An equivalence in generalized almost-Jordan algebras

Guzzo, Henrique

Labra, Alicia

In this paper we work with the variety of commutative algebras satisfying the identity ?((x2y)x$((y x) x) x)+?(x 3 y-((y x) x) x)=0$, where ?, ? are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying $(3 ?+?)(G y(x, z, t)-G x(y, z, t))+(?+3 ?)(J(x, z, t) y-J(y, z, t) x)=0$, for all $x, y, z, t ? A$, where $J(x, y$, $z)=(x y) z+(y z) x+(z x) y$ and $G x(y, z, t)=(y z, x, t)+(y t, x, z)+(z t, x, y)$. Moreover, we prove that if A is a commutative algebra, then $J(x, z, t) y=J(y, z, t) x$, for all x, y, z, t ? A, if and only if A is a generalized almost-Jordan algebra for $?=1$ and $?=-3$, that is, A satisfies the identity $(x 2 y) x+2((y x) x) x-3 x 3 y=$ 0 and we study this identity. We also prove that if A is a commutative algebra, then $G y(x, z, t)=$ $\mathrm{Gx}(\mathrm{y}, \mathrm{z}, \mathrm{t})$, for all $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t}$? A, if and only if A is an almost-Jordan or a Lie Triple algebra.

