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Hilbert symbols, class groups and quaternion
algebras

par TED CHINBURG* et EDUARDO FRIEDMAN**

To Jacques Martinet

RÉSUMÉ. Soit B une algèbre de quaternions définie sur un corps
de nombres k. Nous associons à tout couple de symboles de
Hilbert {a, b} et {c,d} pour B un invariant 03C1 = 03C1R([D(a, b)],
[D(c, d)]) dans un quotient du groupe des classes au sens restreint
de Cet invariant a son origine dans l’étude des sous-groupes
finis d’un groupe kleinien arithmétique maximal. Il mesure la dis-
tance entre les ordres D(a, b) et D(c, b) dans B associés à {a, b} et
{c, d}. Si a = c, nous calculons 03C1R([D(a, b)], [D(c, d)]) en termes
de l’arithmétique du corps k (~03B1 ) . Le problème d’etendre ce calcul
au cas général conduit à l’étude d’un graphe fini lié aux différents
symboles de Hilbert pour B. Nous considérons en détail un exem-
ple issu de la détermination de la plus petite variété hyperbolique
arithmétique de dimension trois.

ABSTRACT. Let B be a quaternion algebra over a number field k.
To a pair of Hilbert symbols {a, b} and {c, d} for B we associate
an invariant 03C1 = 03C1R([D(a, b)], [D(c, d)]) in a quotient of the narrow
ideal class group of k. This invariant arises from the study of finite
subgroups of maximal arithmetic Kleinian groups. It measures
the distance between orders D(a, b) and D(c, d) in B associated to
{a, b} and {c,d}. If a = c, we compute 03C1R([D(a, b)], [D(c, d)]) by
means of arithmetic in the field k(~03B1). The problem of extending
this algorithm to the general case leads to studying a finite graph
associated to different Hilbert symbols for B. An example arising
from the determination of the smallest arithmetic hyperbolic 3-
manifold is discussed.

Manuscrit reçu le 28 f6vrier 2000.
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1. Introduction

Two non-zero elements a and b of a number field k determine a quater-
nion algebra B = B(a, b) with center k, namely the 4-dimensional k-algebra
with k-basis 1, and xy with the multiplicative relations

Since there are many other pairs c and d in k determining the same algebra
B = B(a, b) , it is natural to ask whether there is any interesting structure
on the set of pairs determining isomorphic quaternion algebras.

Motivated by a problem in arithmetic hyperbolic 3-orbifolds, we consider
the B*-conjugacy class of an order D = D(a, b) closely related to the ring

y] c B.
To define D, we replace by a maximal order over a Dedekind

domain 0:-, where OR is obtained from C7~ by inverting a finite set R of
primes ideals of Ok . Namely,

where Ramf(B) is the set of prime ideals of Ok at which B ramifies, the
dyadic primes are all those above the rational prime 2, and Odd(a, b) con-
sists of the prime ideals p at which or ordp(b) is odd, the valuation
ordp being normalized so that its value group is Z. Let Op and kp be the
p-completions of C~~ and k, respectively. For p 0 R, ordp(a) and ordp(b)
are even integers, so we let

where cp and dp in kp are such that = ordp ( nr(~p)) = 0, where
nr is the reduced norm. We can choose xp = x and ~p = y for all but finitely
many p. Note that the subsets Opxp and Op§p of Bp := B 0k kp do not
depend on the choice of cp or dp. We define the O:-order D = D(a, b) C B
by requiring that its completions Dp = D ~~k Op be given by

Then D is a maximal OR -order of B since the reduced discriminant [V,
p. 24] of ~p] is readily computed to be Op.
The Skolem-Noether theorem [R, p. 103] shows that x and y in (1.1)

are uniquely determined by a and b, up to conjugation by an element of
B*. Thus, starting from a and b in k* we have obtained a conjugacy class
[D(a, b)] of maximal Of-orders. Note that, again by the Skolem-Noether
theorem, the OR-isomorphism class of an order D C B coincides with its
B*-conjugacy class, usually known as its type.
We will assume from now on the

Eichler condition. B is unramified at some archimedean place of k.
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Then the set of conjugacy types of maximal O)-orders is classically known
to be in non-canonical bijection with the group TR(B) of fractional OR
ideals of k modulo the subgroup generated by squares of fractional ideals
and by principal ideals (a) = aoR such that a E k* and a &#x3E; 0 at all real

places that ramify in B [V, p. 89] [CF1, Lemma 3.2].
Although the map from a, b to the type [D(a, b)] seems quite interesting to

us, it is hard to describe because there is no canonical description of types.
In particular, it is not even clear what one would mean by computing
this map. However, given two types [D] and [,6] of maximal orders OR
orders of B, there is a canonical R-distance ) E TR(B), which is
the image in TR(B) of the order-ideal [R, p. 49] p(D,,6) of the finite OR
module Under the Eichler condition, it is known [V, p. 89] CF1,
Lemma 3.2 that two C7k -orders D and.6 are B*-conjugate (or, equivalently,
isomorphic) if and only if the R-distance between them is trivial. In fact, the
non-canonical bijection mentioned above is obtained by arbitrarily fixing
some type [9] and mapping [D] to [-EI)
We can now state our

Main Problem. Compute the map that takes two pairs (a, b) and (c, d),
assuming B(a, b) = B(c, d), to b)], [D (c, d)]) E TR(B), where R =
R(a, b) U R(c, d) (see (1.1) to (1 .4) for notation).

Here we regard the D(a, b) as an Of-order by inverting ideals
in R - R(a, b), and similarly for D(c, d). The Eichler condition is tacitly
assumed.

In this generality, we have no idea how to solve the main problem. We
present here a solution of sorts in the special case a = c.

Theorem. Suppose a, b and d are elements of a number field k such that
the quaternion algebras over k corresponding to (a, b) and (a, d) coincide.
Suppose also that this algebra B satisfies the Eichler condition and let R =

R(a, b) U R(a, d).
If a E k*2, then odor = q2 and [D(a, d)]) is the class in

TR(B) of the fractional OR -ideal q.
Assurne now that a ~ 1~*2, and let K = Then pR([D(a, b)],

D(a, d) is the class in TR(B) where the fractional 
ideal a is found by taking any z E K such that NormK/k(z) = bd, and
writing ZOR = al-ac. Here a is the non-trivial element of Gal(K/k) and
c is the extension to K of a fractional OR-ideal of k.
We shall see that the existence of z as above follows from the assumption
B(a, b) ~ B(a, d). By OR we mean the integral closure of O) in K.

In §2 we give a proof of the Theorem. In §3 we show how to apply the
Theorem to the computation of torsion subgroups of arithmetic Kleinian
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groups. We also give a numerical example in which k is a sextic field,
showing that one can sometimes avoid having to find z E K by computing
instead inside a narrow ideal class group of K.
We now turn to a curious finite graph whose definition is suggested by

the Theorem. Suppose B(a, b) ~ B(c, d), and define R = R(a, b) U R(c, d).
We would like to compute [D(c, d)]). The Theorem does not
apply directly if (a, b) and (c, d) have no common entry. However, note that

where the Dj (1 i N) are any N maximal C7k -orders of B (cf. [V, ch.
II, 32] or [CF1, eq.(3.1)]). Suppose there are pairs (a, e) and (e, d) such
that B(e, d) and that ordp(e) is even for p ~ R. Then
R(a, e) and R(e, d) are contained in R = R(a, b) U R(c, d). From (1.5) we
obtain 6)] (D(c, d)~~ as

where each term can be computed by the Theorem.
This suggests defining a graph as follows. Fix a quaternion algebra B

and a finite set R of primes of 1~ containing all finite primes ramified in
B and all primes above 2. Start with all pairs (a, b) E k* x 1~* such that
B E£ B(a, b) and R(a, b) c R, i. e., a and b are even at p if p 0 R. We
should make some further identifications since, as C7 -orders,

for any e and f in k*. The first isomorphism is clear from (1.1) on switching
x and y, the second on replacing y by xy and observing that (x~)2 = -ab
has even valuation for p 0 R. The last isomorphism in (1.6) follows from
(1.3), since xp = *p and ~p = Typ.

For the purpose of computing [D(a, b)~, we may therefore identify (a, b) -
(b, a) N (a, - ab) - (e 2a, f2b) for e and f in k*. We let f a, bl be the
equivalence class of (a, b) under the transitive closure of the above relation
N, with B and R fixed.

Define the vertices of the graph G = G(B, R) to be the set of classes
f a, bl. This is a finite, possibly empty, set since the extension 
which determines a modulo squares, is one of finitely many extensions K/k
unramified outside R with [K : l~~  2.
Two vertices b~ and {c, d} are connected by an edge whenever these

equivalence classes have, respectively, representatives of the form (a’, b’)
and (a’, d’). In other words, we connect two vertices whenever the Theorem
allows us to compute PR of the corresponding types.
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The motivation for defining G is that successive application of the The-
orem and of (1.5) allows us to compute the R-distance between any types
corresponding to the same connected component of the graph G.
When B is the matrix algebra M2(k), G is connected for rather trivial

reasons. Indeed, if B(a, b) B(c, d) ^--’ M2(k), then

is a path in G from to {c, dl. In some other simple cases G is also
connected, but we do not see why this should hold in general. As long
as one cannot solve the main problem above, it would be interesting to
compute the number of connected components of G.

2. Proof of Theorem

We now prove the first assertion in the Theorem. Namely,

k*2, then = q2 and pR~~D(a, b)~, ~D(a, d)~~ is the class in

TR(B) of the fractional OR-ideal q.
By (1.2), for p g R we have ordp(b) = 2rp and ordp(b) = 2sp for some
rp, sp E Z. Hence

Recall that we are assuming B(a, b) = B(a, d). Since a E B(a, b) =
B(a, d) = M2 (k). By (1.6), we might as well assume a = 1. Now, since
the elements x and y of B satisfying (1.1) are uniquely determined up to
B*-conjugacy by a and b (as follows from the Skolem-Noether theorem [R,
p. 103]), we can assume

Let 7rp E C7k satisfy ordp(7rp) = 1. Then in (1.3),

for some local units up, vp E 0*. Recall that D( l, b)p in (1.4) is defined as
Op + Op2p + Op§p + A short calculation using (2.1) shows that

where we used the fact that p ~ R cannot be above 2, by (1.2).
Similarly,
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From (2.2) and (2.3) we obtain

Hence the finite Op-module D(l, b)p/(Ð(l, b)p n D(l, d)p) is isomorphic to
Op/-x 0., the sign being chosen so that the exponent of 7rp is non-
negative.
We have thus found that b)], [D(a, d)]) is the class in TR(B) of

the ideal As TR(B) has exponent 2, b)], [D(a, d)])
is also the class in TR(B) of q = p(Sp+rp), which proves the first claim
in the Theorem.
We now turn to the second assertion in the Theorem.

Assume that a ~ k*2, and let K = Then PR ([D (a, b) ], [D(a, d)~~ is
the class in TR(B) ofNormK~k(a), where the fractional a is found

by taking any z E K such that NormK/k(z) = bd, and writing ZOR = a’-’ c.
Here Q is the non-trivial element of Gal(K/k) and c is the extension to K
of a fractional of k.

We note that while a in the factorization = aI-a c is not unique, the
class of NormK/k(a) in TR(B) is unambiguously defined. Indeed, suppose
NormK~k(z’) = bd and ZIOR = Taking the norm to k, we find c2 =

c’2, where for convenience we do not distinguish notationally between c and
cnor. k Hence c = c’ and (a’a-1)1-a = Since NormK/k(z’ / z) = 1,
and K/k is quadratic, Hilbert’s Theorem 90 shows that that z’/z = 71-~ for
some 7 E K*. Thus (a’a-l1’-I)I-a = Since R contains all the primes of
k which ramify in K, we conclude from this that a’a-l1’-1 = ct o) for some
ideal ct of k. Hence NorMK/k(a’a-1) = Recall that by
the definition of TR(B), a principal OR_ideal (a) has trivial class in TR(B)
if a &#x3E; 0 at all real places of k ramified in B. Since K = k( va) embeds in
B, for any 0 E K* the class of is trivial in TR(B). As TR(B)
has exponent 2, we see that the class in TR(B) of is trivial.
This shows that the class of NormK/k(a) in TR(B) is indeed well-defined
since we will show below that z exists.
As we are assuming B(a, b) = B(a, d), we have the equality of local

Hilbert symbols f a, b~v = la, d}v [V, p. 74] for all places v of k. Hence

~a, d/b~v is trivial for all v, showing that d/b is everywhere locally a norm.
By the Hasse-Minkowski theorem [V, p. 75], d/b is a global norm. Thus,
there is a w E such that Normk( Jä)/k( w) = d/b. We can take z = bw.

Let E B* be as in (1.1), so that x 2 = a, y2 = b and xy = -~x.
As a tt k*2, there is a k-isomorphism of fields k(x) = = K. We
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therefore identify K = C B. We have just seen that there are e and
f in k such that w = e + f x E K satisfies d/b = nr(w) = e2 - a f 2. Set
t = wy E B and compute

since y2 = b is in the center k of B. As w E k(x),

This means that we can use x, y to compute D(a, b) and x, t to compute
D(a, d).

Now,

while

Thus, as Op-modules,

A prime p ~ R cannot ramify in k(x)/k. Assume first that p is not
split in the quadratic extension Then F := kp(x) = is a

quadratic field extension of l~p containing the elements xp and wp. However,
Normp/kp (wp) = nr(wp) E 0*, implies wp E As p ~ R is not above 2

and £§ we have Op + = OF. It follows that

so from (2.4) we see that there is no contribution at p to PR([D(a, b)],
[D(a, d)]) in the non-split case.
Now suppose p splits as = pip2. Then x2 = a = r~ for some

rp E kp, so we can assume £) = l. Hence there is a kp-algebra isomorphism
fp : kp(xp) H kp x kp mapping 1 to (1,1) and ~p to (1, -l~. Thus fp(Op +

where 7rp E 7~~ satisfies ordp(7rp) = 1. Recall that ordp(d/b) is even for p 0 R
and
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Hence in (2.5), ap = ordp2(w) is an integer. We order pi
and p2 so that ap &#x3E; 0. From (2.4) and (2.5) we find that fp induces an
isomorphism of C7p-modules

where ap is given by (2.5) and "split" refers to the quadratic extension
K

If is the piece above p of the factorization of we can write

where Q is the non-trivial element of Gal(K/k). Thus WOR = al-af, where

and f is the extension to K of a fractional OR_ideal in k. As NormKk(a) = q
in (2.6), the proof is done on letting z = bw and c = bf.

3. Application to 3-orbifolds

We now describe our geometric motivation for the main problem posed
in § 1. In [CF2] we studied torsion in maximal arithmetic Kleinian groups r
and found that computing dihedral subgroups of r is closely connected
with the map (a, b) H [D(a, b)] described in §1. The connection with
Hilbert symbols in the case of a 4-group Z/2Z x Z/2Z is straight-forward:
If B ^--’ B(a, b) is generated as a k-algebra by x and y as in (1.1), then
the subgroup H = H(a, b) C B*/k*, generated by the natural projective
images 7 and y, is in fact a 4-group. Conversely, any 4-group H C 
is conjugate to a subgroup of the form H(a, b), where a and b are unique
modulo k*2, except that one can switch a and b or replace b by -ab [CF2,
Lemma 2.4].
The list of conjugacy classes of 4-subgroups H c B*/k* is therefore in

bijection with the list of pairs of (a, b) such B(a, b), where we
again take a and b modulo k*2 and allow the same trivial modifications.
A problem left unresolved in [CF2] is how to actually find which (con-
jugacy classes of) maximal discrete subgroups of contain a given
4-subgroup H(a, b). We now explain how this problem is equivalent to that
of computing the map (a, b) ~ [D(a, b)~.
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Borel [Bo] showed that any arithmetic Kleinian group is conjugate in
PGL(2, C) to a discrete subgroup r C C PGL(2,C), where B is a
quaternion algebra over a number field k having exactly one pair of complex
conjugate embeddings, and B ramifies at all of the real places of 1~. This
complex place is used to embed in PGL(2, C~). Borel constructed a
list of discrete subgroups rS,D c such that any maximal

(with respect to inclusion) discrete subgroup T c B* /k* is conjugate to
some rs,,D. Here S is any finite set of prime ideals of C~~ disjoint from
Ram f( B) , and D is any maximal Ok-order of B. When S is empty, rs,D
is just the normalizer of D, i. e., the image in of those y E B* for
which yDy-1 = D. We denote this group by rD.
The definition of for a general S is similar, except for a local twist

at primes in S, as we now explain. For each p E S choose a maximal order
Ep C Bp such that [Dp : Ðp n Ep] = Say that 7 E 

Up to B*/k*-conjugacy, does not depend on the choice of Ep nor on
the completions Dp at places in

A given non-cyclic subgroup of B*/k* is contained in only a few rs,D.
More precisely:
([CF2, Theorem 5.1]) Let B be a quaternion algebra satisfying the Eichler
condition over a number field k, and let H be a non-cyclic finite subgroup of
B*/k*. Then there are two finite sets s = s(H) and t = t(H) consisting of
prime ideals of k not in RamAB), and a type T(H) of maximal O:t -orders
of B with the following property: A B*/k*-conjugate of H is contained in
rS,Ð if and only if s C S c t and DRt E T (H) . Here E)R, := O:t0okV C B
is the extension of D to O:t. °
The sets s and t are easily computed and given explicitly in [CF2, §5],

but the type T(H) is subtler. When H = H(a, b) is a 4-group, we have

in the notation of (1.2). Moreover a review of the proof (see the local
computations in the proof of Lemma 4.1 of [CF2]) shows that T(H(a, b)) =
[D(a, b)] as types of maximal This was our original motivation
for investigating the problem posed in 31.
We conclude with a numerical example which we hope illustrates the kind

of difficulties resolved by the Theorem. We first encountered the following
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example while tracking down the smallest arithmetic hyperbolic 3-manifold
[CFJR]. There we treated this case by geometric methods.

Let k = Q(,8), where ,86 - ,85 - 204 - 203 + 02 + 30 + 1 = 0. PARI
shows that k is a sextic field of discriminant -215811 = -33 7993, having
exactly one complex place, 2 stays prime in but 30k = p~7’ where
p27 has norm 27. Also, k has class number one and narrow class number
2, where narrow is taken in the strictest sense, involving all real places
of k. Thus, modulo squares, there are four distinct totally positive units
61 = 1, 62, C3, E4 = 6263. The prime p27 splits in k(vl---3)/k, so the narrow
Hilbert class field of k is k( 3) = l~ ( -~2 ), say.

Let B be the quaternion algebra ramified only at the four real places of
k. The problem faced in [CFJR] was:
Given any maximal Ok-order D of B, does rD contain a 4-subgroup?

Since S and Ramf(B) are empty and 2 remains prime in we find

Rt = Rt(H) = ~2C~~~ for any 4-group H. As k has narrow class num-
ber 2, B has exactly 2 types of maximal Ok-orders, say E and ,~’. We
can distinguish these maximal orders intrinsically. Namely, from [CF1,
Theorem 3.3] we find that one of these maximal orders, saye, contains a
primitive cube root (3 of unity and the other one does not ((3 "selects"
one of the types). Likewise, only 9 contains a square root of -C2. Since
B = B ( -1, -1 ) is isomorphic to the standard Hamilton quaternion al-
gebra over k, we recognize 9 as the order containing the Hurwitz order
Ok + Oki + + + i + j + ij)/2, where i2 = j2 = -1 and ij = -ji
(since (1 +i+ j +ij)/2 is a primitive cubic root of unity). Note that £Rt and

remain in distinct ORt-tvpes and that SRI and can be intrinsically
distinguished from each other exactly as 9 and ,~’.
A short calculation shows that there are (up to B*/k*-conjugation) ex-

actly five 4-groups H(a, b) contained in Fs or F Jr. These are

In this computation one uses that a and b must be totally negative,
H(a, b) = H(a, -ab) = H(b, a), that s(H(a, b)) = Odda,b - Ramf(B) must
be empty (since S is empty), and that B i B(-1, -1) with the sextic field
k having one place above 2 and having class number 1.
Our earlier question can now be rephrased as:

In which Dire or is each one of the five 4-groups listed above?
Since a and b are units, we have ~~ = x, ~p = y in (1.3) for all p. Thus,
the ORt-order D[a, b] in (1.4) is just ORt [X, ) .
As we saw above, the maximal oRt -order ERt is characterized up to

isomorphism by containing s2 (or ~3). As 
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as the first two orders contain -s2 and the third one (3. Hence, if r~
contains a 4-group, it must be H(-1, -s3) or H(-1, -E4), in which case at
least one of [D(-1, -E3)] or [D(-l, -ê4)] would equal 
To show that in fact does contain a 4-group, we turn to the Theorem

with a = b = -1 and d = with i determined as follows. PARI tells us
that K := k( I) has class number 2 (a priori this class number is only
divisible by 2). Thus, all ideals classes are fixed by Gal(K/k) and the norm
map induces an isomorphism from the class group of K to the narrow class
group of k.

Let a be any ideal of K with non-trivial class. Then (z) := al-a for
some z E K, since the class group is fixed by the Galois group. Thus,
ê := NormK/k(z) = sib2 for some 1  i  4 and some b E Applying
the Theorem, we find that pRc(~D(-1, -1)~, [D(- I , -ei)]) is non-trivial, as
it equals the class of NormK~k(a) in TRt (B) = Z/2Z. Thus, (D(-1, 
[E,(- 1, - 1)] = since otherwise the Rt-distance would be trivial. From

(3.2) we see that ~D(-1, -êi)] = and that i = 3 or 4. Hence all rD’s
contain a 4-group. One can actually show (applying (3.2), E4 = ê2ê3 and the
Theorem to (-1, -1) and (-1,-)) that [Ð(-1,-ê3)] = [Ð(-1,-ê4)] =
[TRt . 
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