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Universal features of self-trapping in nonlinear tight-binding lattices
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We use the discrete nonlinear Schro¨dinger~DNLS! equation to show that nonlinear tight-binding lattices of
different geometries and dimensionalities display a universal self-trapping behavior. First, we consider the
problem of a single nonlinear impurity embedded in various tight-binding lattices, and calculate the minimum
nonlinearity strength to form a stationary bound state. For all lattices, we find that this critical nonlinearity
parameter~scaled by the energy of the bound state!, in terms of the nonlinearity exponent, falls inside a narrow
band, which converges toe1/2 asymptotically. Then, we examine the self-trapping dynamics of an excitation,
initially localized on the impurity, and compute the critical nonlinearity parameter for abrupt dynamical
self-trapping. For a given nonlinearity exponent, this critical parameter, properly scaled, is found to be nearly
the same for all lattices. Same results are obtained when generalizing to completely nonlinear lattices, sug-
gesting an underlying self-trapping universality behavior for all nonlinear~even disordered! tight-binding
lattices described by DNLS.
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The discrete nonlinear Schro¨dinger~DNLS! equation is a
paradigmatic equation describing among others, dynamic
polarons in deformable media,1 local modes in molecula
systems2 and power exchange among nonlinear coher
couplers in nonlinear optics.3 Its most striking feature is the
possibility of ‘‘self-trapping’’, that is, the clustering of vibra
tional energy or electronic probability or electromagnetic e
ergy in a small region of space. In a condensed-matter c
text, the DNLS equation has the form

i
dCn

dt
5enCn1V( 8

m
Cm1xnuCnuaCn , ~1!

whereCn is the probability amplitude for finding the electro
~or excitation! on siten of a d-dimensional lattice,en is the
on-site energy,V is the transfer matrix element,xn is the
nonlinearity parameter at siten and a is the nonlinearity
exponent. The prime in the sum in~1! restricts the summa
tion to nearest-neighbors only.

Considerable work has been carried out in recent year
understand the stationary and dynamical properties of Eq~1!
in various cases. In particular, we point out the studies on
stability of the stationary solutions in one and two dime
sions for the homogeneous case~en50, xn5x!,4,5 the effect
of point linear impurities on the stability of the two
dimensional~2D! DNLS solitons,6 the effects of nonlinear
disorder ~en50, xn random!7 and of linear disorder~xn
5x, en random!8 on the self-trapping dynamics of initially
localized and extended excitations in a chain. The result
these studies suggest that in general, the effect of nonlin
ity is quite local for initially localized excitations, and tha
disorder leaves the narrow self-trapped excitations un
fected, although it does affect the propagation of the
trapped portion~‘‘radiation’’ !. This suggests that the solutio
of the single nonlinear impurity problem might contain t
essentials required to understand self-trapping in more g
eral contexts. In that spirit, we have previously examined
problem of a single nonlinear impurity embedded in a line
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chain and a linear square lattice.9,10 In this work we extend
these studies and show that, for an initially localized exc
tion, the dynamics of self-trapping in various different la
tices of different dimensionalities, is universal and depen
mainly on the nonlinearity strength at the initial site, th
nonlinearity exponent and the coordination number.

Some symmetry considerations are useful at this po
The transformation (en ,V,xn)→(2en ,2V,2xn) turns Eq.
~1! into an equation for the complex conjugate variableCn*
and as a result, the site probabilityuCnu2 remains invariant
~provided the initial conditions are also transformed!. Since
we will be dealing with homogeneous lattices with a sing
impurity or completely nonlinear, we seten50 hereafter.
Thus for a complete parameter study it is sufficient to ta
x.0 and consider the two possible signs ofV. A further
simplification is possible however, since Eq.~1! is also in-
variant under the change (V,x,Cn)→(2V,x,P i
(21)niCn), wheren5(n1 ,n2 ,...) for all thelattices consid-
ered in this work, with the exception of the triangular lattic
Thus, this case excepted, we can consider bothxn andV in
Eq. ~1! as positive.

Bound states. A tight correlation has been observed b
tween the existence of bound states for a given nonlin
lattice and the ability of the lattice to self-trap an initial
completely-localized excitation: the critical nonlineari
strength for dynamical self-trapping is always greater th
the one needed to produce bound state~s!. We begin by
showing that the minimum nonlinearity needed to produc
bound state in different lattices, shows universal features.
consider the problem of determining the bound state for
electron in ad-dimensional homogeneous (en50) lattice
that contains a single generalized nonlinear impurity at
origin n50. We use a straightforward generalization of
Green’s function formalism used previously by one of t
authors~M.I.M.! in one-dimensional chains9 and the square
lattice.10 With a scaled nonlinearityg5x/B and energyz
5E/B, where B is the half bandwidth, the energy of th
bound state~s! zb is obtained from
15 287 ©2000 The American Physical Society
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FIG. 1. Minimum nonlinearity
gc /zb to form a bound state in
several lattices, containing a
single nonlinear impurity. Thick
lines correspond to 1D, square an
simple cubic lattices. Thin lines
correspond to Bethe lattices wit
K53, 5 and 100 in ascendent or
der neara50. Dotted lines repre-
sent the triangular lattice case
x/V.0 ~upper line! and x/V,0
~lower line!.
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gG00

~0!a11
~zb!

@2G008
~0!~zb!#a/2 , ~2!

whereG00
(0)5^0uG(0)u0& is a matrix element of the Green’

function for the crystalline lattice~without impurity!. We
proceed to solve~2! numerically, using the exact, know
expressions forG00

(0) for several lattices:11,12one-dimensional
~1D!, square, triangular, simple cubic and Bethe lattices w
connectivities 3, 5 and 100. This allows us to compare
tices with different dimensionality, coordination numberZ,
length of shortest loops, etc. In general, for a givena value
there will be a minimum value ofx below ~above! which,
there is ~are! no ~two! bound state~s!. Just at the critical
nonlinearity value, we obtain exactly one bound state. T
exception is the 1D lattice where fora<2 one has always
one bound state regardless ofx.

Figure 1 shows the critical nonlinearity parametergc ,
scaled by the energy of the bound state, in terms ofa, the
nonlinearity exponent, for all the lattices examined. Th
are two curves for the triangular lattice, depending
sgn(x/V), due to the asymmetry of its Green function wi
respect to the energy variable. All curves fall inside
‘‘band’’ which narrows asa increases, converging towards
constant value. To calculate it, we solve~2! exactly in two
cases: the one-dimensional lattice9 and the Bethe lattice in
the limit of infinite connectivity~Hubbard model; practically
indistinguishable fromK5100!. In both cases we obtain:

lim
a→`

S gc

zb
D5e1/2;1.65. ~3!

We have traced the validity of~3! for the other lattices up to
high a values~103 for the square and cubic lattices; 105 for
the rest! with no discernible deviation.

Self-trapping Dynamics. We now examine the ability of a
given lattice to dynamically self-trap an excitation, origina
placed completely on the impurity site, by computing t
h
t-

e

e
n

minimum nonlinearity needed to give rise to abrupt se
trapping. The time evolution is given by Eq.~1! with en
50 and xn5xdn,0 . Following an earlier treatment,10 we
compute the long-time average probability at the impur
site, defined by

P05 lim
T→`

~1/T!E
0

T

uC0~ t !u2dt, uC0~0!u51. ~4!

Typically, P0 vanishes for nonlinearity parameters below
critical valuexc and the particle escapes from the impur
site in a ballistic manner. This is determined from an exam
nation of the excitation’s mean square displacement^u(t)&
5Snn

2uCnu2. For nonlinearity values greater thanxc , P0
remains finite and increases withx, converging towards
unity at largex. The untrapped portion escapes to infinit
also in a ballistic manner, but with a much lower ‘‘speed
A^u(t)&/Vt. Thus, the examination ofP0 provide us with the
critical nonlinearity parameterxc for dynamical self-
trapping.

For a particular lattice and a given exponenta, we nu-
merically determinexc , scaled byEmin

(b) , the minimum un-
normalized bound-state energy. Figure 2 showsxc

(dyn)/Emin
(b)

for all the lattices examined, and for severala values that
give rise to sharp self-trapping~for a,1, the self-trapping is
not sharp!. We see that, for the wide range of geometries a
dimensionalities involved, this critical~dynamical! nonlin-
earity is nearly independent of the lattice and increa
monotonically with the nonlinearity exponent. The left pan
in Table I shows the ratio between this ‘dynamical’ critic
parameterxc

(dyn) and the previously computed critical valu
needed to form a bound state,xc

(b) , for several different
exponentsa. A quick and ‘dirty’ estimate forxc

(dyn) can be
obtained as follows: From the analytical expression
xc

(dyn) in 1D and Hubbard model for the stationary impuri
problem we can see that asymptotically,xc

(dyn);BAa,
whereB is the half bandwidth. Table I central panel, show
that the quick estimation ofxc

(dyn) asBAa, is not bad at all,
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FIG. 2. Dynamical critical
nonlinearity parameterxc scaled
by the minimum bound-state en
ergy Emin

(b) for one nonlinear impu-
rity in various lattices. The values
for the nonlinearity exponents ar
a51, 2, 3, 4 and 1000 from bot-
tom to top. The hollow symbols
for the triangular lattice case cor
respond to the casex/V,0.
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and can be used as a good lower bound in all cases. It w
seem that in thea regime where abrupt self-trapping tak
place (a>1), the only relevant parameters are the nonl
earity at the impurity site and the coordination number of
lattice. The rest of the topological features is of second
importance. In all cases, with the exception of the triangu
lattice, the critical nonlinearity is independent of the sign
x.

The increase ofxc
(dyn) with a is to be expected since i

the continuum limit, increasinga is equivalent to increasing
the dimensionality of the system,4,13,14 this in turn increases
the effective coordination number making it harder to se
trap the excitation. Hence, the need for larger nonlinearit
Also, we notice that for all lattices, the values ofxc

(dyn) are
all higher thanxc

(b) ~see Table I!, confirming the conjecture
that the onset of the stationary bound state is a precurso
dynamical self-trapping. However, the lack of a superpo
tion principle, makes it hard to establish formally the~ob-
served! connection between the dynamical and station
DNLS problem.
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We now recompute all of the above calculations, this tim
using completely nonlinear lattices~en50, xn5x! and same
initial conditions (Cn5dn,0). The right panel in Table I
shows the critical nonlinearity strength ratio between
completely nonlinear lattice and the linear lattice with
single nonlinear impurity. The critical values are virtually th
same in both cases, except when the self-trapping is
abrupt and thereforexc is not so precisely defined. This sim
larity is due to the fact that, once the abrupt self-trapping
set, most of the probability is on the initial site, which give
by conservation of the norm, very small probability amp
tudes for the rest of the lattice sites, making their nonlin
contribution negligible: they have become, in fact, linear
all self-trapping purposes and, in this way we are back to
single nonlinear impurity results. The same argument wo
also be valid for a disordered lattice. The greater thea value,
the closer the system is to the nonlinear impurity case. T
is vividly illustrated by the limiting values in the right pane
of Table I for largea, where the critical nonlinear paramete
is the same for both cases. A similar situation could be fou
gle
ts
TABLE I. Left panel: Ratio between the critical nonlinearity parameter for dynamical self-trappingxc
(dyn) and the minimum nonlinearity

value to form a bound statexc
(b) . Central panel: Ratio betweenxc

(dyn) and the rough estimateBAa. ~For the triangular lattice we useB
53 for x/V.0; otherwise,B56.! Right panel: Ratio betweenxc

(dyn) for the completely nonlinear lattice and the linear lattice with a sin
nonlinear impurity. Each column correspond to a different value for the nonlinearity exponent,a51, 2, 3, 4 and 1000. Values in bracke
denote cases where the self-trapping is not abrupt and are therefore, approximate.

Lattice

xc
(dyn)/xc

(b) xc
(dyn)/BAa xc(NL)/xc(imp)

1 2 3 4 1000 1 2 3 4 1 2 3 4 1000

1D - 1.65 1.40 1.37 1.34 ~1.25! 1.17 1.30 1.37 ~1.52! ~1.3! 1.08 1.02 1.00
Square 1.26 1.25 1.26 1.27 1.34 1.30 1.21 1.18 1.16~0.98! 1.05 1.01 1.00 1.00
Simple cubic 1.16 1.20 1.22 1.24 1.34 1.24 1.09 1.03 1.00~1.15! 1.02 1.00 1.00 1.00
Triang.
x/V.0 1.32 1.39 1.41 1.42 1.35 1.12 1.06 1.12 1.18~1.07! 1.04 1.00 1.00 1.00
x/V,0 1.22 1.22 1.24 1.25 1.34 1.34 1.22 1.17 1.14~1.25! 1.04 1.01 1.00 1.00
Bethe
K53 1.41 1.31 1.31 1.32 1.34 1.26 1.19 1.21 1.22~1.26! 1.06 1.01 1.00 1.00
K55 1.33 1.28 1.30 1.3 1.35 1.25 1.17 1.18 1.18~1.16! 1.03 1.01 1.00 1.00
K5100 1.24 1.25 1.27 1.28 1.34 1.24 1.15 1.13 1.12~0.99! 1.00 1.00 1.00 1.00
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in ‘‘related’’ models like Holstein’s quantum molecula
crystal model, where the interaction is also on-site and p
portional to the probability amplitude on this site. In this ca
the condition for small polaron formation~self-trapping
line!, effective mass, electron-phonon correlations and o
polaron properties could display universal features like
ones found here for DNLS.15 For instance, the electron
phonon coupling needed to get a small polaron is practic
the same for a very short chain~two sites! and for longer
chains ~32 sites!.16 The localized solutions we have foun
resemble the intrinsic localized modes or ‘‘breathers’’ th
are known to exist in systems of coupled anharmo
oscillators17 and seem to exhibit the same kind of ‘‘unive
sal’’ or dimension-independent features.18 These phenomen
could have a common origin, in light of Aubry’s ant
integrable limit concept.19 The fact that we are able to obta
them through the use of an impurity formalism, suggests
a suitable generalization of the Green’s function concept
plied to nonlinear systems is indeed relevant. When non
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