equation. Hence there is, up to conjugation, a unique Cn
admitting a generator represented by an x such that k{x) is a field.

We have also seen above that there is a unique Cn when k(x) is not
a field. However, in that case, <^ € A;, while in the present case <^ ^ k.
Finally, the last statement in Lemma 2.1 follows from (1 + C)2^1 ^ ^*- D

The above lemma completely describes the cyclic subgroups of B* / k *
of order n > 2. We now turn to the case n = 2. Suppose w e k* and that
there is some x = x^ C B* satisfying x ^ fc*, a;2 = w. Then, x € B * / k * has
order 2. If w (f: k* , then Xw (if it exists in B) is unique up to conjugation
by f?*, again by the Skolem-Noether theorem [13], p. 6. In the case that
w = x2 € A;*2, we must have B ^ M(2,A;), and a scalar multiple of x
must be conjugate in B to ( „ _- ). If w ^ A;*2, then Xw exists if and only
if k{^/w) embeds in B. As this amounts to a local condition at places in
Ram(B) [13], p. 78, we have

LEMMA 2.2.— The subgroups of order 2 of B * / k * , taken up to
B* / k*-conjugacy, are in bijection with the cosets wk*2 C k* / k * 2 , where
w runs over all elements of k* such that no place v E Ram(B) splits in
k(^w)/k. When w € A;*2 this condition is taken to mean that B ^ M(2, k).
The bijection is obtained by mapping an x = x k * 6 B * / k * , having order
2, to x2^2. Conversely, given a coset wk*2 as above, there is an x 6 B*,
x ^ k * , such that x2 == w. This x is unique up to conjugation and k(x) is
a field if and only if w ^ k*2. Ifw C fc*2, then x is conjugate to a scalar
multiple of(^ °^\

We now turn to the dihedral subgroups of B* / k * .

LEMMA 2.3.— Let Cn C B * / k * be a cyclic group of order n ^ 2.
Then there exists a dihedral group H C B* / k * of order 2n containing Cn'

Given a dihedral group H C B* / k * of order 2n (n > 2), let x € B*
represent any generator of a cyclic group Cn C H of order n. Let y € B*
represent the generator of a cyclic subgroup C^ C H of order 2 which is
not contained in Cn • Let C,n denote a primitive n-th root of unity in some
algebraic closure of k. Then B is given by Hilbert symbols B = (ri,w),
where d, w € A;*, w = y2 and d == (<^ -j- Cn'1)2 — 4 for n > 2, d = x2 if
n=2.

TOME 50 (2000), FASCICULE 6



1772 T. CHINBURG, E. FRIEDMAN

Conversely, suppose B has Hilbert symbol (d, w) for some d and w in
A;* . Ifn > 2, assume also that B satisfies conditions (1) and (2) in Lemma
2.1, and assume that d = ((<^ + Cn'1)2 - 4)a2 for some a e A;*. Then there
exists y € B*, with y2 = w, and a cyclic subgroup Cn C B*/A;* of order n
such that Cn and y generate a dihedral subgroup H of B * / k * of order 2n.
Furthermore, ifn=2, the nontrivial element x of C^ is represented by an
x C B* such that x2 = d and xy = —yx.

Proof. — We note that for any s e B, the reduced norm and trace
satisfy nr(s) = s ' i(s) , tr(s) = s + i(s), where L is the canonical involution
of B. Hence, i(k{s)) C k(s) for s € B, and i{s} == s if and only if s € k.
If B is a division algebra and s € B, s ^ k, then i induces the non-trivial
Galois automorphism of k ( s ) / k . If k(s) is not a field, so B = M(2, k) and

/a / 3 \ _ / 6 -f3\
^ ^ V - 7 a ) -

then i again restricts to the unique non-trivial ^-involution of k(s).

Assume first that Cn C B " / k * and let x generate Cn' By the Skolem-
Noether theorem, there is a y e J3* such that ysy~1 = i(s) for all
s € k(x). As conjugation by y induces a non-trivial ^-involution of k{x),
y ^ k(x). Now, x = ^(^(^)) == y2xy~2, shows that w = y2 € k(x}. As
i{w) = ywy~1 = yy2y~l = w, we see that w € A:*. Furthermore, for j e Z,
yx3 ^ k* as y ^ k{x). Now, //(a;) = m(x)x~1 implies y x y ~ 1 = x~1. Thus,
x and ^ indeed generate a dihedral subgroup of H C B* / k * of order 2n
containing Cn, proving the first claim in Lemma 2.3.

Now suppose Cn is contained in some dihedral subgroup H C B* / k *
of order 2n, and let y € H^ y ^ Cn- Let us show that B = (c?,w), with
w = y2 and d = x2 if n = 2, d = (^ + <^1)2 - 4 if n > 2. Note that
y has order 2 and y x y ~ 1 = aT~1. Then w := y2 ^ k* and yxy~1 € A;(a*).
Hence conjugation by ^/ induces a ^-involution of A; (a;). If this were the
trivial automorphism, then y € k(x) and x~1 == ^. Thus n = 2. But then
x2 € A;, y2 € A: and A;(a;) = A;(z/) imply that a;"1!/ € A;, contradicting ^ ^ Cn-
Hence conjugation by y induces the non-trivial A-involution of k(x) for any
n > 2. Let 2^ = a* — </(a;), so yzy~1 = t(z} = —z. For n > 2, Lemma 2.1
implies that for some a e A;*, ( z / a ) 2 == (<^ + Cn"1)2 — 4 = d. Here the main
point to check is that z2^ taken modulo A;*2, is independent of the chosen
generator x of Cn. But this follows from (x — t(x))~ (x3 — i(x3)) 6 A;*,
since this quotient is fixed by i. Likewise, for n = 2, Lemma 2.2 implies
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(z/a)2 = x2 = d for a = 2. As {z/a)2 = d, y2 = w and y(z/a)y-1 = - z / a ,
we have shown that B = (d, w).

We now prove the converse claim. If n = 2, the hypothesis B = (d, w)
implies the existence of x and y in J3* such that x2 = d, y2 = w and
^ = -^- Hence x and ^ generate a Klein subgroup of B*/A;* as claimed
in the lemma when n = 2. Assume now n > 2. Lemma 2.1 implies the
existence of a C^ C B*/A;* with a generator represented by x C B* as
described in that lemma. By the hypothesis on d and the definition of the
Hilbert symbol B = (d,w), we can find y and z in B* satisfying

y2 = w, z2 = d = a2^, + C,1)2 - 4), yzy-1 = -z,

for some a e k * . Now, z ^ A:* and satisfies (z/a)2 = d = (Cy, - C^1)2 =
(a; - b(x)) for some x e B* representing a generator of Cn, as follows
from Lemma 2.1. Hence z / a is conjugate to x — i(x). After simultaneously
conjugating z and y , we may assume z / a = x - u(x). Hence k(z) = k(x).
As y ( z / a ) y ~ 1 = - z / a , conjugation by y induces i on k(x). As we saw at
the beginning of the proof, this implies that x and y generate a dihedral
subgroup H C B* / k * of order 2n. n

Having settled the problem of the existence of dihedral subgroups of
J3*/A;*, we turn to their classification up to B*/A;*-conjugacy. Let us first
fix a dihedral subgroup H C B*/^* of order 2n and examine the effect on
d and w of varying the choices allowed in Lemma 2.3. When n > 2, there
is a unique cyclic subgroup Cn C H of order n. We saw in the proof of the
previous lemma that the coset dk*2 = (x - i{x))2 k*2 is independent of
the choice of.r. However, the subgroup C^ = {!,]/} is not unique. It can be
replaced by {l,yx3} = {l,y7} for any j e Z. Let w1 := y12. One calculates
that either w'W € A;*2 or w-lw/nr(a•) e A;*2, depending on the parity of
j. If Cn 1 k, Lemma 2.1 implies nr(a-) = a2^ + <^1 + 2) for some a G A;*.
If Cn ^ k, this still holds as, calculating modulo k*2,

m(x) == Cn = Cn(l + Cn1)2 = Cn + Cn1 + 2.

When n = 2 there is an additional choice involved in Lemma 2.3, as
Cn = C2 C H is not unique. We can replace x by ^/ or xy, leading to
d being replaced by w or -dw. Also, 2/ can be replaced by xy, which has
the effect of replacing w by —dw.

In conclusion, for each fixed n (and 5), we obtain from H a well-
defined conjugacy invariant [H] = [d,w] e { k * / k * 2 x A;*/^*2)/^, where ~

TOME 50 (2000), FASCICULE 6



1774 T. CHINBURG, E. FRIEDMAN

is the equivalence relation generated by the relation

(dk*2,wkt2)^(dk*2,(^+Ql+2)wkf2),

where

B = <".'")• »>2. (^-4^
or by the relations

{dk^.wk^) ~ (wk^.dk^)^ (dk^.-dwk^) (B=(d,w), n = 2 ) .

We remark that when n is odd, there is actually no equivalence imposed
on w, beyond taking it modulo A:*2, simply because (^ + Cri"1 + 2) € A;*2.
By Lemma 2.3, any equivalence class [c?,w] as above can be realized as
[H] = [c?,w], for some dihedral subgroup H C B " / k * of order 2n. We now
prove that, for a fixed n, [H] is the only conjugacy invariant of such dihedral
subgroups.

LEMMA 2.4.— Two dihedral subgroups H\ and H^ of B * / k * having
the same order 2n are conjugate in B * / k * if and only if [H}] = [H^\ in
(k^/k^ x A;*/A;*2)/-, as denned above.

Proof.— From the preceding discussion, one sees that [H-t] = [H^\
when Jfi and H^ are conjugate. To prove the converse, note that by Lemmas
2.1 and 2.2 we may assume, after conjugating H^, that Cn C H\ C\H^ for a
cyclic group Cn of order n. Let x generate Cn and let y~i generate a subgroup
of Hz of order 2, disjoint from Cn- As we are assuming [H^} = [H^}, after
possibly replacing ^2 by xy^^ we may assume that y^ = y\. As we saw
in the proof of Lemma 2.3, we have then y\xy^1 = i(x) = y^xy^1. Thus,
y\^V2 ^ k(xY, as y ^ l y ' 2 commutes with x. Write y^ = y\h, h G k{x)*.
Then nr(/i) = 1, as nr(^i) = nr^).

If k(x) is a field, Hilbert's Theorem 90 shows that there is a g € k(x)*
such that h = gi>(g)~1. Since conjugation by y^ induces L on k(x), we have
i-Wyi = yi9- Hence, i(g)yii(g)~1 = y\gi{g)~1 = y\h = y^ As i{g) G k(xY,
t(g)xi(g)~1 = rr. Hence H^ and ^2 are conjugate, as claimed.

If k(x) is not a field, Lemmas 2.1 and 2.2 show that k(x) is (isomorphic
to) the A;-algebra (^ ^Y with a, b G k. But nr(/i) = 1 shows h =

( S a~1 ) = ^</(^)-15 ̂ ere ̂  = ( a ^ ) 6 A;(rr)*. Thus the above argument
applies in this case too. D
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Remark. — A review of the proofs of Lemmas 2.1 to 2.4 shows that
they are all valid if k is a finite extension of an ^-adic field Q^. Actually,
some statements simplify in the local case. For example, we can drop (2)
in Lemma 2.1, since a prime cannot split in a nontrivial local extension. In
particular, [d, w] classifies dihedral subgroups ofPGL(2, F) up to conjugacy
when F is a local field. We shall use this in §4.

We define the parity of a € k* (or of a A;*2 C k ^ / k * 2 ) at ( as the parity
of ordi(oi), where the valuation ord[ is normalized so that its value group
is Z. Similarly, we shall say that x € B* (or x € B*/fc*) is odd or even
at ( depending on the parity of ordi(nr(rr)). To determine when a cyclic
or dihedral subgroup G C B* /A;* lies in F^p, we will need to determine
whether G contains an element which is odd at some prime [ of k.

LEMMA 2.5. — Let i be a prime of k lying above the rational prime
£ ^ 2, and let H be a dihedral subgroup o f B * / k * of order 2n and invariant
[H} = [d, w]. Ifn = 2, then H contains an element which is odd at [ if and
only ifd or w is odd at L Ifn = 2£r, with r ^ 1, then H contains an element
which is odd at [ if and only ifw is odd at I, or if the absolute ramification
index e\ is not divisible by (p(n), where y? is the Euler function. For other
n, H contains an element which is odd at I if and only if w is odd at I.

When n = 2, it is easy to see that the conditions on d and w given in
the lemma are independent of the choice of d and w permitted by the
equivalence relation used in defining [H]. For n > 2, this amounts to
showing that ord((<^ + C^1 + 2) is odd if and only if e\ is not divisible
by y(n). This is done in the course of the proof below.

Proof. — Let x and y represent generators of H as in Lemma 2.3.
H contains an element which is odd at I if and only if m(x) or nr(^/) is
odd at 1. When n = 2, the lemma is clear since nr(a:) = —x2 = —d and
nr(^/) = -w. For n > 2, we must show that nr(rc) is odd at I if and only if
n = 2^ and e\ is not divisible by (p(n). As we saw after the proof of Lemma
2.3, nr(rr) = Cn+Cn 1 +2 (modulo A;*2). As C.+Cn^ = (l+Cj(l+Cn1).
we conclude [12, p. 12] that ord[(^ + Cn1 + 2) ¥- 0 if and only if n = 2F.
Thus, we can assume n = (2£r. Then ^ + C^"1 + 2 is a generator of the
prime (o ^Q^n+Cyi"1) lymg above £. As lo has absolute ramification index
e.o=^

ord,(C« + C1 + 2) = ei^orcUCn + C1 + 2) = e^ = ̂ - = -2—.

This last integer is odd if and only if </?(n) does not divide e\. D
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In the course of the preceding proof we established when a cyclic
subgroup of B* / k * contains an odd element, which we now record.

LEMMA 2.6. — Let [ be a prime of k lying above the rational prime
i ^ 2, and let Cn, be a cyclic subgroup of B*/k* of order n > 2. Then
Cn contains an element which is odd at [ if and only if n = 2£r and if the
absolute ramification index e\ is not divisible by ^p(n).

LEMMA 2.7. — Let [ be as above, let C^ be a cyclic subgroup ofB*/k*
of order 2 whose generator is represented by x € B*, and set w == x2 € k*.
Then €2 contains an element which is odd at [ if and only iford((w) is odd.

We now turn to noncyclic and nondihedral finite subgroups of B* / k * .

LEMMA 2.8 ([8]).— B * / k * contains a subgroup isomorphic to 84 if
and only if it contains a subgroup isomorphic to A^. This happens if and
only if B has Hilbert symbol (—1,—1). A subgroup isomorphic to As is
contained in B* / k * if and only ifB = (—1, —1) and \/5 G k.

Two noncyclic, nondihedral finite subgroups of B*/k* (i.e., isomor-
phic to A4, S'4 or A^) are B* / k*-conjugate if and only if they are isomorphic
as abstract groups.

Proof. — Assume first that B = (—1,—1). Then, by definition of the
Hilbert symbol, there are elements i, j, k e -B* with the usual Hamilton
quaternion multiplication rules. Following the notation of [8, pp. 3635-
3637], let 02 = (1 + i +j + k)/2, so a| = -1. Then A4 is isomorphic to
the subgroup of B * / k * generated by the images of i and 02 in B * / k * . 84 is
isomorphic to the subgroup of B* / k * generated by the images of 1 4- i and
a2 . I f \ / 5eA; , l e t r= (1 4-V'5)/2 € C ;̂ and 04 = (r 4-^4+^/2 € B*, so
a| = —1. Then As is isomorphic to the subgroup of -B* / k * generated by
the images of 02 and 0:4 in B* /A;*.

For the rest of the proof, we will suppose conversely that B * / k *
contains a subgroup H isomorphic to A4. As before, let x be the image of
x C -B* in B*/fc*. Consider the restriction to H of the map N : B* / k * \—>
fc* /A;*2 induced by the reduced norm.

As A4 has no nontrivial homomorphic image of exponent 2, H must
be entirely contained in the kernel of N . Hence there are elements re, z € B
of reduced norm 1 such that x and ~z are of elements of order two and three
in H, respectively. As x2 € k* but x ^ A;*, we have x2 = —nr(.r) = —1.
Define y = zxz~1. Then x and y generate the Klein subgroup of H. .As y
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is conjugate to x, y2 = x2 = -1. By Lemma 2.3, B = (x2^2) = (-1, -1).
We may therefore let i, j, k, 02 and 04 in B* be as in the first part of the
proof.

By Lemma 2.4, there is a (3 e B* such that f3xl3~1 e A;*i and
0y(3~1 € A;*j. Since a-2 = y2 = -1 = i2 = j2, we can conjugate H
and multiply rr by ±1 in order to be able to assume that x = i and
y = zxz~1 = ±j. By replacing z by k, jz, or kz, if necessary, we may
assume that ziz~1 = j and zjz~1 = k. The first condition ziz~1 = j
determines z up to left multiplication by an element of fc(j)*, while the
second condition z}z~1 = k determines z up to left multiplication by an
element of ^(k)*. Since the intersection of the multiplicative groups A;(j)*
and k(ky is just A;*, this proves z is unique up to multiplication by an
element of A;*. Hence the class ~z of z in B * / k * must be in the subroup
we explicitly constructed before, using i and 02. This proves H must be
conjugate to this group, so all subgroups of B*/A;* isomorphic to A4 are
conjugate.

If B* / k * contains a subgroup isomorphic to S4, then clearly B* / k *
contains a subgroup isomorphic to A4. Hence B = (—1,1), by what we
have just proved. We constructed in the first part of the proof a subgroup
T of B* /fc* which is isomorphic to S4. Suppose T ' is another subgroup of
B*/A;* isomorphic to T. Let H and H ' be the unique subgoups of index 2
in T and T", respectively. Since H and H ' are isomorphic to A4, they are
conjugate in B*/A;* by what we have already shown. Hence to prove that T
and T ' are conjugate in B*/A;*, we can reduce to the case in which H = H '
is the group constructed in the first part of the proof using i, j and a^.

We shall now show that T = T ' follows from H = H ' . One readily
checks that the automorphism group of A4 is isomorphic to S4 via the
conjugation action of S4 on A4. Take y € T ' and consider its conjugation
action on H. There must be x € T inducing the same conjugation action
on H. But then z :== yx~1 acts trivially by conjugation on H. Hence
ziz~1 = ±1 and zjz~1 == dbj. As above, we find that z, after possibly
multiplying it by an element of H, must be in the center k * . Hence z C H,
y € T, and so T = T'.

Suppose now that B * / k * contains a subgroup isomorphic to As. As
As contains an element of order 5, Lemma 2.1 implies that Q(<^ + C^"1) =
Q(VQ) C k. We have already shown that B = (-1, -1).

It only remains to show that any two subgroups Wi C B* / k *
isomorphic to As are jE?*/A;*-conjugate. Fix an embedding k ^ C. This
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gives an embedding J9*/A;* ^ PGI^C), so we may view the Wi as
subgroups of PGL2(C). It is well-known that all subgroups of PGI^C)
isomorphic to As are conjugate. For lack of a good reference we will sketch
a proof. Identify PGI^C) with PSI^C), and let TT : SI^C) -^ PSI^C)
be the natural surjection. It is shown in [6, Lemmas 1-3] that G, = TT'^W^)
is abstractly isomorphic to G = 8L2(Z/5), which has exactly two faithful,
irreducible, 2-dimensional representations pi : G i—^ GL2(C) and has an
automorphism A: G ̂  G such that ps = Pi o A. Consider the inclusion
Gi C SL2(C) as giving a 2-dimensional, faithful irreducible representation
of G. Although the representations pi are different, they have the same
image in SI^C) since p^ = pi o A. Thus, tiG^~1 = G^ for some
/2 e GL2(C). Applying TT, we find JlW^Jl-1 = W^ Ji e PGI^C).

To wind up the proof we will show that /Z e B* /A:* C PGL(2,C).
Choose a subgroup H = Jfi of IVi isomorphic to A4. Then JlHjl~1 = H^
is a subgroup of W^ C B " / k * isomorphic to A4. By what we have already
shown, H^ and H^ are conjugate in B*/A;*. So to prove W^ conjugate to
W^ inside B*/A;*, we can reduce to the case in which JiHji~1 = H. Then
conjugation by /Z induces an automorphism of H. As above, there must be
x e T C B* / k * such that x =Ji. Hence, Ji € B*/A;*, as claimed, n

Remark.— The foregoing proof shows that a subgroup of B * / k *
isomorphic to A4 is conjugate to the subgroup of B * / k * generated by
the class of 0:2 = (1 + i + j + k)/2 and i. For 84 we can take instead
1 + i and 02. For As, assuming r = (1 + \/5)/2 € k, we can take 02 and
Q^^T+T-^+J)^.

We end this section by noting the odd elements of A4, As and 84.

LEMMA 2.9. — IfH C B*/A;* is a group isomorphic to A^ or As, then
no element ofH is odd at any prime ofk.

Let H C B * / k * be a group isomorphic to 84 and p a prime ofk. Iff
does not lie above 2, then all elements ofH are even at p. If p h'es above
2, then H contains an element which is odd at p if and only if the absolute
ramification index e? is odd.

Proof.— A4 and As have no non-trivial homomorphisms to Z/2,
hence can contain no odd element at any prime. 8uppose now H ^ 84.
By the remark above, we can suppose that H is generated by a subgroup
isomorphic to A4 and by 1 + i. But ordp(nr(l + i)) = ordp(2), which is
either ep, if p is above 2, or 0. n
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3. Finite cyclic subgroups of F^p.

We begin with BoreRs definition of the group F^p mentioned in §1.
Let kp denote the p-adic completion of k at a prime ideal p of k and let
Bp = B (g)fc kp. Define Ok to be the ring of integers of k and let 0^ be the
ring of integers of kp. Let 7p be the tree whose vertices are the maximal Ok ~
orders Pp of Bp, and whose edges are unordered pairs {Fp, Fp} of maximal
orders of Bp such that [Fp : Fp D Fp] = Nornifc/Q(p). If p ^ Ram(B), then
7p is the tree associated to Bp ^ PGL(2,A;p) in [11]. Otherwise, Bp is a
division algebra and 7? reduces to a single vertex.

We shall say that x e B^ fixes the vertex Dp of 7? if xD^x~1 = Dp.
An edge {Fp, Fp} of 7? is fixed by x C B^ (or by its class x € B ^ / k ^ ) if a;
fixes Fp and Fp, or if xE?x~1 = Fp and xF^x~1 == Fp. For each p e 5, so
p ^ Ram(B), let us choose an edge {Fp, Fp}of7p. With these preliminaries,
BoreRs definition is

(3.0)
^s,'D={xeB:'/k:'\x fixes Pp for all p ^ S, and x fixes {Fp.Fp} for pe^},

where Pp = V (g)^ Ofep.

We do not incorporate the choice of edges {Fp, Fp} in (3.0) into the
notation since a different choice of edges would merely result in a subgroup
of B * / k * conjugate to F^-p [2, Lemma 4.0]. Moreover, the conjugacy is
realized by an element o f ^ G -B* / k * which fixes Pp for all p ^ S. We point
out that the notation F^p differs slightly from BoreRs. His F^/ coincides
with our Fs,v when his P(5") [1, pp. 9, 12] equals our V.

To apply the results of [2] and pass from cyclic subgroups of B* / k *
to those of F^-p, we need to assume that B satisfies the Eichler condition.
Thus, we now assume that B is a quaternion algebra over a number field
k and

(3.1) B^=B^kky^M(2,ky)

for some archimedean place v of k. This is automatically satisfied by a
B associated to an arithmetic hyperbolic 3-orbifold. More generally, Borel
has shown [1] that any irreducible arithmetic subgroup of PGL(2,R)n x
PGL(2,C)m is conjugate to a subgroup of F^p, as defined in (3.0),
associated to a quaternion algebra B satisfying the Eichler condition.

For y e B, let Disc(^) = (tr(^/))2 - 4nr(?/) e k. We now quote [2,
Theorem 4.3]:
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THEOREM 3.1.— Let k be a number field, let B be a quaternion
algebra over k satisfying the Eichler condition (3.1), and let TS,T> be as in
(3.0). If a conjugate ofy G B * / k * is contained in T S , ' D , then the following
three conditions hold:

3.1a) Disc(y)/m(y) C Ok.
3.1b) Ify is odd at p, then p e S U Ram(B).
3.1c) For each p € S at least one of the following four conditions holds:

• y € k.
• y is odd at p.
• k(y) (g)fc kp is not a field.
• p divides Disc(2/)/nr(z/).

Conversely, if 3.1a, 3.1b and 3.1c hold, then a conjugate ofy is contained
in Ts,v, except possibly when the following three conditions hold:

3. Id) k(y) C B is a quadratic field extension ofk.
3.Ie) The extension k ( y ) / k and the algebra B are unramified at all finite

places and ramify at exactly the same (possibly empty) set of real
places of k. Furthermore, all p G S split in k ( y ) / k .

3.If) All p dividing Disc(y)/m{y) split in k ( y ) / k .
Suppose now that 3.1a to 3. If all hold. In this case the number of S-types
of maximal orders T> of B is even and the V for which a conjugate of y
belongs to FS,!) comprise exactly half of the S-types. These T> are exactly
those maximal orders which contain a conjugate (by B * ) of the ring Ok{y)
of algebraic integers ofk{y).

The last statement in Theorem 3.1 can be made more explicit. To
do this, we need to explain how to compute with ^-types of maximal
orders. Given two maximal orders V and ^, define their distance ideal
p(P,E) to be the order-ideal of the finite (^-module V/(8 H P). Recall
that the order-ideal of a finite 0/c-module isomorphic to Q)i{0k/^i) is the
0^-ideal Y[^ Oi. Let Ts(B) be the group of fractional ideals of k modulo the
subgroup generated by squares of fractional ideals, primes in S' U Ram(B)
and principal ideals (a) for which a C A;* satisfies a > 0 at all real places
in Ram(B). Let ps(^,S) be the class of the ideal p(V,8) in Ts{B). Then
ps(D,£) = p s ( P ' , £ ) if and only if V and V belong to the same 5'-type
[2, Lemma 3.2]. Thus, if we fix S, the map P —> ps(P,£) determines a
bijection between the 6'-types and Ts(B). If S is empty we write T{B) for
Ts{B).

We consider, slightly more generally than at the end of Theorem 3.1,
a commutative (9^-order fl, C B. We quote [2, Theorem 3.3]:
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THEOREM 3.2. — Let B be a quaternion algebra over a number field
k, let fl C B be a commutative 0^ -order and assume that B satisfies the
Eichler condition (3.1). Then every maximal order ofB contains a conjugate
(by B * ) of^l, except when the following three conditions hold:

(1) fl is an integral domain and its quotient field L C B is a quadratic
extension ofk.

(2) The extension L / k and the algebra B are unramified at all finite
places and ramify at exactly the same (possibly empty) set of real
places of k.

(3) All prime ideals ofk dividing the relative discriminant ideal d^/o^ of
fl. are split in L / k .

Suppose now that (1), (2) and (3) hold. Then B has an even number of
conjugacy classes of maximal orders. The maximal orders P containing
some conjugate of Q make up exactly half of these conjugacy classes. If T>
and £ are maximal orders and £ contains a conjugate offl, then T> contains
a conjugate of fl, if and only if the image by the reciprocity map Frob^
of the distance ideal p(V,£) is the trivial element ofGal(L/A;).

We can now prove a more detailed and general version of Theorem A
in §1.

THEOREM 3.3.— Let B satisfy the Eichler condition (3.1), let n > 2
and let (^n denote a primitive n-th root of unity in some algebraic closure
of k. IfC,n ^ k, then r^p contains a cyclic subgroup Cn of order n if and
only if B is isomorphic to the matrix algebra M{2^k). Assume now that
(^n ^ k. Then YS,T> contains a Cn if and only if conditions (1) through (3)
below hold:

(1) There is an Ok -embedding ofOk[C,n\ mto P. Ifn = 2£r for some prime
£ ^ 3, then also Ok(c,n} embeds into D.

(2) If a prime [ of k divides a rational prime £ ^ 2, n = 2£'r and
{ ^ Ram(J9) U S, then the absolute ramification index e\ is divisible
by ^p(n), where (p is the Euler function.

(3) For each p e S at least one of the following three conditions holds:

• p is split in k((,n)/k,

• p divides a rational prime £ ^ 3, n = 2£7' and e? is not divisible
by (p(n),

• p divides a rational prime £ ^ 2 and n = £r.
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Furthermore, if n is neither a prime power nor twice a prime power, and

(a) Ram(B) -^ {all real places ofk},

then (1) may be replaced by

(1') Cn + Cn1 € k and no p € Ram(B) is split in k((^n)/k.
Ifn= If^ with £ ^ 3 prime, (1) above may be replaced by (1') if (a) holds
or if some prime ofk dividing £ ramifies in k((^n)/k. Ifn=£r with £ ^ 2
prime, (1) may be replaced by (1') if (a) holds or if some prime ofk dividing
£ is not split in k((^n)/k.

Proof. — Note that Cn ^- k and (1) imply that k((^n)/k is a quadratic
extension. Hence, "split" above is unambiguous.

We consider first the case Cn ^ k. If Cn C F^-p, then Lemma 2.1
shows B = M(2, k). Conversely, if B = M(2, k), let x = [ ^ ° V Then, as
A;(.r) is not a field, Theorem 3.1 readily implies that a conjugate ofx € F^p.
Thus Cn C F^p.

We may therefore assume for the rest of this proof that Cn ^ k.
Suppose first that Cn C F^p. Lemma 2.1 shows that Cn + Cy^1 ^ ^ an<^
that there is a primitive n-th root of unity C € -S* such that 1 + C ^ F^p
generates Cn. Thus, [A;(Cn) '- k] == 2 and the Galois conjugate of C,n over k is
<^~1. Moreover, we can assume Cn h-^ C under a ^-isomorphism A;(Cn) ^ HO-
If we set y == 14- C m Theorem 3.1, we are led to calculate

Disc(y) (2 + €„ + C^)2 - 4(1 + CJ(1 + Cn1)(3.2)
"'•(</) ( l+Cn) ( l+Cn 1 )

=(Cn-l)(Cn1-!) .

This is a unit, except when n = ̂  is a prime power, in which case every
prime of k lying above £ divides it. Also, m{y) is a unit unless n == 2£r is
twice a prime power, with £ ^ 2.

We take up first the case n ̂  V, n^2£r. Then (2) in Theorem 3.3 is
vacuous and (3) follows from 3.1c. To prove (1), let Q == Ofc[C] m Theorem
3.2. The relative discriminant ideal d^/o^ = (Cn ~ Cn'1)2^ is a unit in
this case. Thus Ofc(Cn) = ^MCn] and k((^n)/k is unramified at all finite
places. Theorem 3.2 implies that O^Cn) embeds in P, except (possibly)
when Ram(-B) exactly consists of all real places of k. In proving (1), we
may therefore assume this. Applying Theorem 3.1 to y == 1 + C? we ^d
that 3. Id to 3. If all hold. As Cn C F^p and T> contains a conjugate of
C^;(^), the last statement of Theorem 3.1 implies (1) in Theorem 3.3.
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Assume now that n = 2£r, with £ ^ 3 a prime. Condition (2) in
Theorem 3.3 follows from 3.1b and Lemma 2.6, while (3) follows from 3.1c
and (3.2). To prove (1), let n = °k{^} in Theorem 3.2. Then again, Ok(^)
embeds in all maximal orders, unless Ram(B) exactly consists of all real
places of k and k((^n)/k is unramified at all finite places. We can again
assume this. Consider 3. Id to 3. If for y == 1 + C- Amongst these conditions,
the only one which is not obvious is that all p e S split in k ( y ) / k . In
view of 3.1c, we have to rule out 1 4- y being odd at some place. Here we
have already used (. > 2 to ensure that Disc(y)/m(y) is a unit. Hence,
by (3.2), ordi(nr(2/)) == ord((Disc(2/)) = ord[((<^ - C1)2), and the latter
must be even since k { y ) / k is unramified. Thus, again, 3. Id to 3. If all hold,
proving (1).

The case n = (T is very similar. The new feature in this case is that
Disc(y)/m(y) is divisible by I if and only if ( lies above £. When 0/c[Cn]
does not embed into all maximal orders, as we may assume in proving (1),
Theorem 3.2 implies that all primes above i split in k { y ) / k ^ as required
by 3.1f.

We now assume, conversely, conditions (1) to (3) in Theorem 3.3. By
(1), we may again let y = 1 + C in Theorem 3.1. By (3.2), condition 3. la
holds. Conditions 3.1b follows from Lemma 2.6 and (2) in Theorem 3.3,
while 3.1c follows from (3). By Theorem 3.1, a conjugate of 1 + C € F^p
(and therefore Cn C F^-p) unless 3.1d-f) all hold. In this case, Cn C F^p
if and only if OA;(C^) embeds in T>. When n -^ -f this is implied by (1).
Indeed, when n = 2.f this is explicitly assumed in (1). For other n ̂  (nr,
Ok[C,n\ = ̂ fc(Cn)? as we saw above. When n = ^r, Theorem 3.2 implies that
half the S'-types contain a conjugate of Ofe(Cn)- By 3.1f, the same holds for
Ofc[Cn]' As Ofc[Cn] C Ofc(^), P contains a conjugate of Ofc[Cn] ^ ana ^ly
if it contains a conjugate of Ok{c,n)' Hence Cn C F^-p in this case too.

To conclude the proof, we now determine when (1) may be replaced
by (!'), still under the assumption that Cn ^ k. From the proof of Lemma
2.1, or directly [13], p. 78, it is clear that (1) implies (I'), with no further
assumptions. Thus, Cn C F^p implies .(I'). Conversely, assume (1'). This is
equivalent to assuming that k{C,n) embeds in B [13], p. 78. Let fl, = Ofe(c^)
if n == 2^ with i ^ 3, and ^t = Ok[(n] otherwise. By (1') we can regard
^ C B. Apply Theorem 3.2 to f^. If n ^ ^r, n ^ 2^, we find that a
conjugate of Q, is contained in every maximal order (that is, (1) holds) if
and only if (a) holds. If n = 2^ with £ ^ 3 a prime, we must require (a) and
that k(C,n)/k be ramified at some finite prime, which is necessarily above
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£. If n == ^r with £ ^ 2 a prime, we must add to (a) the requirement that
some prime of k above £ is not split in k((^n)/k. n

Remark. — We have also shown that the hypotheses given in Theo-
rem 3.3 under which (1) may be replaced by (1') are sharp. Namely, if they
fail but (1'), (2) and (3) hold, then F^p contains a conjugate of Cn for V
belonging to exactly half of the 5'-types.

COROLLARY 3.4. — Let £ ^ 3 be a prime. IfC,(. C k, then F^p contains
an element of order £ if and only if B ^ M(2,A:). If ̂  ^ k, then Tsv
contains an element of order £ if and only if the following hold:

(i) C,+C71^-

(ii) J f p c Ram(B), then Norm^/^p) ^ 1 (modulo £ ) . I f p ^ Ram(B) lies
above £, then p is not split in k ( ^ ) / k .

(in) I f p e S , then Normfe/Q(p) ^ -1 (modulo £).

(iv) T> contains an element y -^ 1 such that y^ = 1.

Furthermore, condition (iv) is implied by (i) and (ii) (and so may be
dropped), except when B is unramified at all finite primes, B ramifies
at all real places ofk, and all primes ofk lying above £ split in k(^)/k.

Proof. — When ^ € k, the corollary is immediate. Assume ^ ^ k
and On C F^p. Then, as we saw in the proof of Theorem 3.3, (1) and (1')
hold. Hence (iv) and (i) hold. The splitting law in cyclotomic extensions and
(i) imply Nornifc/Q(p) = =L1 (modulo £) for p not dividing £. Furthermore,
such a prime splits in k(^)/k if and only if Normfc/Q(p) = 1 (modulo £).
Hence (ii) and (iii) follows from (1') and (3), respectively. The converse is
proved in the same way. The fact that (iv) is implied by (i) and (ii), except
as described above, follows from the last statement in Theorem 3.3. n

In much the same way we obtain

COROLLARY 3.5. — If \/—1 € k, then TS,T> contains an element of
order 4 if and only if B ^ M(2, k). If y^^T ^ k, then F^-p contains an
element of order 4 if and only if the following hold:

(i) Jfp € Ram(B), then Normfc/Q(p) ^ 1 (modulo 4). Ifp e Ram(B) Jies
above 2, then p is not split in k(^/I:l)/k.

(ii) I f p e S , then Norm^^p) ^ -1 (modulo 4).
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(iii) Any prime ofk lying above 2, and not contained in SU Ram(B), has
an even absolute ramification index.

(iv) P contains an element y such that y2 = —1.

Furthermore, condition (iv) is implied by (i) (and so may be dropped),
except when B is unramified at all finite primes, B ramifies at all real
places of k, and all primes ofk lying above 2 split in k{^/—l)/k.

We now turn to cyclic subgroups of F^-p of order 2. Lemma 2.2
states that the cyclic subgroups of order 2 of -B* / k * are parametrized up
to conjugacy by elements wk*2 of k * / k * 2 such that k{^w) embeds in B.
We denote by Cw the cyclic subgroup of order 2 of B*/fc* corresponding
to wk*2. Thus, the nontrivial element x of Cw C B* / k * is represented by
x G B* satisfying x2 = w.

THEOREM 3.6.— A conjugate of a group C^ C B * / k * of order 2 is
contained in Ts^v if and only ifwk*2 is in the set C^ = C^{S,V) C k* / k * 2

defined as follows. The trivial coset k*2 is in C^ if and only ifB ̂  M(2, k).
A non-trivial coset wk*2 is in C^ if and only ifw e A;* satisfies conditions
(1) to (3) below:

(1) There is an embedding over Ok of the ring of integers Ok(^/w) m^0 ̂ •

(2) Write the principal fractional ideal (w) = c^b, where a is a fractional
ideal and b is a square-free integral ideal. Then any p dividing b is in
SURam(B).

(3) I f p e S does not divide 2, then either p is split in k(^/w)/k, or p
divides the ideal b in condition (2) above.

Furthermore, if

(a) Ram(B) 7^ {the real places of k at which w is negative}, ork(^/w)/k
ramifies at some finite prime ofk, or a prime ofk lying above 2 is not
split in k(^/w)/k,

then (1) above can be replaced by

(1') w is negative at all real places v G Ram(-B) and no prime p € Ram(B)
is split in k(^/w)/k.

Proof. — The proof goes exactly as that of Theorem 3.3. Namely, we
again apply Theorem 3.1 to the generator x € B* / k * of a cyclic group of
order 2. The only new feature worth remarking is that Disc(a;)/nr(a;) = —4
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regardless ofw=x2. Because of3.1c and 3. If, the primes above 2 therefore
play a special role in Theorem 3.6. n

The set C^ is finite because (2) implies that k(^w)/k is a quadratic
extension unramified outside the infinite places, the places above 2 and
the places in S U Ram(B). Thus €2 can be calculated by classfield theory.
As in the case of Theorem 3.3, the hypotheses under which (1) may be
replaced by (1') are sharp. When (a) fails for some w, but (I'), (2) and (3)
in Theorem 3.6 hold, then a conjugate of Cw is contained in TS,T> for Vs
belonging to exactly half of the S'-types.

4. Local orders fixed by dihedral subgroups.

In this section F is a finite extension of the ^-adic field Q^, TT denotes
a uniformizer of F, ordp the valuation, normalized to have value group Z,
OF its local ring and K, its residue field. An element x € GL(2,F), or its
class x C PGL(2,F), is odd if ord^(det(rr)) is odd. The group PGL(2,F)
acts by conjugation D ̂  xDx~1 on the tree T == Tp whose vertices are the
maximal orders of M(2,F) [13, p. 40] [11]. Recall that two such maximal
orders D and D' determine an edge [D, D'} of T if [D : PfW] = card(At).
Exactly card(^) +1 edges meet at each vertex. An edge {D, D'} is fixed by
x e PGL(2, F) if either

\xDx~1 = D and xD'x~1 = D^o^xDx-1 = D' and xD'x~1 = o].

An equivalent definition of T, which we apply below, is to let a
vertex [A] be the F*-homothety class of an 0^-lattice A C F x F. Two
such vertices are joined by an edge {[A], [A']} when there is a choice of
representative lattices such that TrA C A' n A C A with [A : A' Ft A] =
card(^). An x € PGL(2,F) maps [A] to [Aa?], where we write elements of
A C F x F as row vectors and x € M(2, F) acts by right multiplication.
To match both definitions of T, one maps [A] to the maximal order
D = Endc^(A). We refer to [11] and [13, pp. 37-42] for further background
concerning T.

LEMMA 4.1.— Let H C PGL(2,F) be a dihedral group of order 2n
and invariant [H] = [d,w], as described in Lemma 2.4 and the remark
following it. If H contains an odd element, then H fixes an edge but no
vertex ofT.

Assume now that H contains no odd element. Then H fixes a vertex
D ofT. Iff = 2, D is unique, except when n = 27'. Iff > 2, D is the unique
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vertex fixed by H, except when n = ̂  and w e F*2. In the two excepted
cases, H fixes both vertices of some edge ofT.

Proof.— Since H C PGL(2,F) is compact, it fixes some vertex
D = Ende^(A) or some edge {D,D1}. If H contains an odd element,
then it cannot fix a vertex. Hence H fixes an edge and there is actually
nothing more to the lemma in this case.

We therefore assume that H contains no odd element. Define an Op-
order £ = £(H) C M(2,F) as follows. Let x generate a cyclic subgroup
Cn C H and let y € H be an element of order 2 not in Cn. As H contains
no odd element, by multiplying by elements of F* we can assume that nr(a;)
and m(y) are units of Op- Thus, referring to the proof of Lemma 2.3,

(4.1) det(;r), det(^), y2 e 0^, yxy~1 = i(x),

where i is the canonical involution of M(2,F). Since x and y are integral
over OF and yxy~1 = i(x) = -x + tr(a;) e Op[x}, the ring £ = £(H) C
M(2, F) generated over Op by x and y is an 0^-order.

Let D = Endo^,(A) be a maximal order fixed by H. As x € H,
Ax = AA for some A € F*. Actually, we must have Ax = A because
det(rr) e 0'p. Hence x ^ D = Endc^(A). As the same is true for y , it
follows that £ C D. Using (4.1), one computes [13], p. 24, the reduced
discriminant ideal Disc(^) = ((tr(a;))2 - 4det(o;)) Op.

We consider the various possible x, as given in Lemmas 2.1 and 2.2.
If n = 2, then Disc(£) = 40^. In particular, E(H) is a maximal order if
£ ̂  2. Thus, when n = 2 and ^ ̂  2, D = ^(I:f) and so ̂  fixes the unique
vertex £ = £(H)^ as claimed in Lemma 4.1.

Consider next the case n > 2 and (n € F. Then x is conjugate to
Q ^°V One finds then Disc(f) = ((tr(:r))2 - 4nr(rr)) Op = (1-Cn)2^.
If n 7^ r, then 1 - ̂  is a unit [12, pp. 9, 12].

Consider now the case Cn ^ F. Then a; = (1 + C)/^ where
F(C) = F(x) is a field, C € M(2, F) is a primitive n-th root of unity and
r is such that nr(a;) € 0'p. As in the proof of Lemma 2.1, i(C) = C"1- We
now calculate

(tr(rr))2 - 4nr(^) = TT-^ ((1 + < + 1 + C-1)2 - 4(1 + C)(l + C~1))

= Tr-2- (((1 + C)(l + C-1))2 - 4(1 + 0(1 + C-1)) = nr(^)(C + C-1 - 2)

= —nr(a;)nr(^ — 1).
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As m(x) G O^Fi we again find that Disc(^) is a unit, unless n = £r. We
conclude that 8 is a maximal order of M(2,F), except when n == ^. It
follows that S = D unless n = £r. Thus 1̂  fixes the unique vertex £ = £(H),
except possibly when n = £r.

We therefore assume, for the rest of this proof, that n = ^ and that
H contains no odd elements. Thus H fixes a vertex [A]. Suppose first that
i == 2. Consider the action of the 2-group H on the set of vertices adjacent
to [A]. This is a set of odd cardinality, since the residue characteristic is
£. The action must therefore have a fixed point [A']. Thus H fixes an edge
{[A], [A']}, as claimed when n =2r.

Assume now that n = f', where £ is odd. It follows from the last part
of Lemma 2.1 that we can choose x so that x71 = 1 = m(x) and y as in
(4.1). Then,

(4.2) yxy~1 = ̂ -1, y2 = w, x^ = 1.

As we saw above, Ax = Ay = A. Now, x and y fix a vertex [A'] adjacent
to [A] if and only if A/TrA has a 1-dimensional At-subspace ( = A/(A H A'))
which is invariant under x and y. Here the ^ denotes the reduction map
from Endo^(A) ^ M(2, Op) to End/^(A/7rA) ^ M(2, ̂ ). Suppose KV is such
a subspace, so vx = X^v and vy = XyV for some Aa;, \y G K and v 6 A/TrA.

Though we have been writing scalar multiplication on the left, it will
now be convenient to allow scalar multiplication on the right by identifying
scalars with multiples of the identity matrix. Then vw = vy2 = vA2. Thus,
if y fixes two adjacent vertices, then w G /^*2. As char(^) = I ^ 2, HensePs
lemma shows w € i^*2, as claimed in Lemma 4.1.

Now assume, conversely, that w € F*2 and that H fixes [A]. We must
show that H fixes a vertex adjacent to [A]. As w = y2 and w € F*2,
after multiplying y by an element in F*, we may assume y2 = 1. As in
the case £ = 2, the cyclic subgroup Cfr- c H generated by x must fix a
vertex adjacent to [A]. That is, there is a 1-dimensional ^-invariant subspace
KV C A/TV A. But x^ == 1, implies \^ = 1. As K, has characteristic £, \x = 1,
and so vx = v. If vy = —v, then KV is certainly a nontrivial 7^-invariant
subspace of A/TrA. If vy ^=- —v, let v ' = v + vy € A/TrA. Note that v' 7^ 0
and 2/^7 = v', since ^/2 = 1. From (4.2),

v'x = vx + v^/S == v + vx~^y = v -\- vy = v' ^

which shows that KV' is a nontrivial H -invariant subspace of A/TrA. Hence
H fixes a vertex adjacent to [A]. D
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5. Noncyclic finite subgroups of F^p.

We can now prove Theorem B in §1 for slightly more general quater-
nion algebras.

THEOREM 5.1. — Let B be a quaternion algebra satisfying the Eichler
condition (3.1) over a number field k, and let H be a non-cyclic finite
subgroup of B * / k \ Then there are two finite sets 5m = Sm{H) and
SM = SM(H) consisting of prime ideals ofk not in Ram(5), and an Su-type
of maximal orders T(H) with the following property: A B* / k*-conjugate
ofH is contained in I\p if and only ifV e T{H) and 6m C S C SM'

Remark. — We will prove the following explicit description of 5m and
SM'-

(As) If H ^ As, then Sm and SM are both empty.

(A4) If H ^ A4, then Sm is empty and SM consists of all p above 2 for
which the residue degree /p = dim^Ofc/p) is even.

(84) If H ^ 84, then 5m == SM and consists of those p above 2 for which
the residue degree /p is even and the absolute ramification index
e? is odd.

If H C B" / k * is a dihedral subgroup Dn of order 2n and conjugacy
invariant [H] = [d, w], as described in §2, we need to distinguish four cases:

(Dn) If n > 2 is neither a prime power nor twice a prime power, then
Sm = SM and consists of all p ^ Ram(B) for which ordp(w) is odd.

(D^r) If n = 2^, with £ ^ 2 prime and r ^ 1, then Sm consists of all
p ^ Ram(B) for which ordp(w) is odd, together with all primes
( ^ Ram(B) dividing £ for which e\ is not divisible by y(n). If
£ ^ 3, then S'M = Sm- If ^ = 2, then SM consists of Sm together
with all p ^ Ram(B) lying above 2.

(D^r) If n = -T, with £ ̂  3 prime, then Sm consists of all p ^ Ram(B) for
which ordp(w) is odd. SM consists of 6m together with all primes
( ^ Ram(B) dividing £ which split in k{^/w)/k (we clarify that if
k(^/w) = A;, we regard ( as split).

(D2) If n = 2, then Sm consists of all p ^ Ram(B) for which ordp(w) or
ordp(d) is odd. SM consists of 5m together with all primes ( not in
Ram(B) dividing 2.
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Any infinite place v of k gives rise to an injection of B * / k * into a
subgroup of PGL(2, C). Hence, the above is a complete list of the possible
isomorphism types of non-cyclic finite subgroups of Fs v-

Proof.— Let us first show that any finite subgroup H C B * / k * is
contained in a B*/A;*-conjugate of some F^p. Take £ to be any maximal
order of B and let x e B*. Then, x£x~1 is also a maximal order. Hence,
x£px~1 = £p for all primes p outside some finite set. As H is finite,
x£^x~1 = fp for all x representing elements x e H and all p outside some
finite set R. For each p, the compact group H must fix a vertex Dp or an
edge {Gp,Fp} of 7?. Let

Sm = Sm(H) = {p ^ Ram(I?)[ H fixes an edge but no vertex of 7p},

so that 6m C R. If H contains an odd element, H must fix an edge but no
vertex of 7?. If H does not contain any odd element and yet fixes an edge,
H must fix both vertices at that edge. Hence,

(5.1) 5m = {p ^ Ram(J5)[ H contains an element which is odd at p}.

Let T be the maximal order of B such that Jp = fp for p ^ R,
.Fp = Fp for p C 5m and ^p = Dp for p e R - 5m. Then definition (3.0)
immediately implies that H is contained in a conjugate ofF^^ (we cannot
strictly write H C F^jr since the choice of edge for p € 5m is left arbitrary
in (3.0)).

Define

SM = SM(H) = {p ^ Ram(B)| H fixes an edge of the tree 7?}.

It is immediate that 5m C SM and that these sets depend only on the
B*/A;*-conjugacy class of H. Since 7p is a tree and H fixes ^p, this is the
unique vertex fixed by H for p ^ SM' We shall show below that SM is finite.
Assuming this for now, we can finish the proof of Theorem 5.1 as follows.
Let T{H) be the SM-type containing T. Suppose a conjugate H ' = xHx~1

of H is contained in some F^p. Equivalently, suppose H C F^p/, where
V = xVx-1. Then H fixes an edge of 7? for p e 5. Hence S C SM. As H
fixes no vertex for p € 5m, we must have 5m C 5. But, for p ^ 5M, H fixes
the unique vertex ^p of 7?. Therefore Pp = ^p for p ^ 5M, which is to say
that T and T) are in the same 5M-type.

Conversely, given that T> € T(H) and 5m C 5 C 5M, we must show
that a conjugate of H is contained in F^-p. After conjugating H^ we may
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assume that Pp = ^p for p ^ SM. By definition, H fixes an edge {Gp, Fp}
of 7p for p e SM. By (5.1), H must fix both Gp and Fp for p € -SM - 5m. By
transitivity of the action of SLs^p) on the edges of 7p [11] and the Strong
Approximation Theorem [13, p. 81], we can find x € B* which fixes Pp
for f i SM, and which, for p e ,SM, takes the edge {Gp.Fp} to {Pp.Cp},
for some maximal order Cp adjacent to Pp. It follows that a conjugate JiT
of H fixes Pp for p ^ 5m, and fixes both vertices of an edge {Pp, Cp} for
P ^ 5'M — 5m. As 5m C S C -SM, we find H ' C F^-p, as claimed.

We must still prove that 5m and S'M are as described just after
Theorem 5.1, which will also prove that 5'M is finite. It is worth noting
that Theorems 3.3 and 3.6 imply that Su(H) is infinite for any cyclic
group H.

Consider first the case H ^ As. By Lemma 2.9, H contains no odd
elements at p for any p. Therefore, by (5.1), S^(H) is empty. We claim that
SM{H) is also empty. For suppose that H fixes some edge of 7? for some
p. Then H must fix both vertices at that edge. But H contains a Klein
group with no odd elements at p. Lemma 4.1 shows that H fixes no edge
of 7p unless p is above 2. Now, As also contains a subgroup isomorphic
to D^ (^ 83), namely the subgroup generated by two permutations whose
cycle decompositions are (123) and (2 3) (4 5), respectively. Lemma 4.1
shows that a subgroup of H isomorphic to D^ cannot fix an edge of 7?,
except possibly at p dividing 3. Hence SM(H) is empty.

Suppose now that H ^ 84. By Lemma 2.9, H contains an element
which is odd at p if and only ifp lies above 2 and e? is odd. As B = (-1, -1)
and e? is odd, p ^ Ram(B) is equivalent to /p being even. Hence 5m (84)
is as claimed. As 84 contains a subgroup isomorphic to D^ and a Klein
subgroup with no odd elements, we again conclude that Sm = 5'M.

If H is dihedral one immediately obtains the above description of
Sm(H) and Su(H) from (5.1) and Lemmas 2.5 and 4.1.

Consider finally the case H ^ A^ By Lemma 2.9, H contains no odd
elements. As before, we conclude that S^(H) is empty and that H fixes
no edge of 7? except possibly when p is above 2 and p ^ Ram(B). Suppose
P ^ SM^H), i.e., H fixes an edge of 7?. Then a cyclic group of order 3
fixes an edge. As p is not above 3, this happens if and only if kp contains
a primitive third root of unity (Lemma 2.1 and [2, Lemma 2.2]). This, in
turn, is equivalent to the residue degree /p being even.
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Conversely, assume that p is above 2 and that /p is even. We must
show that H ^ A^ fixes two adjacent maximal orders of Bp. By Lemma 2.8,
Bp = A(g)Q^ fcp, where A is the unique quaternion division algebra over Qs-
Thus A is generated over Qa by the usual Hamilton quaternions i, j, k.
As /p is even, p ^ Ram(B). By the remark preceding Lemma 2.9, after
conjugating we may assume that H is generated by the projective images
of i and of 03 = (1 + i -hj + k)/2. Let F C kp be the unramified extension
of Qa of degree /p. Since /p is even, F splits the division algebra A, i.e.,
B^ = A (g)Q^ F ̂  M(2, F). Let I? C A be the unique maximal order of A
and let Rp = R (g)^ Op C Bp. Note that Jf fixes any maximal order of
Dp containing R since H is generated by the class of i and 0:3, which are
units in R. Let D be any maximal order of Bp containing Rp (as Rp has
discriminant 20^, it is not maximal). Let a G A* satisfy ord2(nr(a)) = 1.
Then a, considered as an element of Bp, is odd since F/Q^ is unramified.
Thus 2^ := aPa-1 ^ P. But R C D^ since ^ C D and a7?a-1 = R.
We conclude that ^f fixes two distinct maximal orders of Bp. Since 7^- is
a tree, we see that H must fix two adjacent maximal orders of Bp- On
tensoring up to A;?, the same holds for JE?p. D

In applications to 3-orbifolds [4] the following is useful.

COROLLARY 5.2. — Let S be a finite set of primes ofk disjoint from
Ram(B), let T> be a maximal order of B, and let S be the union ofS and
all primes ofk lying above 2 and not in Ram(B). Assume that B has only
one S-type of maximal orders. Then F^p contains a Klein group if and
only if there exist d and w in k* such that the following three conditions
hold:

• B=(d,w),
• {p ^ Ram(jB)| d or w is odd at p} C S,
• S C {p ^ Ram(B)| d or w is odd at p, or p divides 2}.

r.s',T> contains a dihedral group of order 8 if and only ifVs,T> contains a cyclic
group of order 4 and if there is a w € k* for which the three conditions
above hold with d = —1.

6. Examples.

We now give some sample calculations to illustrate the results of §3
and §5. As we are mainly interested in PGL(2, C), all our numbers fields k
below have exactly one complex place and Ram(B) includes all real places
of A;.
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Example 1. — Let k = Q(a;), where x is a root of x3 — x — 1 = 0. This is the
unique cubic field of discriminant —23, (Pfe = Z[^], ^ is a fundamental unit,
a; == 1.32 • • • at the real place Voo of A;, the primes 2 and 3 remain prime in
Ok and there is exactly one prime p5 == (2 — x) of norm 5. Let B be the
quaternion algebra over k ramified only at Voo and ps. Up to conjugation,
there is a unique maximal order T> C B because the narrow class group of
k is trivial. Let us first find the finite subgroups of jE?* / k * . As k contains
no subfield Q(Cn + Cri"1) other than Q, condition (1) in Lemma 2.3 implies
that B* / k * cannot contain cyclic subgroups Cn with n > 4. Since p5 is
split in k(^/—l), (2) in Lemma 2.3 rules out a 64. By the same lemma,
there is a (unique up to conjugation) (7s in B* /A;*. There are, of course,
infinitely many (non-conjugate) C'2's in B* / k * . By Lemma 2.3, there are
infinitely many D^s and D^ 's, i.e., S^s and Klein groups, in B * / k * . As
B 7^ (—1,—1) (since 2 is inert and [k : Q] is odd [13, p. 33]), there is no
A4, 84 or As in B*/A;*.

Let us now take S empty and see which of the above groups is
contained in r-p = r^-p. By Lemma 2.3 and (D^r) following Theorem
5.1, an 83 C r-p if and only if for some w € A;* we have

(1) B=(-3,w).
(2) w is even at all primes p -^ ps.

As Ofe has narrow class number 1 and we can always change w
modulo squares, it follows from (2) that rbw is one of 1, x, x — 2
or x{x — 2). By (1), w must be negative at Voo and the local Hilbert
symbols must be (—3,w)p5 = —1, (—3,w)p = 1 for p ^ p5. This leaves
w = x — 2 or w = x(x — 2) as the only possibilities. Note that both of
these w are generators of ps. Now, —3 is not a square in fcpg ^ Qs, hence
(-3,.r-2)p5 = -1 = (-3,a;(:r-2)) ^ . A s w G 0^, (-3,w)s = 1 if and only
if w is a square in k^. This in turn happens if and only if w is a square in
Ofc/(3)^F3[a•]/(al3-.r-l).OverF3, x =. (x^+x-l)2 (modulo a;3-a;-1)
and x — 2 = (x2 +1)2 (modulo x3 — x — 1). As there is only one prime above
2, we conclude that B = (- 3,x(x - 2)) = (- 3,x - 2). This shows that
there are two 83^ in Fp. By Lemma 2.4, they are not B* / k* -conjugate.
The point here is that x is not a square.

Let us now compute the C'z 's in F-p. By Theorem 3.6, these correspond
to w = x — 2, w = x(x — 2) or w = —x. Corollary 5.2 yields that the only
(up to conjugation) Klein group in Fp corresponds to B = (—x,x — 2).
To verify (—x,x — 2)?^ == —1, one can use the isomorphism Ok/^5 ^
Z[x]/(x3 - x - 1, x - 2) ^ Z/5 taking x to 2 (modulo 5). Note that
B = ( — x,x{x — 2)) corresponds to the same Klein group, by Lemma
2.4. Hence we have found the complete list of finite subgroups of F-p.
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Elementary group theory [4, Lemma 2.2.1] now shows any torsion-free
subgroup of r-p has index divisible by 12. In fact, there is a torsion-free
subgroup r C Fp of index 12 which can be described as follows. Let V1

consist of the elements of V of reduced norm 1 and set Fp == T>l/{±l}.
Since k has class number 1, F^, is isomorphic to a subgroup of index 4 in
Fp [1, §8.5, 8.6]. Set F = {u e V1 \ u e 1 + M}, where M is the maximal
ideal of the maximal order in the local division algebra B^. Then F injects
into Fp and F is torsion-free because it embeds in a pro-5-group while F-p
has no 5-torsion. Working in B^ one finds [Fp : F] = 3. Hence F C Fr>
with index 12 and F is torsion-free. By the results in [4], the 3-manifold
corresponding to F is the Weeks manifold, that being the one of smallest
volume among all arithmetic, hyperbolic 3-manifolds.

In the foregoing example we were able to quickly calculate all finite
subgroups of Fp. When the unit rank or the class group grows, this can
become a more difficult task, as the next few examples show.

Example 2. — Let k = Q(a;), where a; is a root of f(x) = x5 + x4 - 3x3 -
2x2 + x — 1 = 0, and let B be the algebra ramified at all three real places
and at ps = (x + 2), the prime of norm 3. This field is the unique quintic of
discriminant -9759 = -3 • 3253, having ring of integers J\x\. The prime 2
is inert in k/Q and k has narrow class number 1, as discriminant estimates
show [10, pp. 161, 185]. Just as in the example above, one quickly rules
out all cyclic subgroups of B* / k * other than a C^ or €3. Let us show that
there is no 63. We have

f(x) = (x + 2)2^3 - x + 2) (modulo 3),

showing that 3 splits in A; as (3) = pj pay, where pay is a prime of norm 27.
Hence f(x) = q2(x)q^x), where q2(x),q^(x) € ^[x} are irreducible 3-adic
polynomials of degree 2 and 3, respectively. Thus k^ = Q^^/D), where D
is the discriminant of q^x). We find that f(x) factors uniquely modulo 9
as

f(x) == (x2 - 2x + 4)(rr3 + 3x2 - x + 2) (modulo 9).

Thus, D = -3 (modulo 9) and so k^ = Q3(\/r3) = Qs^s). It follows that
ps splits in k(^). Condition (2) in Lemma 2.1 implies then that there is
no Cs in B* /fc*. Hence F-p contains at most C^s and Klein groups for any
maximal order P. The computation of all C^s and Klein groups is possible
(as fundamental units are readily calculated), but quite tedious since 0^ has
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Z-rank 3. There is at least one Klein group in F-p since B = (—1, —x — 2).
In this example, F-p has no torsion-free subgroup of index 4 [4].

Example 3. — Let k = Q(rr), where x is a, root of x4 + x3 — 2x — 1 = 0,
and let B be the algebra ramified only at the two real places. This is
the unique quartic field of discriminant —275 == 52 • 11. It is a quadratic
extension of Q(\/5) and has narrow class number one. Since 2 is inert in
A;/Q, B = (—1,—!). Hence F-p contains an A5, but no 84. Again, one could
compute all the smaller finite subgroups of F-p. In [3] it is shown that F-p
gives rise to the arithmetic hyperbolic 3-orbifold of smallest volume.

Example 4.— Let k = Q(^6) and let B = (-!,-!) be the algebra
ramified exactly at the two real places of A;. As in example 1, only Cn
for n ^ 4 need be considered. In this case ^(^3) = k(\/—S) = A;(\/—2), so
the unique prime ps above 3 splits in k(^) (Proof: 3 splits in (Q^V^^VQ).
One computes the narrow class number of A; to be 2. Thus there are two
conjugacy types of maximal orders in B. Let us pick T> in one type, V in
the other type. Using Theorems 3.1 to 3.3, we conclude that for maximal
orders in just one type, say that of T>, there is a C^ in F-p. In contrast, F-
has no elements of odd order. Note that P contains a primitive third root
of unity and V does not. Theorem 5.1 also shows that F-p contains an 84,
but no A5.

We now consider the subgroups of order 2 in F-p or F-. Theorem 3.6
shows that there is a bijection C-^ ^ £i between such subgroups and all
totally positive units of A; modulo squares of units. A short calculation shows
that this latter group has order 4. A subgroup (in the B */ k * -conjugacy
class) corresponding to C-a ls m F-p or F-, or both, depending on whether
0^frZ(T\ embeds in T> or P, or both. For exactly one unit, say £1, we have
k(^j—e\) = ^((^3), that being the narrow Hilbert class field. The prime p2
above 2 is either ramified (i 7^ 1) or inert (z = 1) in k ( ^ / — € i ) / k . To see
this for i = 1, note that pa has norm 2. It is therefore inert to the narrow
Hilbert classfield ^(^3). Hence Theorem 3.6, especially condition (a), shows
that each (7-^ is in both F-p and F-. 8imilarly, Corollary 3.5 shows that
both F-p and F- contain a C^ the point being that k{^/^=l)/k ramifies at
P2.

It remains to check for dihedral 2-groups H ^ Dy. But *SM =
SM(H) = {?2} generates T(B). Hence there is just one ^M-type of maximal
order. By Theorem 5.1, a conjugate of H is in F-p if and only if it is in F-.
By Corollary 5.2, the Klein groups in F-p correspond to all pairs [—^z, —^],
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with identifications as explained in §2. Similarly, the dihedral subgroups of
order 8 are in bijection with the £j, as B = (-1, -e) for any totally positive
ee0^.

Example 5. — We give an example in which Fp contains elements of order
two, but contains no dihedral group. Let A; be a cubic field of narrow class
number 1, having one complex place. Thus there is only one type of maximal
order. For example, the field in example 1 will do. Let a be a generator of
C^/{=bl} such that a > 0 at the real place of k. Choose a prime p of k
completely decomposed in ^(y^T, x/^o?) and let B ramify only at p and at
the real place. Let us check that Fp contains no dihedral 2-group. Suppose
w e A;* represents an element of C^ = ^((^P) C A;*/A;*2 as in Theorem
3.6. Condition (2) in that theorem and the assumption that k has narrow
class number one imply that w = ±l,±a,±(3 or ±af3 (mod A;*2), where
(/3) = p and (3 > 0. All the + signs can be dismissed since condition (1) does
not allow the real place to split in k(-^/w). Similarly, w = —1 or w = —a
are ruled out by the hypothesis that p splits in A^y/^l, v/^o?). Hence C^
consists of the two elements -(3 and -a(3 (mod A;*2). We claim that the
local Hilbert symbols (w,w')p are trivial i fw,w' represent elements ofC2.
For example, consider

(-A -a/?)p =(-/^, -a)p (-/3, f3\.

The first symbol on the right is +1 since p splits in k(^/:=d). The last symbol
is +1 trivially. The proof that the other local symbols (w,w')p equal 1 is
similar. Theorem 5.1 now shows that Fp contains no Klein group.

Example 6. — We conclude with an example of a torsion-free Fp. The
main difficulty is to make sure that F-p has no element of order 2. Let
N = Q)(x) be the quintic field generated over Q by a root x of f(X) =
X5 - 2X4 - 2X3 + 2X2 + X +1. Since f{X) has discriminant -32411 and
32411 is prime, N has discriminant -32411 and ON = ̂ [x]. The field N
has 3 real places and 1 complex place. By hand or computer calculations
one finds that TV has class number one and narrow class number 2.

Suppose now that k is any quintic field having exactly three real
places, odd wide class number and even narrow class number (for example,
the field N above). Then there is a quadratic extension H / k unramified
at all non-archimedean primes and ramified at least at one real place.
Actually, such an H must be ramified at exactly two real places because
the reciprocity map, from ideles of k to Gal(H/k) = {±1}, is both trivial
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and equal to (-l)(n™ber of ramified real places) ̂ ^ evaluated at the global
idele —1. Note that by classfield theory a prime p of k which is inert to H
cannot have trivial image in C^/CZ^., the narrow ideal class group of k
modulo squares.

Let F c k* be the subgroup consisting of those 7 € A;* which
are either totally positive or totally negative and such that the principal
ideal (7) equals a2 for some fractional ideal a = a^) of k. Let L be
the compositum of all the k(^y) for 7 e F. To see that L / k is a finite
extension, note that 7^ == a/32, where h is the wide class number, a is a
unit of k and f3 € A;*. Because h is odd, k{^y) = ̂ (y^) = k(^/d). Hence
[L : k} ^ [̂  : (O^)2] = 24. Let L' = L(^) = L(^3). By Kummer theory,
any quadratic extension F / k with F C L' is of the form k{^j) or k(^—3^)
for some 7 € F. In particular, either all or none of the three real places
of k ramify in F. Hence, if H is the field defined above, H H L' = k. We
may therefore fix a prime p of k relatively prime to 3 which is completely
decomposed in L ' / k and inert in H / k .

Let B be the algebra ramified at p and at the three real places.
Theorem 3.3 implies that the only possible Cn C F-p, with n odd, is a €3.
But, by construction, p € Ram(5) splits to ^(v^^S) as ̂ 0^r^\ = P'P".
Hence Norm^p) = Norm^^r^/^p') = Norm^^^p'') = 1 mod 3.
Hence, Theorem 3.3 shows that F-p contains no elements of odd order.

To prove the same for the 2-part, we now show that C^ = C^c/), V) in
Theorem 3.6 is empty. Suppose w € k* represents an element ofC2. From
(1) and (2) in Theorem 3.6, we find that w is totally negative and that
either w e F or (w) = a2? for some fractional ideal a. The latter possibility
would imply that p has trivial image in C^/CZ2., which we showed above
is impossible because p is inert in H. Thus w € F. But by construction p
is split to k(^/w\ contradicting condition (1) in Theorem 3.6. We conclude
that €2 is empty and so F-p is torsion-free.
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