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Abstract

We study particle current in a recently proposed model for coherent quantum transport. In this
model, a system connected to mesoscopic Fermi reservoirs (meso-reservoir) is driven out of
equilibrium by the action of super-reservoirs thermalized to prescribed temperatures and
chemical potentials by a simple dissipative mechanism described by the Lindblad equation.
We compare exact (numerical) results with theoretical expectations based on the Landauer

formula.

1. Introduction

Particle current through a coherent mesoscopic conductor
connected at its left- and right-hand sides to reservoirs is
usually described in the non-interacting case by a formula,
due to Landauer, based on the following physical picture:
electrons in the left (right) reservoir, which are Fermi
distributed with chemical potential p; (pr) and inverse
temperature B;, (Br), can come close to the conductor and feed
a scattering state that can transmit it to the right (left) reservoir.
All possible dissipative processes such as thermalization
occur in the reservoirs, while the system formed by the
conductor and the leads is assumed to be coherent. The
probability of being transmitted is a property of the conductor
connected to the leads which is treated as a scattering system.
In this picture, the probability that an outgoing electron comes
back to the conductor before being thermalized is neglected,
the contact is said to be reflectionless. This description of
the non-equilibrium steady state (NESS) current through a
finite system has been rigorously proved in some particular
limiting situations [1], such as infinite reservoirs, but several
difficulties prevail the understanding of non-equilibrium states

in general and the description of current in more general
situations, for instance in the case of interacting particles.
Two frameworks are usually considered for studing these
open quantum systems: one deals with the properties of the
state of the total (infinite) system [4, 5] where reservoirs
are explicitly considered as part of the system. The other is
based on the master equation of the reduced density operator,
obtained by tracing out the reservoirs’ degrees of freedom, and
is better suited for being applied to different systems and for
computing explicitly some averaged NESS properties, at the
price of several approximations such as, e.g., Born—-Markov
(see, e.g., [6]).

In this paper, we explore particle current in a model where
we mimic the leads that connect the reservoirs to the system,
as a finite non-interacting system with a finite number of levels
(which we call meso-reservoir). The reservoirs (called here
super-reservoirs) are modeled by local Lindblad operators
representing the effect that Markovian macroscopic reservoirs
have over the meso-reservoirs. In section 2, we introduce the
model and briefly review the method we used to solve it. In
section 3, we analyze the particle current operator and indicate
the quantities that should be computed for a full description



of the current. In section 3.1, we briefly present the Landauer
formula that is expected to apply in some appropriate limits
to our model and in section 3.2, we analyze the numerical
results we obtained with our model and compare them with
the current predicted by the Landauer formula, validating
the applicability of our model but also going beyond by
computing the full probability distribution function of the
current. In section 4, we present some conclusions and discuss
interesting perspectives on our study.

2. Description of the model

We consider a one-dimensional quantum chain of spinless
fermions coupled at its boundaries to meso-reservoirs
composed of a finite number of spinless fermions with wave
number k (k € {l,..., K}). The Hamiltonian of the total
system can be written as H = Hs+ Hp, + HR +V, where
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is the Hamiltonian of the chain with {z;} the nearest-neighbor
hopping, U is the onsite potential and c,-,cj are the
annihilation/creation operator for the spinless fermions
on the site j of the chain (conductor). The chain interacts

through the term
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with the meso-reservoirs H, = Zle eka,jaaka. Here
o = {L., R} denotes the left and right meso-reservoirs. They
share the same spectrum with a constant density of states 6
in the band [E, Emax] described by &, =6y (k — ko) and
Ak s a,j’a are annihilation/creation operators of the left and
right meso-reservoirs. The system is coupled to the leads only
at the extreme sites of the chain with coupling strength vy
that we choose k-independent* v = v,.

We assume that the density matrix of the
chain—meso-reservoirs system evolves according to the
many-body Lindblad equation
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where m € {1, 2} and Lk,a,l = «/)/(1 — Fa(ek))aka, Lk,a,Z =
V¥ Fu(er)a], are operators representing the coupling of the
meso-reservoirs to the super-reservoirs, F, () = (efe®=+e) 4
1)~! are Fermi distributions, with inverse temperatures B,
and chemical potentials w4, and [-, -] and {, -} denote
the commutator and anti-commutator, respectively. The
parameter y determines the strength of the coupling to the
super-reservoirs, and in order to keep the model as simple
as possible we take it constant. The form of the Lindblad
dissipators is such that in the absence of coupling to the chain

4 In general, we can include couplings to deeper sites of the chain and also
k-dependent super-reservoir to meso-reservoir couplings yj.

(i.e. vy = 0), when the meso-reservoir is only coupled to the
super-reservoir, the former is in an equilibrium state described
by Fermi distribution [7, 8].

To analyze our model we use the formalism developed
in [9]. There it is shown that the spectrum of the evolution
superoperator is given in terms of the eigenvalues s; (the
so-called rapidities) of a matrix X, which in our case is given
by
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where 0;,; and E; denote i x j zero matrix and j x
J unit matrix, o, is the Pauli matrix and H is a
matrix that defines the quadratic form of the Hamiltonian,
as H=d Hd in terms of fermionic operators d' =
{CllL, e, g1, C1y e CNS AIR o v - ClKR}.

The NESS average of a quadratic observable
like dj-di is given [9] in terms of the solution Z of
the Lyapunov equation X'Z+ZX=M; with M;=
—%diag{mlL,...,mKL,leN, mlR,...,mKR}(g)ay and
My = y{2F,(er) — 1} as follows: consider the change of
variables wy;_y =d;+d}. wy; =i(d; —d]), the NESS
average of the quadratic observable w;wy is determined by
the matrix Z through the relation {wjwy)=238;; —HZ;;.
Wick’s theorem can be used to obtain expectations of
higher-order observables and, in fact, the full probability
distribution for these expectation values in some cases.

3. Particle current

The operator representing the current flowing from the kth
level of the meso-reservoir to the chain is given by

jr =ivf@icr —clap), 4)

while the current through the site / of the chain is
Ji= ill(é;am - 511151)- (5)

In the steady state, the average current is conserved in this
model [2, 3] and thus (J;) is independent of [. Moreover,
if we define the current from the left meso-reservoir as J =
K k. we have that (J;) = (J).

It is not difficult to note that the current satisfies
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with JP = 1. Now we are in a position to compute the full
non-equilibrium current distribution in terms of (J;) and (le).
For this, we consider the generating function
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which, using equation (6), gives
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The probability distribution p(J;) is the inverse Fourier
transform of (¢}, thus we obtain
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which is normalized.
We note that normality and positivity of probability

U ()
2—2 < 2—22 <1-— z_zll An
equivalent result holds for the current from the k-level of the

meso-reservoir to the system:
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These expressions are expected because *f; and O are the
possible eigenvalues of the operator J; (similarly for j, 5y, but
they show that (J;) and (le) contain all the information about
the current. We will study these quantities numerically; thus
we need to solve the above-mentioned Lyapunov equation and
note that in the w; variables (we use the primed variables to

indicate indices as they appear in variable d, i.e. if j is a site
in the chain, then j' = K + j)

lead to an interesting inequality:

(10)
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Wick’s theorem implies that
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To simplify the discussion, in what follows we reduce the
number of parameters by assuming constant hopping and
onsite energy #; =t and U; = U. Moreover, we fix y such
that y > v,. In that case, we showed [2] that the transport
quantities become roughly independent of y. In fact, in that
case, the coupling between super-reservoir and meso-reservoir
is stronger than that of the system (chain)-meso-reservoir.
Then the meso-reservoirs are driven to a near-equilibrium
state weakly dependent on y. We now explore the behavior
of the current as a function of 6y, v,, ¢ and contrast the
observation with expectations based on the Landauer formula.
A qualitative explanation of the current behavior is also
provided.

3.1. The Landauer formula

The Landauer formula [10] provides an almost explicit
expression for the NESS average current as a function of the

parameters of the system. In units where e=1and A =1, it
reads

(J>=Z—/dw(fL(w)—fR(w))T(w), (15)
T

where T(w)=tr[I'L(@)G*(@)'r(0)G™ (w)] is the trans-
mission probability written here in terms of
1

+ _
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the retarded and the advanced Green function of the system
connected to the leads and of —I', /2 the imaginary part of the
self-energy 2.

The self-energies £ have only terms at the boundaries
of the chains [10], i.e. (Z5)um = 0 8,mbn.0, Where b = 1 if
a=Landb=Nife =R and
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Recalling that both leads have the same spectrum, we assume
a constant density of lead states 1/6y in the range [Emin, Emaxl;
thus 'y (@) =27 vi /6y is independent of w inside the interval
and zero otherwise. For the real part of the self-energy, we
have the principal value integral
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The Landauer formula is expected to hold when the leads
have a dense and wide spectrum. Therefore, we restrict
ourselves to the case when E., < —f and ¢ << Eny, the
so-called wide-band limit, where A, (w) can be neglected.
The transmission coefficient is then T'(w) = I't 'r|GTy ()|?
and we need to compute the wide-band limit retarded Green
function

-1
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Note that in the previous expression we have set U = 0 which
sets the energy axis origin and # = 1 which sets the energy
scale. Thanks to a recursion relation, this matrix can be
inverted [11] and one explicitly finds the relevant element of
the Green function
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Figure 1. Schematic plot of the left and right Fermi distributions
and the levels of the middle chain with N =7 sites.

where [x] is the largest integer smaller than x. In the
next subsection, we compute numerically the integral in
equation (15) and make a comparison with the results obtained
in our model.

3.2. Numerical results

In figure 1, we depict in blue and red two Fermi distributions
with K = 50 levels and parameters pp, =4, f =3 and ur =
—4, Br = 3, respectively. In the middle (brown) the spectrum
of a chain with seven sites and ¢t = 3. The width of the chain
energy band is 4¢ with seven levels inside and is centered
around U = 0. From this picture, we expect that decreasing
the width Ap of the populated energy interval [ur, pr] is
equivalent to increasing the width of the conduction band ¢.
This is confirmed in the top panel of figure 2 where we
show that the current is roughly independent of ¢ for 2¢ < pur,
and decreases with ¢ for 2f > pp (black dots), when the
conduction band extends beyond the region populated by
electrons in the reservoirs. The red dots are obtained for a
larger A for which the conduction band is always inside the
populated region. In the rest of our numerical examples we set
U =0and t = 1. Analogously, in the bottom panel of figure 2
we show that for fixed ¢ the current grows linearly with Ap
and saturates at Ay > 4f.

What is perhaps more interesting is the scaling of the
current with I' =T'LI'r/(I'y +T'r). In figure 3 we plot the
current (J) as a function of the coupling to the right lead,
showing that the main trend of the current is (J) =TI". In the
inset we show that there are deviations to this law.

We have analyzed this behavior using the Landauer
formula, which allows a deeper analytical exploration.
Since temperature is very low we take it exactly zero
in both reservoirs; thus the Landauer formula is (J)=
I'I'r/2=@ f :L Fir[GH(w)G (@)]. Changing the representation
of the Green matrix from position basis to the energy basis
(of the isolated chain), one can see that it is possible to
approximate (isolated resonances approximation [12]) the
integrand as a superposition of N Lorentzians each located at
2t cos[jm /(N +1)] and with a width (I', + ') sinz[jrr/(N+
DI/(N+1), j=1,..., N along the energy axis. If 1 < pp,
the integral can be extended from —oo to oo because the
Green function decays exponentially outside the energy band
of the chain; thus the result (J) = I is obtained.
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Figure 2. The current versus hopping ¢ for y =0.1, U =0,
BL=PBr=5,v.=vg =0.05, K =200 and N = 10. (a): (black)
pur =4, pur = —4 and (red) pp, = 10, pug = —10. (b): the same
parameters except thatt =1, vp = vg =0.03.
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Figure 3. Black points are obtained by our model with

y=01, =B =5 pur=—4 p.=4N=10, U =0, r =1,
vy = 0.03, K =200 and Enin = —20, Epee = 20. The red dots are
obtained by a numerical computation of the Landauer formula with
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shows (J)/T".

Now we can also explore fluctuations and compute (J2).
In figure 4(a), we computed for the same parameters as in
figure 2(a) the quantity 2(J?)/t> — 1. We see that as soon as
the current decreases because some modes of the chain go out
of the populated energy region, the fluctuation increases. As a
function of other parameters such as v,, or N (data not shown),
the average (J?) does not undergo significant changes (see
figure 4(b)).
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Figure 4. (a) shows 2(J?)/t> — 1 as function of ¢ for uz = —4,
pr = 4 (black dots) and pg = —10, pp = 10 (red dots) as in

figure 2(a). (b) shows 2(J?)/¢> — 1 for t = 3 as a function of

v, = vr. In both figures, the other parameters are y = 0.1, fr, =
Br=5,N=10,U =0, K =200 and E, = —20, E,x = 20 with
vp =0.03in (a)and f =3, ug = —4, pup =4 1in (b).

4. Conclusions

We showed that in the wide-band limit, the numerical results
found in our model indeed correspond to what is expected on
the basis of the Landauer formula, a formula that is usually
interpreted as if the reservoirs were always in an equilibrium
(grand canonical) distribution, not perturbed by the presence
of the system. The Landauer formula emphasizes the role
of the Fermi distributions of the reservoirs and provides
an accurate description of the current if the assumption of
reflectionless contacts is justified. In this respect, a very
interesting relation was found in [2] and proved in [3] between
the current and the occupation of the meso-reservoir: (J) =
S 29[(nk) — F(ep)]. This is an exact relation that in the
appropriate limit should converge to the Landauer formula.
Note that it implies that the occupation difference with

respect to the Fermi distribution is O(I'/6yy). It is a very
interesting relation because it links the current, which is the
fingerprint of the non-equilibrium state, to the difference in
distribution from the equilibrium case. Something similar has
been found in classical systems where the fractal nature of
the non-equilibrium state is determined by the current [13].
Moreover, in [2] we analyzed how the Onsager reciprocity
relation is broken in the system, and found that |L,, /L 5, — 1|
grows with y, implying that despite the almost y -independent
value of the current, the dissipative mechanisms in the
super-reservoir play an important role. A detailed study of
these effects which are beyond the Landauer picture, can be
carried out in the context of the model presented here and
deserves further investigation.
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