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Abstract. For a family of single-species delayed population models, a new global
stability condition is found. This condition is sharp and can be applied in both monotone
and nonmonotone cases. Moreover, the consideration of variable or distributed delays
is allowed. We illustrate our approach on the Mackey-Glass equations and the Lasota-
Wazewska model.

1. Introduction. This work is motivated by the problem of finding a sharp global
stability result for the Mackey-Glass equation with variable delay

x′(t) = −δx(t) +
px(t− τ(t))

1 + (x(t − τ(t))n
. (1.1)

Here τ : R → [0, h] and n, h, p, δ > 0. With constant delay τ(t) ≡ h, this equation
was proposed in 1977 by Mackey and Glass [15] as a model in hematopoiesis (blood cell
production).

Eq. (1.1) is a particular case of the class of delay differential equations

x′(t) = −δx(t) + f∗(x(t− τ(t))), x ∈ R
+ def

= [0,+∞), (1.2)
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A GLOBAL STABILITY CRITERION 57

where δ > 0, τ : R → [0, h] is piecewise continuous, and f∗ ∈ C(R+,R+) is either strictly
decreasing or unimodal. Concretely, we will consider that one of the following conditions
holds:

(H1) (f∗)′(x) < 0 for all x > 0.
(H2) (f∗)−1(0) = 0, lim infx→0+

f∗(x)
x > δ and f∗ : R

+ → R
+ has only one critical

point c (maximum).
Besides Eq. (1.1), the family (1.2) includes the celebrated Nicholson blowflies equation,

the Mackey-Glass equations, and the Lasota-Wazewska delay equation (see [1]–[13] and
[16] for more references).

Both (H1) and (H2) are sufficient to assure the existence of a unique positive equi-
librium for (1.2); we denote such a solution by x(t) ≡ x∗. By definition, the global
attractivity of (1.2) means that limt→+∞ x(t) = x∗ for every nontrivial solution x(t) of
the equation.

Recently, we proved in [13] a sharp global stability result which is easy to apply to
Eq. (1.2) with monotone nonlinearity when f∗ is dominated in some sense by a rational
function. We will assume that one of the following conditions is satisfied:

(D1) (f∗(y + x∗) − δx∗ − r(y))y > 0 for all y > max{−x∗,−1/b}, y �= 0,
(D2) (f∗(−y + x∗) − δx∗ + r(y))y < 0 for all y ∈ (−1/b, x∗), y �= 0,

where r(x) = ax/(1+bx), for some constants a < 0, b ≥ 0 (if b = 0, by abuse of notation,
−1/b means −∞).

We have the following consequence from [13, Theorem 1.1]:

Proposition 1.1. Assume that f∗ satisfies (H1) and either (D1) or (D2). Then (1.2) is
globally attracting if

δe−hδ > −a ln
a2 − aδ

a2 + δ2
. (1.3)

As we show in Section 3 below, when (H1) holds, one of two conditions (D1), (D2) is
always satisfied with a = (f∗)′(x∗) if f∗ has negative Schwarz derivative

(Sf∗)(x) =
(f∗)′′′(x)
(f∗)′(x)

− 3
2

(
(f∗)′′(x)
(f∗)′(x)

)2

for all x > 0. Both the Lasota-Wazewska equation and the Mackey-Glass equation with
decreasing nonlinearity satisfy all conditions of Proposition 1.1. Hence, (1.3) gives a
stability condition which improves the main theorems in [3, 6, 11]. Now, the impor-
tance of Proposition 1.1 relies on its sharp nature: for every monotone f∗ satisfying
(D1) or (D2) and for every triple a < 0, δ > 0, h > 0 which does not satisfy (1.3),
the equilibrium x(t) = x∗ loses its asymptotical stability with an appropriate choice of
piecewise-continuous periodic delay function τ : R → [0, h]. (See [8, 13] for details.)

However, the results in [13] do not apply directly to the nonmonotone case of Eq. (1.2).
The main obstacle for this consists in the fact that unimodal functions do not satisfy the
negative feedback condition with respect to the level x = x∗. A simple approach allowing
us (at least theoretically) to overcome this difficulty was proposed in [13]: it suffices to
prove that f has negative feedback on some interval covering the projection π(A) of the
global attractor A of (1.2) on R

+ (here π : C([−h, 0]; R) → R is defined by π(φ) = φ(0)).
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58 E. LIZ and M. PINTO and V. TKACHENKO and S. TROFIMCHUK

To apply this method, we should be able to obtain sufficiently sharp a priori estimations
of the global attractivity domain for Eq. (1.2), and this can be a very difficult task. In
the case of Nicholson’s blowflies equation,

x′(t) = −δx(t) + px(t− τ(t))e−γx(t−τ(t)), δ, p, γ > 0, (1.4)

we succeeded to solve it (see [13]), while in the case of Eq. (1.1) this task seems to be
unrealizable (due to the necessity of enormous computations).

The main theorem in this paper allows us to deal easily with unimodal nonlinearities,
even when the negative feedback condition does not hold. Hence, in Section 3 we are able
to apply our result not only to the most famous examples of equation (1.2) with variable
delay, but also for the case of distributed or multiple delays, improving the results in
[3, 4, 6, 10, 11, 12, 16]. For the reader’s convenience, we state the main result in Section
2, and we prove it in Section 4, just after the section containing the applications.

2. The main result. Let C := C([−h, 0]; R) be the space of continuous functions
from [−h, 0] to R, h > 0, equipped with the sup norm ‖ϕ‖ = max−h≤θ≤0 |ϕ(θ)|. We
denote by C+ the cone of nonnegative functions C+ = {φ ∈ C : φ ≥ 0}.

We assume that the functional f : R×C+ → R
+ satisfies the Carathéodory conditions

and that, for every constant element m(s) ≡ m from C+, the function f(·,m) : R → R
+

is constant almost everywhere on R. Thus we obtain a continuous map f∗ : R
+ → R

+

such that f∗(m) = f(t,m) for all m ∈ R
+ and for a.e. t ∈ R.

We also assume that f satisfies the following condition:

m = inf
[−h,0]

ψ(t) ≤ sup
[−h,0]

ψ(t) = M implies f(t, ψ) ∈ f∗([m,M ]), t ∈ R. (2.1)

Notice that each one of hypotheses (H1), (H2) implies immediately the existence of a
unique positive equilibrium x(t) ≡ x∗ of the delay differential equation

x′(t) = −δx(t) + f(t, xt), x ∈ R
+. (2.2)

Now we are ready to state the main result of this paper

Theorem 2.1. Assume that the conditions (1.3), (2.1), (Hk) and (Dj ) are satisfied for
some choice of j, k ∈ {1, 2}. Then limt→+∞ x(t) = x∗ for every nonzero solution x(t) of
equation (2.2).

Remark 2.2. As was noticed in the paragraph below Proposition 1.1, Theorem 2.1 is
sharp within the class of equations (2.2) with f satisfying (Hk) and (Dj ) for some choice
of j, k ∈ {1, 2}.

The following corollary will be useful in the applications.

Corollary 2.3. Assume that f∗ satisfies either (H1) or (H2), has negative Schwarz
derivative for all x > 0, x �= c, and a = (f∗)′(x∗) < 0. If, in addition, conditions (1.3)
and (2.1) hold, then limt→+∞ x(t) = x∗ for every nonzero solution x(t) of equation (2.2).

Proof. By Lemma 2.1 in [14], condition (D1) with b = (f∗)′′(x∗) holds if (f∗)′′(x∗) > 0.
If (f∗)′′(x∗) < 0, condition (D2) holds with b = −(f∗)′′(x∗). Finally, if (f∗)′′(x∗) = 0,
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then x∗ is an inflexion point and (D1) holds (notice that in this case r(x) = −ax is a
linear function). �

3. Applications. In this section we apply Corollary 2.3 to obtain global stability
results for some well-known delayed population models. First, we observe that the direct
application of this corollary to Nicholson’s blowflies equation (1.4) gives Theorem 2.1 in
[13]. Next we consider other examples.

3.1. Lasota-Wazewska model with distributed delay. Our first example is a generaliza-
tion of the celebrated model proposed by Wazewska and Lasota in 1976 for the survival
of red blood cells (see, for example, [6, 10, 11, 12, 16]),

x′(t) = −δx(t) + pe−γx(t−h), t ≥ 0, (3.1)

where δ, p, γ, h > 0. This generalization is of the form

x′(t) = −δx(t) +
∫ h

0

e−γx(t−s)dq(s), t ≥ 0, (3.2)

where δ, γ > 0, and q is a nondecreasing and nonnegative function defined on [0, h], with∫ h

0 dq(s) = p > 0.
Function f∗ is defined by f∗(x) = pe−γx, which satisfies (H1), and (Sf∗)(x) =

−γ2/2 < 0 for all x > 0.
The unique positive equilibrium x∗ of (3.2) is the unique positive root of equation

f∗(x) = δx. Since (f∗)′(x∗) = −γδx∗ < 0, an application of Corollary 2.3 gives the
following result:

Theorem 3.1. The unique positive equilibrium x∗ of (3.2) is a global attractor if the
following condition holds:

e−δh > γx∗ ln
(

(γx∗)2 + γx∗

1 + (γx∗)2

)
. (3.3)

In the particular case of equation (3.1), Li and Chang proved recently [11, Theorem
2] the global attractivity of x∗ under condition γx∗(1 − e−δh) ≤ 1 + e−δh/(γx∗), or,
equivalently,

e−δh ≥ γx∗
γx∗ − 1

1 + (γx∗)2
. (3.4)

It is easy to check that Theorem 3.1 improves this result. Indeed, for γx∗ ≤ 1 both
conditions hold. Now, for γx∗ > 1, (3.3) is sharper than (3.4) since for y > 0 we have
the inequality ln(1 + y) < y (take y = (γx∗ − 1)/(1 + (γx∗)2)). We notice that condition
(3.4) was already obtained in [6]. Finally, for Eq. (3.2), Theorem 3.1 improves the result
in [12, Corollary 4.8].

3.2. Mackey-Glass model with unimodal nonlinearity. Our next example is the Mackey-
Glass equation (1.1). Taking into account the form of the right-hand side of (1.1), it has
only one constant solution x(t) = 0 if p ≤ δ and two constant solutions x(t) = 0 and
x(t) = x∗ = (p/δ − 1)1/n in the case p > δ.

Theorem 3.2. Let p > δ. Then the positive equilibrium of Eq. (1.1) is a global attractor
if one of the following three conditions holds:
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(i) n ∈ (0, 2];
(ii) n > 2 and δ ∈ (0, δ1(n, h)], where

δ1(n, h) =
1
h

ln
(
n2 − 2n+ 2
n2 − 3n+ 2

)
;

(iii) n > 2, δ > δ1(n, h), and

− δ

1 − n+ δn/p
exp (−hδ) > ln

(1 − n+ δn/p)2 − (1 − n+ δn/p)δ
δ2 + (1 − n+ δn/p)2

. (3.5)

Proof. See [3] for the cases (i), (ii) and when n > 2, p/δ ≤ n/(n− 1). Hence we have
to work only with n > 2, p/δ > n/(n − 1). In this case, it is easy to check that the
nonlinearity f∗(x) = px/(1 + xn) in (1.1) satisfies condition (H2), with a unique critical
point c = (n − 1)−1/n. Moreover, f∗ has negative Schwarz derivative for all x �= c (e.g.
see [3]), and (f∗)′(x∗) < 0. An application of Corollary 2.3 ends the proof. �

Remark 3.3. We emphasize that Theorem 3.2 improves the results in [3], where some
comparisons with previous results in the literature can be found. Moreover, condition
(3.5) is sharp in the class of equations (1.1) with τ(t) ≤ h.

3.3. Mackey-Glass model with distributed delay. Consider the following generalization
of the Mackey-Glass equation [4]:

x′(t) = −δx(t) +
∫ h

0

dq(s)
1 + xn(t− s)

, t > 0, x ≥ 0, (3.6)

with δ, n > 0. The nonconstant, nondecreasing and nonnegative function q(s) is defined
on [0, h] and

∫ h

0 dq(s) = p > 0.
Function f∗ is defined by f∗(x) = p/(1 + xn), which satisfies (H1) and (Sf∗)(x) =

(1 − n2)/(2x2) < 0 for all x > 0, if n > 1.
The unique positive equilibrium x∗ of (3.6) is the unique positive root of equation

xn+1 + x =
p

δ
.

Theorem 3.4. The unique positive equilibrium x∗ of (3.6) is a global attractor if one of
the following conditions holds:

(i) n ∈ (0, 1];
(ii) n > 1 and δ ∈ (0, δ2(n, h)], where

δ2(n, h) =
1
h

ln
(
n2 + 1
n2 − n

)
;

(iii) n > 1, δ > δ2(n, h), and

exp (−hδ) > c ln
c2 + c

1 + c2
, c =

δn(x∗)n+1

p
. (3.7)

Proof. The cases (i) and (ii) were proved in [3]. Since (f∗)′(x∗) = −δ2n(x∗)n+1/p,

case (iii) follows from Corollary 2.3. �
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Remark 3.5. We notice that condition (3.7) holds for all values of h > 0 if c ≤ 1.
This is equivalent (see [12, Theorem 4.10]) to condition

p(n− 1)(n+1)/n ≤ δn. (3.8)

It was proved in [12] that (3.8) is the best possible delay independent condition for (3.6).

4. Proof of the main result. In this section we prove Theorem 2.1. For this, we
first show that, after some transformations, Equation (2.2) and the set of hypotheses
(D1)–(D2) can be simplified for the case b > 0. Then, we adapt the arguments in [13]
to complete the proof. We will asssume that b > 0 until the end of Section 4, where the
case b = 0 is considered.

4.1. A reduction. First, we transform (2.2), making the changes of variables s = δt

and x = b−1y. These changes do not affect the global stability property of the equilibrium
solution of Eq. (2.2), which now has the following simpler form:

x′(t) = −x(t) + f̃(t, xt), x ∈ R
+, (4.1)

where f̃ satisfies either (D1) or (D2) with the same a < 0 and b = 1. In the sequel, by
abuse of notation, we shall use the same letter f for f̃ . Using the variation of constants
formula, we can check that every solution of (4.1) is nonnegative, if it takes nonnegative
values on the initial interval. Hence, if we consider a nontrivial solution x(t) and denote
M = lim supt→∞ x(t), m = lim inft→∞ x(t), we conclude that m ≥ 0. However, we will
need stronger positivity properties of the solutions to (4.1):

Theorem 4.1. If either (H1) or (H2) holds, then all solutions x(t) of (4.1) are defined
in [0,+∞). Moreover, there exist ν, µ > 0 such that µ ≤ m ≤M ≤ ν for each eventually
nontrivial x(t). Furthermore, [m,M ] ⊆ f∗([m,M ]).

Proof. See Lemmas 3.1, 3.3 and Theorem 3.6 in [12] (their proofs are still valid for
the nonautonomous case under condition (2.1)). �

The following result shows that, from now on, we should focus our analysis solely on
solutions which oscillate around the positive equilibrium:

Lemma 4.2. If m ≤M ≤ x∗ or M ≥ m ≥ x∗, then limt→∞ x(t) = x∗.

Proof. We have from Theorem 4.1 that [m,M ] ⊆ f∗([m,M ]), where M ≥ m ≥ x∗

or m ≤ M ≤ x∗. Since f∗ is either decreasing or unimodal, this is possible only if
m = M = x∗. �
Now let x(t) be such that M > x∗ > m. Then there exist two sequences of intervals
(aj , bj) and (a′j , b

′
j) with the following properties: x(aj) = x(bj) = x(a′j) = x(b′j) = x∗,

x(t) > x∗ for t ∈ (aj , bj) and x(t) < x∗ for t ∈ (a′j , b
′
j). Furthermore, max(aj ,bj) x(t) →M

and min(a′
j ,b′j) x(t) → m as j → ∞.

Lemma 4.3. If tj is the leftmost point from (aj , bj) satisfying x(tj) = max(aj ,bj) x(t),
then tj − aj ≤ h. Analogously, if sj is the leftmost point from (a′j , b

′
j) satisfying x(sj) =

min(a′
j ,b′j) x(t), then sj − a′j ≤ h.
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Proof. In the proof, c∗ denotes min{(f∗)−1(x∗)} in the unimodal case, and c∗ = 0
if f∗ is decreasing. We have x′(tj) = 0 and f(tj, xtj ) = x(tj) > x∗. If x(tj + s) > x∗

holds for all s ∈ [−h, 0], then x∗ < f(tj, xtj ) ∈ f∗([x∗,M ]), a contradiction (since f is
decreasing on [x∗,+∞)).

Analogously, x′(sj) = 0 so that f(sj , xsj ) = x(sj) < x∗. If we suppose that c∗ <
x(sj + s) < x∗ for s ∈ [−h, 0], then we get a contradiction again, since the relations
x∗ > f(tj , xtj ) ∈ f∗([c∗, x∗]) ⊂ [x∗,+∞) are impossible. Thus either x(sj + s′) ≥ x∗ for
some s′ ∈ [−h, 0] (and the lemma is proved) or x(sj + s) < x∗ for all s ∈ [−h, 0] and
x(sj + s′′) ≤ c∗ for some s′′ ∈ [−h, 0]. The second case is only possible if f∗ is unimodal,
and we can suppose that x(sj + s′′) = mins∈[−h,0] x(sj + s) ≤ c∗. Thus

x(sj) = f(sj, xsj ) ≥ f∗(x(sj + s′′)) > x(sj + s′′),

contradicting the choice of x(sj) as the minimal value of x(t) on (a′j , b
′
j). �

A simple observation of the graph of f = f∗ shows that, in the case (H1), the interval
I = [0, f(0)] is invariant under f ; moreover, f2(I) ⊂ Int(I). In the case (H2), if we take
a sufficiently small ε > 0 and consider I = [−ε+ f(f(c) + ε), f(c) + ε], we again obtain
that f(I) ⊂ Int(I). Furthermore, Theorem 4.1 implies that [m,M ] ⊂ Int(I). When f

is decreasing, this relation follows from the chain of inclusions [m,M ] ⊂ f([m,M ]) ⊂
f3(R+) = f2(I) ⊂ Int(I). In the unimodal case, if we take a sufficiently large integer
N , we get analogously [m,M ] ⊂ f([m,M ]) ⊂ fN ([m,M ]) ⊂ f(I) ⊂ Int(I). As a
consequence, if we analyze the asymptotical behavior of some fixed solution x(t) to (4.1),
we do not need to know the values f(t, φ) for those φ whose graphs do not lie entirely
within the rectangle [−h, 0] × I. In particular, we can replace the original nonlinearity
f(t, φ) with f1(t, φ) = f(t, Tφ), where the squeezing operator T : C+ → C+ acts as
follows:

(Tφ)(s) =




φ(s) if φ(s) ∈ I,

max I if φ(s) > max I,
min I if φ(s) < min I.

Obviously, f1(t, φ) satisfies (2.1) and f∗
1 (x) = f∗(x) for all x ∈ I. Also, f∗

1 is strictly
positive and continuous on the whole R and it is a constant function outside of I. An
elementary analysis shows that f∗

1 and f∗ satisfy the same hypothesis from the list of
(D1) and (D2).

Summing up all the above, we come to the following conclusion: in order to establish
the global stability of Eq. (4.1), it suffices to prove the convergence to x∗ of every solution
x(t) of

x′(t) = −x(t) + f1(t, xt), x ∈ R. (4.2)

Due to Lemmas 4.2 and 4.3, we can suppose additionally that x(t) oscillates about x∗

and satisfies the conclusions of Lemma 4.3. Notice that x(t) ≡ x∗ is the unique steady
state solution of (4.2).

We can simplify the situation even more if we translate the origin to the equilibrium
point x∗. It can be done by the simple shift x = y + x∗ in the case (D1) and by the
transformation x = x∗ − y if f∗

1 satisfies (D2). As a result, (4.2) is transformed into the
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equation

x′(t) = −x(t) + g(t, xt), x ∈ R, (4.3)

whose unique equilibrium is the trivial solution x(t) ≡ 0. Now, we are interested in
proving the convergence to zero of every solution x(t) of (4.3) which oscillates about 0
and satisfies the conclusions of Lemma 4.3. Since g(t, φ) = f1(t, φ + x∗) − x∗ in the
case (D1) and g(t, φ) = −f1(t,−φ + x∗) + x∗ in the case (D2), it is easy to check that
the function g∗(y) = g(t, y), y ∈ R, is nonincreasing or unimodal (notice that for (D2)
the critical point in case of unimodality is a local minimum instead of a maximum).
Furthermore, g∗ satisfies (2.1) and the following modification of (D1):

(DD) (g∗(y) − r(y))y > 0 for all y > −1, y �= 0,
where r(y) = ay/(1 + y). It should be noticed that, in general, the negative feedback
condition on g∗ is not assumed.

Let y(t) be a solution of (4.3) such that

lim inf
t→∞ y(t) = m < 0 < M = lim sup

t→∞
y(t).

Then there exist two sequences of intervals (aj , bj) and (a′j , b
′
j) such that y(aj) = y(bj) =

y(a′j) = y(b′j) = 0, y(t) > 0 for t ∈ (aj , bj) and y(t) < 0 for t ∈ (a′j , b
′
j). Moreover, for

y(t), the conclusions of Lemma 4.3 are fulfilled: if tj is the leftmost point from (aj , bj)
satisfying y(tj) = max(aj ,bj) y(t), then tj −aj ≤ h. Analogously, if sj is the leftmost point
from (a′j , b

′
j) satisfying y(sj) = min(a′

j ,b′j) y(t), then sj −a′j ≤ h. We can also assume that
Mj = y(tj) → M and mj = y(sj) → m as j → ∞.

The following consequence of Lemma 4.3 will play a key role in the proof of Theorem
2.1.

Corollary 4.4. Let m̃(u) = min
θ∈[−h,0]

y(u + θ), M̃(u) = max
θ∈[−h,0]

y(u + θ). Then for

sufficiently large j:

g(u, yu) > r(M̃(u)), u ∈ (a′j , sj ], (4.4)

and, if m̃(u) > −1,

g(u, yu) < r(m̃(u)), u ∈ (aj , tj ]. (4.5)

Proof. We prove (4.4); the proof of (4.5) is similar.
Since g(u, yu) ∈ g∗([m̃(u), M̃(u)]), we get

g(u, yu) ≥ min
s∈[m̃(u),M̃(u)]

g∗(s).

Hence the proof of (4.4) is immediate for g∗ decreasing on [m̃(u), M̃(u)].
If g∗ is unimodal with a local minimum at some point c′ ∈ [m̃(u), M̃(u)], then

g(u, yu) ≥ g∗(c′) > r(c′) ≥ r(M̃(u). Notice that, in view of our reduction, the point
c′ of local minimum is necessarily positive.

Next, for g∗ having a local maximum at some point c (it must be negative) we will
prove that, for sufficiently large j,

g∗(m̃(u)) ≥ mj ≥ g∗(M̃(sj)) ≥ g∗(M̃(u)), u ∈ (a′j , sj ], (4.6)
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From (4.6) we easily deduce (4.4):

g(u, yu) ∈ [min{g∗(m̃(u)), g∗(M̃(u))}, g∗(c)] ⊂ [r(M̃ (u)), g∗(c)].

Since, by definition, y(t) < 0 for t ∈ (a′j , sj ], the following inequalities are fulfilled for
u ∈ [a′j , sj ] :

M̃(u) ≥ M̃(sj) ≥ 0, g∗(M̃(sj)) ≥ g∗(M̃(u)).

To prove the first inequality in (4.6), we observe that, for u ∈ [a′j , sj ], either m̃(u) =
y(u) ≥ mj , or m̃(u) = y(u−h) < mj , or m̃(u) = y(sk) for some k ≤ j. In the first case, we
have g∗(m̃(u)) ≥ m̃(u) ≥ mj which proves the leftmost inequality of (4.6). In the other
cases, c ≥ m̃(u) ≥ y(sk) = mk for some k ≤ j. Since m = limj→∞mj = lim inft→∞ y(t),
there exist ε > 0, N0 ∈ N such that

mr < min g∗([mk − ε,mk]) , for all r, k ≥ N0. (4.7)

In this way, g∗(m̃(u)) ≥ g∗(mk) > mj when j is sufficiently large.
It remains to prove the inequality

mj ≥ g∗(M̃(sj)). (4.8)

Since

mj = g(sj , ysj ) ∈ g∗([m̃(sj), M̃(sj)]) = [min{g∗(m̃(sj)), g∗(M̃(sj))}, g∗(c)],
inequality (4.8) holds if g∗(M̃(sj)) ≤ g∗(m̃(sj)). Assume the contrary; then, mj =
g(sj , ysj ) ∈ [g∗(m̃(sj)), g∗(c)] ⊂ [g∗(mk), g∗(c)], for some k ≤ j. Hence mj ≥ g∗(mk), a
contradiction to (4.7). �

4.2. Domains of parameters. Based on the previous subsection, we will use the rational
function r(x) = ax/(1 + x) and we will prove Theorem 2.1 for equation

x′(t) = −x(t) + f(t, xt), (4.9)

where f∗(x) = f(t, x), x ∈ R, satisfies the inequality

(f∗(x) − r(x))x > 0 for x > −1, x �= 0. (4.10)

Inequality (1.3) takes the form

θ = e−h > −a ln
a2 − a

a2 + 1
. (4.11)

Following [13], in order to prove Theorem 1.1, we decompose the domain of parameters
(a, θ) ∈ (−∞, 0) × (0, 1) satisfying (4.11) into two complementary subsets:

B =
{

(a, θ) :
a2 + a

a2 + 1
< θ < 1

}
;

D =
{

(a, θ) : −a ln
a2 − a

a2 + 1
< θ ≤ a2 + a

a2 + 1

}
.

Notice that B contains all points (a, θ) ∈ [−1, 0) × (0, 1). We will also split the domain
D into two subsets D∗ and S defined by

S =
{

(a, θ) ∈ D : θ ∈ [0.8, 1),
95a+ 108
5(19a− 5)

≤ θ ≤ a2 + a

a2 + 1

}
, D∗ = D \ S.
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4.3. Global stability for (a, θ) ∈ B. We again use the notation

M = lim sup
t→∞

x(t), m = lim inf
t→∞x(t),

and, taking into account Lemma 4.2, we only consider the case m < 0 < M. As before,
let {tj} and {sj} be two sequences of points of local maximum and local minimum such
that x(tj) = Mj →M and x(sj) = mj → m as j → ∞.

First, we prove the global attractivity of Eq. (4.9) if a(1 − θ) > −1.

Lemma 4.5. If a(1 − θ) > −1, then M = m = limt→∞ x(t) = 0.

Proof. For ε > 0 arbitrary, we have that x(s) ≤ M + ε and x(s) ≥ m − ε for s
sufficiently large. Next, by Lemma 4.3 there exists hj ∈ [0, h] such that x(sj − hj) = 0.
In view of Corollary 4.4, for s ∈ (sj − hj , sj],

f(s, xs) > r( max
θ∈[−h,0]

x(s + θ)) ≥ r(M + ε).

Therefore, by the variation of constants formula, we have

mj = x(sj) =
∫ sj

sj−hj

e−(sj−s)f(s, xs)ds > (1 − e−h)r(M + ε).

As a limit form of this inequality, we get

m ≥ (1 − θ)r(M). (4.12)

Hence, m > −1. Analogously, taking into account (4.5),

Mj = x(tj) =
∫ tj

tj−h′
j

e−(tj−s)f(s, xs)ds

< (1 − e−h)r( min
θ∈[−h,0]

x(s+ θ)) ≤ (1 − θ)r(m − ε),

where the number h′j ∈ [0, h] is such that x(tj − h′j) = 0. Therefore,

M ≤ (1 − θ)r(m). (4.13)

By (4.12) and (4.13), we have

M ≤ (1 − θ)r((1 − θ)r(M)),

which is equivalent to

M(1 + a(1 − θ))(1 − a(1 − θ) +M)
1 +M(1 + a(1 − θ))

≤ 0.

Since a(1 − θ) > −1, the last inequality is possible only if M = 0. �
Now, in Lemma 4.7 given below, we prove the global attractivity of Eq. (4.9) for all

parameters (a, θ) ∈ B. In the proof of Lemma 4.7 we use the following statement:

Lemma 4.6 ([13, Proposition 3.3]). Let q : [α, β] → [α, β] be a C3 map with a unique fixed
point γ and with at most one critical point x∗ (maximum). If γ is locally asymptotically
stable and the Schwarzian derivative (Sq)(x) < 0 for all x �= x∗, then γ is the global
attractor of q.

Lemma 4.7. If (a, θ) ∈ B, then M = m = limt→∞ x(t) = 0.
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Proof. Due to Lemma 4.5, we can suppose that a(1−θ) ≤ −1. There exist sequences of
positive ε∗j → 0 and εj → 0 such that x(s) < M+ε∗j for all s ∈ [sj−h, sj] andmj < m+εj.

By Lemma 4.2, there exists hj ∈ [0, h] such that x(sj − hj) = maxθ∈[−h,0] x(sj + θ) ≥ 0.
From Corollary 4.4, we get

mj = x(sj) = f(sj , xsj ) ≥ r(x(sj − hj)). (4.14)

Next, by (4.12), m ≥ (1 − θ)r(M) > a. Hence mj > a for j sufficiently large and,
therefore, r−1(mj) is well defined, where r−1(x) = x/(a − x) is the inverse function of
r(x). From (4.14) we obtain the inequality x(sj − hj) ≥ r−1(mj). Next, by the variation
of constants formula and (4.4), we have

mj = x(sj) = e−hjx(sj − hj) +
∫ sj

sj−hj

e−(sj−s)f(s, xs)ds

≥ e−hjr−1(mj) + r(M + ε∗j)(1 − e−hj ) (4.15)

≥ e−hr−1(mj) + r(M + ε∗j)(1 − e−h).

We denote ψ(x) = x− θr−1(x); as a limit form of (4.15), we get

ψ(m) ≥ (1 − θ)r(M) ≥ a(1 − θ). (4.16)

This implies that

m ≥ a(1 − θ)(a−m)
a−m− θ

. (4.17)

Next, since (a, θ) ∈ B, we have that a2(1− θ) + a− θ < 0 ≤ m(a(1− θ) + 1), from which

a(1 − θ)(a −m)
a−m− θ

> −1. (4.18)

From (4.17) and (4.18) it follows that m > −1, and hence we can use inequality (4.10)
for x(t) with sufficiently large t.

Analogously, by Lemma 4.2, there exists h′j ∈ [0, h] such that

x(tj − h′j) = min
θ∈[−h,0]

x(sj + θ) ≤ 0.

From (4.5) and (4.10) we get x(tj −h′j) ≤ r−1(Mj). By the variation of constants formula
and (4.5), we have, for some positive sequence ε∗j → 0,

Mj = x(tj) = e−h′
jx(tj − h′j) +

∫ tj

tj−h′
j

e−(tj−s)f(s, xs)ds

≤ e−h′
jr−1(Mj) + r(m − ε∗j)(1 − e−h′

j )

≤ e−hr−1(Mj) + r(m − ε∗j)(1 − e−h).

When j → ∞, we obtain

ψ(M) ≤ (1 − θ)r(m). (4.19)

Define χ(x) = ψ−1((1 − θ)r(x)). From (4.16) and (4.19) we conclude that M ≤ χ(m)
and m ≥ χ(M). Hence, [m,M ] ⊂ χ([m,M ]). On the other hand (see [13, Lemma
3.6]), χ : [α, β] → [α, β] is strictly decreasing and (Sχ)(x) < 0 for all x ∈ [α, β], where
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α = χ(+∞) = ψ−1((1 − θ)a) > −1 and β = χ(α). Since, by our assumptions, χ′(0) =
(1 − θ)a2/(a − θ) ∈ (−1, 0), an application of Lemma 4.6 shows that 0 attracts [α, β]
under χ. Since [m,M ] ⊆ χk([m,M ]) ⊆ χk([α, β]) for all integer k ≥ 1, it is clear that
m = M = 0. �

4.4. Global stability for (a, θ) ∈ D. In this subsection, we prove Theorem 2.1 for
(a, θ) ∈ D. For this, we will use two scalar auxiliary functions introduced in [13].

For (a, θ) ∈ D, the inequality a(θ − 1)/θ − 1 > 0 holds, and therefore the interval
I = (−1, a(θ− 1)/θ− 1) is nonempty. Furthermore, t1 = t1(z) = − ln(1 − z

r(z)) ∈ [−h, 0]
for every z ∈ I \ {0}. Consider now the map F : I → R defined in the following way:

F (z) =




0 if z = 0,
min

t∈[0,h]
y(t, z) if z ∈ I and z > 0,

max
t∈[0,h]

y(t, z) if z ∈ (−1, 0),

where y(t, z) is the solution of the initial value problem y(s, z) = z, s ∈ [t1(z) −
h, t1(z)], z ∈ I for

y′(t) = −y(t) + r(y(t− h)). (4.20)

The importance of function F is due to the following result:

Lemma 4.8. Let x(t) be a solution of (4.9) and set

M = lim sup
t→∞

x(t), m = lim inf
t→∞ x(t).

If m,M ∈ I, then m ≥ F (M) and M ≤ F (m).

Proof. Consider two sequences of extremal values mj = x(sj) → m, Mj = x(tj) →M

such that sj → +∞, tj → +∞ as j → ∞. Let ε > 0 be such that (m − ε,M + ε) ⊂ I.
Then mj ≥ m−ε and Mj ≤M+ε for sufficiently large j. We will prove that m ≥ F (M);
the case M ≤ F (m) can be proved analogously by using inequality (4.5).

By Lemma 4.2, we can find τj ∈ [sj − h, sj) such that x(τj) = 0 and x(s) < 0 for
s ∈ (τj , sj ]. Next, since M + ε ∈ I, vj = τj + t1(M + ε) ≥ τj − h . We consider the
solution y(t) of Eq. (4.20) with initial condition y(s) = M + ε, s ∈ [vj − h, vj ], which
satisfies y(τj) = 0. Obviously, M + ε = y(t) ≥ x(t) for all t ∈ [vj − h, vj ]. Furthermore,
for all s ∈ [vj , τj ], we have maxθ∈[−h,0] x(s + θ) ≤ M + ε so that, in view of (2.1) and
(4.10), f(s, xs) ≥ r(M + ε), and

x(t) =
∫ t

τj

e−(t−s)f(s, xs)ds ≤
∫ t

τj

e−(t−s)r(M + ε)ds = y(t), t ∈ [vj , τj ],

proving that y(t) ≥ x(t) for all t ∈ [τj − h, τj ].
Now, for t ∈ [τj , sj], we have

x(t) =
∫ t

τj

e−(t−s)f(s, xs)ds ≥
∫ t

τj

e−(t−s)r(y(s− h))ds = y(t), (4.21)

since, by (4.4) and (4.10),

f(s, xs) ≥ r( max
θ∈[−h,0]

x(s+ θ)) ≥ r( max
θ∈[−h,0]

y(s+ θ)) = r(y(s− h)).
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Hence, by (4.21) and the definition of F , we have

mj = x(sj) ≥ y(sj) ≥ F (M + ε). (4.22)

As a limit form of (4.22), we get m ≥ F (M). �
When (a, θ) ∈ D∗, we need other auxiliary function; for z ≥ 0, we define F1(z)

= mint∈[0,h] y(t, z), where y(t, z) satisfies (4.20) and has the initial value y(s, z)
= (1 − e−s)r(z), s ∈ [−h, 0].

Lemma 4.9. Suppose that (a, θ) ∈ D. Then m ≥ F1(M).

Proof. Consider a solution x(t) of (4.9) and take ε, sj, tj ,mj ,Mj, τj as in the first two
paragraphs of Lemma 4.8.

For t ∈ [τj − h, τj ], we have, by (2.1) and (4.10),

x(t) =
∫ t

τj

e−(t−u)f(u, xu)du ≤
∫ t

τj

e−(t−u)r(M + ε)du = y(t− τj ,M + ε).

Now, using the last inequality, (4.4) and (4.10), we get

f(u, xu) ≥ r( max
θ∈[−h,0]

x(u + θ)) ≥ r(y(u − h− τj ,M + ε)), u ∈ [τj , sj ].

This implies that

x(sj) =
∫ sj

τj

e−(sj−u)f(u, xu)du ≥
∫ sj

τj

e−(sj−u)r(y(u − h− τj ,M + ε))du

= y(sj − τj ,M + ε) ≥ F1(M + ε).

Since ε > 0 and x(sj) = mj → m are arbitrary, we conclude that m ≥ F1(M). �
To finish the proof of Theorem 2.1, we need the following technical lemmas from [13]:

Lemma 4.10. Assume that (a, θ) ∈ D. Then F (z) > R(r(z)) if z ∈ (0, a(θ−1)/θ−1),
and F (z) < R(r(z)) if z ∈ ((aβ − 1)−1, 0), where

R(r) = R(r, a, θ) =
α(a, θ)r

1 − β(a, θ)r
, (4.23)

α(a, θ) = (1 − a) exp(θ/a) + a > 0,

β(a, θ) = −a
2 + exp(θ/a)(1 − 2a+ 2θ(a− 1)) − (1 − a)2 exp(θ/a)

a2 + (a− a2) exp(θ/a)
> 0.

Moreover, R(a) > −1.

Lemma 4.11. If (a, θ) ∈ D∗ and z ≥ a(θ − 1)/θ − 1, then F1(z) > R(r(z)).

Lemma 4.12. If (a, θ) ∈ S and z > 0, then

F1(z) >
1 + ln θ − θ

2 + ln θ − θ

ar(z)
1 + r(z)1+ln θ−θ

1−θ

def
= R2(r(z)). (4.24)

Furthermore, R2(a) > −1 and r(R2(a)) < 1/β. Next, if (a, θ) ∈ S, then

γ(a, θ) = a2α(a, θ)
1 − θ + ln θ
2 − θ + ln θ

< 1.
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We are now in a position to prove Theorem 2.1 for (a, θ) ∈ D. The arguments are
taken from the corresponding proof of Theorem 1.1 in [13]. We include the details for
the sake of completeness.

Lemma 4.13. Let x be a solution of Eq. (4.9) and set M = lim supt→∞ x(t), m =
lim inft→∞ x(t). If (a, θ) ∈ D, then m = M = limt→∞ x(t) = 0.

Proof. We will reach a contradiction if we assume that m < 0 < M (note that the
cases M ≤ 0 and m ≥ 0 were already considered in Lemma 4.2).

First suppose that (a, θ) ∈ S. By Lemmas 4.9 and 4.12, we obtain that

m ≥ F1(M) > R2(r(M)) > −1. (4.25)

Now take an arbitrary z ≥ 0. Since r(z) ∈ (a, 0] and R2(z) is increasing on (a, 0], we get

r(R2(r(z))) < 1/β from Lemma 4.12. Therefore, the rational function λ
def
= R◦r◦R2◦r :

[0,∞) → [0,∞) is well defined. From Lemmas 4.8 and 4.10, we obtain

M < R(r(R2(r(M)))) = λ(M).

On the other hand, due to the inequality λ′(0) = γ(a, θ) < 1 (see Lemma 4.12), we obtain
that λ(z) < z for all z > 0, a contradiction.

Now let (a, θ) ∈ D∗; notice that aα(a, θ) ∈ (−1, 0) in view of (4.11). We define the
rational function

R : ((aβ − 1)−1,+∞) → (−aα(aβ − 1)−1,+∞) ⊂ ((aβ − 1)−1,+∞)

as R = R ◦ r. By (4.23), we have R′(0) = aα(a, θ) ∈ (−1, 0). Next,

m > R(M) > R(a) > −1. (4.26)

Indeed, if M ≤ a(θ − 1)/θ − 1, then Lemmas 4.8 and 4.10 imply that m ≥ F (M) >
R(r(M)) = R(M). Now if M ≥ a(θ − 1)/θ − 1, then Lemmas 4.9 and 4.11 give that
m ≥ F1(M) > R(r(M)) = R(M). The last inequality in (4.26) follows from Lemma 4.10.

Finally, applying Lemmas 4.8 and 4.10 and (4.26), and using the inequality R◦R(x) <
x, x > 0, which holds since (R ◦R)′(0) = (R′(0))2 < 1, we obtain

M ≤ F (m) < R(r(m)) < R(r(R(M))) = R(R(M)) < M,

a contradiction. �
Remark 4.14. Theorem 2.1 follows from Lemmas 4.7 and 4.13 if b > 0 in (D1) and

(D2).
For b = 0, the same arguments work taking r(x) = ax. Since r is linear, all involved

functions are much simpler; for example, in Lemma 4.7, χ(x) = a2(1−θ)x/(a−θ) is linear.
In the same way, functions F and F1 introduced in Subsection 4.4 are now linear. Indeed,
we have F (x) = [a2 + a(1− a) exp(a−1e−h)]x and F1(x) = a2[1− exp(e−h +h− 1)]x. We
can proceed analogously to the proof of Lemma 4.13, taking into account that F ′(0) > −1
for (a, θ) ∈ D and F ′

1(0) > −1 for (a, θ) ∈ S. Obviously, functions R and R2 are not
necessary in this case.
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