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 DIETARY AND DIGESTIVE CONSTRAINTS ON BASAL ENERGY

 METABOLISM IN A SMALL HERBIVOROUS RODENT'

 CLAUDIO VELOSO AND FRANCISCO BOZINOVIC2
 Departamento de Ciencias Ecol6gicas, Facultad de Ciencias, Universidad de Chile,

 Casilla 653, Santiago, Chile

 Abstract. McNab (1986, 1988) has hypothesized that mammals using food with low
 energy content should exhibit basal metabolic rates (BMR) lower than those expected on
 the basis of their body mass (mb). That is, those species that exploit food with low energy
 content and/or high cost of digestion tend to have low, mass-independent metabolic rates.
 To date there is not an experimental test of this pattern. The aim of this work was to
 examine experimentally the effect of diet quality on BMR, digestive efficiency, and the
 relationship between digestion and energy expenditure in a small herbivorous mammal.
 We used as a model the herbivorous caviomorph burrowing rodent Octodon degus (mb
 nearly 200 g), an inhabitant of semi-arid and mediterranean communities of northern and
 central Chile.

 Individuals maintained during 27 wk with a diet high in dietary fiber showed significantly
 lower BMRs (28%) than those feeding on low fiber. Daily food intake and ingestion rates
 (energy and dry matter) of individuals under a high-fiber diet were significantly higher than
 animals maintained with a low-fiber diet. The same pattern was obtained for total feces
 production and rate of feces production. The total intake and rate of ingestion of proteins
 were not significantly different between treatments. However, a significantly higher amount
 of protein was excreted by the individuals exposed to a high-fiber diet. Apparent digestibility
 of dry matter, energy, and protein were consistently lower in individuals maintained with
 high fiber. However, nonsignificant differences were observed between gut contents in the
 two treatments (P > .58), but a significantly higher digesta turnover rate was observed in
 animals exposed to a high-fiber diet (P < .05). A significant correlation was found between

 digestibility and the basal metabolic rate of individuals (r, = 0.781, P < .01), suggesting
 that elevated digestibilities on high-quality diets allow increased basal rates of metabolism.
 We suggest that, although small mammals like degus may select sparsely distributed plants
 of high quality in their habitat, their capability to drop their metabolic demands may help
 them meet their nutritional and energy requirements when nutritional conditions in the
 environment deteriorate.

 Key words: basal metabolic rate; Chile; diet quality; digestive physiological ecology; herbivory;
 Octodon degus; small mammals.

 INTRODUCTION

 The efficiency of energy intake, processing, alloca-

 tion, and expenditure is critical to the survival and

 ecological success of vertebrates (Karasov 1986, Ken-

 agy 1987, Bozinovic 1992a). Nutrient turnover is di-

 rectly related to the energy metabolism and the amount

 of food transported throughout the digestive tract. On

 the other hand, food quality and digestibility can affect

 the rate of metabolism (Batzli 1985).

 McNab (1986, 1988) hypothesized that scaling of

 basal rate of metabolism (BMR) to body mass (mb) is

 sensitive to ecological factors in mammals, such as

 dietary habits. Some of the mass-independent varia-

 tion of the allometry between BMR and mb cuts across

 phylogenetic relationships, and appears to be mainly

 I Manuscript received 16 September 1992; revised 9 Jan-
 uary 1993; accepted 11 January 1993.

 2 Address correspondence to this author.

 related to food habits (but see Hayssen and Lacy 1985,

 Elgar and Harvey 1987). McNab (1980) also postulated

 that under unlimited food availability, higher BMRs

 are correlated with augmented production rates. This

 hypothesis was experimentally supported by Derting

 (1989) at an intraspecific level in juvenile cotton rats.

 Species that exploit food with low energy content

 and/or high cost of digestion appear to have low, mass-

 independent metabolic rates. Surprisingly, few studies

 have been conducted to test these generalizations. Re-

 sults of the experimental effect of food quality on the

 level of metabolism in small mammals are, so far,

 contradictory. In fact, Choshniak and Yahav (1987)

 documented in the Levant vole (Microtus guenteri) a

 significant decrease in metabolic rate when exposed to

 low-quality diets. However, in the desert gerbil (Me-

 riones crassus), no significant effect of experimental

 diet quality on the magnitude of the rate of oxygen

 consumption was detected. On the other hand, water

 voles (Arvicola terrestris) exposed to decreased food
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 quality (higher dietary cellulose) increased their food

 intake and metabolic rate (Woodall 1989).

 Theoretically, small mammals should show de-

 creased energy expenditures and increased gut turnover

 time. This is because BMR scales with mb to the 0.75

 power (Kleiber 1961, Peters 1983, Calder 1984),

 whereas gut capacity (GC) scales isometrically with mb

 (Parra 1978, Calder 1984, Batzli 1985, Hume 1989).

 Consequently the turnover of gut contents (T) should

 scale as the ratio of gut contents and metabolic rate,

 namely to body mass to the 0.25 power (T = GC/BMR

 = mb025). This equation predicts that smaller mammals
 retain food in the digestive tract for a shorter time than

 large ones (Demment and Van Soest 1985).

 Small mammals have similar relative tract size but

 larger relative metabolic rate and faster gut turnover

 time. Brown and Nicoletto (1991) hypothesized that

 these physiological and allometric constraints force

 smaller mammals to select higher quality foods and to

 restrict their foraging to habitats where suitable food

 is available in sufficient supply (see also Batzli 1985).

 However, recently Foley and Cork (1992) analyzed

 how far small herbivorous mammals can bend these

 allometric constraints. Some species of small mammals

 compensate for low-quality diets (fibrous diets) by a

 combination of digestive mechanisms that include:
 rapid turnover time of fibrous food, changes in gut

 capacity, and increased nutrient uptake by the small

 intestine (see Myrcha 1964, 1965, Sibly 1981, Gross

 et al. 1985, Karasov 1986, Green and Millar 1987,

 Bozinovic et al. 1988, 1990, Karasov and Diamond

 1988, Bozinovic and Iturri 1991, Hammond and Wun-

 der 1991, Foley and Cork 1992).

 The aim of this work was to examine experimentally

 the effect of diet quality on the basal metabolic rate,

 digestive efficiency and the relationship between di-

 gestive performance and energy expenditure in small

 herbivorous mammals. We used as a model the her-

 bivorous, caviomorph, burrowing rodent Octodon de-

 gus (degus), an inhabitant of semi-arid and mediter-
 ranean communities of northern and central Chile.

 Octodon degus is the most broadly distributed rodent

 of the genus Octodon. Degus live in open scrubs sub-
 jected to summer droughts. Geographical and seasonal

 dietary differences in the relative proportions of shrub,

 grass foliage, and seed occur between localities. At most

 localities degus feed primarily on shrub foliage, seeds,

 and conductive tissue. In Mediterranean environments

 they feed on forb and grass foliage and seeds. Thus,
 this species experiences spatial and temporal changes
 in the availability of water, fiber, and nutrients in its

 food (Meserve 1981, Meserve et al. 1983, 1984). How-

 ever, when 0. degus is experimentally exposed to new
 or mature leaves of different species of the Chilean
 matorral shrubs (Colliguaya odorifera, Kageneckia ob-

 longa, and Quillaja saponaria), it prefers new rather

 than mature leaves and does not discriminate between

 different shrub species (Simonetti and Montenegro
 1981).

 Because food quality requirements are determined

 partly by metabolic rate (Brown and Nicoletto 1991),

 we can predict that, when 0. degus is exposed to low-

 quality food in its habitat (temporal nutritional bot-

 tleneck, sensu Karasov 1989), a decrease in the rate of

 metabolism should occur. However, as Justice and

 Smith (1992) pointed out, small mammalian herbi-

 vores may compensate for a dilution of food energy

 (high dietary fiber) by changes in rates of intake, to

 maintain a constant intake of digestible metabolizable

 energy. Here we examine how a small herbivorous en-

 dotherm copes with possible constraints imposed by

 an energy-poor, high-fiber diet, and the consequences

 (if any) of these constraints on its basal rate of metab-

 olism.

 MATERIAL AND METHODS

 Animal capture and care

 Rodents (initial mean body mass [mj] = 200.8 ?
 24.5 g [mean ? 1 SD]) were captured in the central

 Chile matorral at Quebrada de la Plata (70?50' W, 33?31
 S) with medium-sized Sherman live traps (5.1 x 6.4

 x 16.5 cm). The locality has the typical climate of the

 Chilean mediterranean region, with hot dry summers

 and cold rainy winters (di Castri and Hajek 1976). After

 capture, the animals (six females and six males-i.e.,

 six animals per group) were maintained during 27 wk

 in an outdoor laboratory with natural photoperiod and

 ambient temperature in two large enclosures (115 x

 65 x 80 cm) with water ad libitum. Animals were

 randomly assigned to two dietary groups of commer-

 cial food pellets. Group I was maintained with a high

 quality of food pellet (diet I = low-fiber) and group II
 with a low quality of food pellet (diet II = high fiber).

 Both pellets were analyzed at the Institute of Nutrition

 and Food Technology, Universidad de Chile, following

 the Proximal Chemical Analysis Methods (Horwitz
 1980). Chemical composition of the diet I pellets was:

 dry matter = 91.67%, proteins (N x 6.25) = 22.85%,
 lipids = 7.81 %, ash = 7.150%, neutral detergent fiber =
 6.16%, non-nitrogenous elements = 47.70%, total en-

 ergy content = 21.20 ? 0.40 kJ/g (mean ? 1 SD, n =

 5). The chemical composition of diet II pellets was:

 dry matter = 89.7%, proteins (N x 6.25) = 18.59%,
 lipids = 4.53%, ash = 9.86%, neutral detergent fiber =

 15.54%, non-nitrogenous elements = 41.18%, total en-

 ergy content = 19.17 ? 0.51 kJ/g (n = 5).

 Basal metabolic rate

 The basal rate of metabolism (BMR) was individ-

 ually recorded by measurements of oxygen consump-
 tion in metabolic chambers at 30'C, a temperature

 within the thermoneutral zone of this species (Rosen-

 mann 1977), using a computerized, closed, automatic

 system based on the design of Morrison (1951). CO2

 and H20 in the metabolic chamber were absorbed with
 BaOH and CaCl2, respectively. Ambient temperature

 was controlled in a thermoregulated bath. Because Oc-
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 TABLE 1. Effect of two experimental diets on the basal metabolic rate in Octodon degus (X ? 1 SD). BMR basal metabolic
 rate, mn, = body mass.

 High fiber Low fiber P

 Number of animals 6 6
 Body mass (g) 206.4 ? 24.0 229.2 ? 26.7 >.208

 Basal rate of metabolism (J g-1 h 1)
 at time = 0 wk 17.15 + 3.03 16.55 ? 1.41 >.900
 at time = 27 wk 9.48 ? 1.61 13.12 ? 0.61 <.020

 BMR/29.87min020' (%) 92.77 ? 11.11 130.10 ? 5.92 <.040

 todon degus is a diurnal rodent, each measurement was

 conducted during 2-3 h in post-absorptive individuals

 during the resting phase of their activity cycle (night-

 time between 2100 and 0100) following the same meth-

 odology reported in Bozinovic (1 992b). Body mass +

 0.1 g was recorded before and after each measurement

 of oxygen consumption. Oxygen consumption values

 were obtained from the average of the two minimal

 periods of each run lasting - 5 min. Animals were mea-

 sured within the 1st wk after capture (time = 0) and

 after 27 wk of treatment with both diets. BMR was

 estimated from the mean values of oxygen consump-

 tion. Observed BMR (in joules per gram per hour) was

 compared against the standard BMR values predicted

 for small burrowing grazers (McNab 1988)-i.e., BMR

 = 29.87 m-0201.

 Nutritional analysis

 During nutritional experiments, individuals were kept

 in metabolic cages with metal trays underneath to col-

 lect feces and channel urine into 25-mL test tubes.

 Water was provided ad libitum. At week 27, and during

 three consecutive days, we conducted feeding trials of-

 fering the same amount of food, and collecting feces

 and remaining food. Each day the collected feces and

 rejected food were weighed and stored, after drying at

 60'C. Energy content was determined in a Parr 1261

 computerized calorimeter. Two replicates were ex-
 pressed ash-free, and considered reliable when the dif-

 ference between two measurements was <1%. Total

 protein in food and feces was determined in our lab-

 oratory using a simplification of the protein assay

 method of Lowry (Peterson 1977). Apparent digest-

 ibility, defined as the percentage of matter, energy, or

 nutrients consumed that is absorbed by the body, was

 calculated for dry matter, energy, and proteins, as:

 [(Q - Q,)/Q] x 100%, where Q, = daily rate of food
 intake, and Q,, = daily rate of feces production. Di-
 gestibility is termed "apparent" because this method

 underestimates digestive efficiency by the contribution
 of metabolic wastes, nonreabsorbed secretions of the

 digestive system, and microorganisms. All values of

 ingestion and egestion were expressed ash-free.

 Gut turnover time (T), defined as the time (in hours)

 required to process the gut volume resulting from the

 ingestion of one unit of food, was calculated according

 to Penry and Jumars (1987) using the relationship T

 = GC/Q,, where GC = total mass content of the gut
 (in grams), and Qj = food intake or mass flow rate (in
 grams per hour), (see Van Soest 1982, Hammond and

 Wunder 1991). To measure Q, and GC, two groups of
 five animals previously acclimated with both experi-

 mental diets during 28 wk were maintained during 6

 d to conduct feeding trials offering the same amount

 of food, and collecting the feces and remaining food;

 with these data we calculated Q,. After these experi-
 ments the animals were killed at same time and day

 by cervical dislocation and the gut was dissected. From

 the difference of the wet mass of the total digestive

 tract, with and without contents, we calculated the mass

 contents of the gut. The masses of tissues, previously

 dried with laboratory towels, were measured to within

 ?0.0001 g on an AND analytical balance (A and D

 Company Limited, Tokyo, Japan); see Bozinovic et al.

 (1990), Hammond and Wunder (1991) for method-

 ological details.

 Statistical analyses

 The significance of the effect of diet quality on the

 basal metabolic rate and nutritional variables was as-

 sessed by nonparametric statistics. Comparisons of two

 samples were conducted by rank tests (Wilcoxon rank-

 sum test) and correlations by Spearman rank correla-

 tions (Steel and Torrie 1985). Results are given as means

 ? 1 SD.

 RESULTS

 Basal metabolic rate

 Body mass (m,,) did not differ significantly between

 groups (Z = 1.258, P > .208; Table 1). The basal rate

 of metabolism was practically the same at time 0 be-

 tween the two groups (Z = 0.0001, P > .900; Table

 1). The treatments after 27 wk, however, resulted in
 significantly different BMRs among groups (Z = 2.097,

 P < .04; Table 1). As predicted, individuals maintained

 on higher dietary fiber showed significantly lower BMRs

 than those feeding on high-quality food. Thus, the met-

 abolic rate was 28% higher under the low-fiber con-

 dition.

 At 27 wk, the observed BMR of group II (low-quality
 food) did not differ statistically from the predicted BMR
 value based on m,, (Z = 0.839, P > .402-i.e., 92.77%
 of expected BMR). However, the individuals main-
 tained on high-quality food (low fiber) showed a sig-
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 FIG. 1. Relationship between basal metabolic rate and
 body mass in individuals of Octodon degus maintained with
 two experimental diets at a site in central Chile. The line
 represents the expected basal metabolic rate for burrowing
 grazer rodents based on body mass (McNab 1988). Each point
 represents one individual.

 nificantly higher-than-expected BMR (Z = 2.097, P <

 .036-i.e., 130.10% of expected BMR, Fig. 1).

 Food intake and excretion

 Daily total food intake and ingestion rates (energy

 and dry matter) of individuals under a high-fiber diet
 were significantly higher than for animals maintained

 on a low-fiber diet (Z varies between 2.002 and 2.322,

 whilst the highest P value was <.045; Table 2). In

 general, total food intake and rate of ingestion were
 nearly 30% higher when animals were exposed to a

 high-fiber diet (Table 2). The same pattern was ob-

 tained for total feces production and rate of feces pro-

 duction; in all cases individuals from the group II ex-

 hibited a significantly high production of feces (Z =

 2.802 for all cases; Table 2).

 The total intake and rate of ingestion of protein were

 not significantly different between treatments (Z = 0.319

 in both cases, P > .749; Table 2). However, a signif-

 icantly higher amount of protein (Z = 2.673 for

 mg/d, and Z = 2.025 for mg g-' hI-'; Table 2) was

 excreted by the individuals exposed to a high-fiber diet

 (a 56.4 to 60.0% increased excretion). Thus, consump-

 tion of high-fiber diets by individuals results in the

 excretion of large amounts of feces (i.e., low digest-

 ibility, see below). For the nitrogen and protein budget,

 an intake of higher dietary concentration of fiber may

 increase endogenous fecal protein losses (Table 2).

 Apparent digestibility

 Comparing between diets, dry matter, energy, and

 protein apparent digestibility were consistently lower

 in individuals maintained with high fiber (Z = 2.802,

 2.807, and 2.452 respectively; Table 2). Apparent di-

 gestibility varied as a function of individual variability

 and diet quality, between 62.7% and 92.3%. A mean

 reduction of 17.2% in digestibility was observed in all

 cases (dry matter, energy, and proteins) when animals
 were fed low-quality diets. By correlating individual
 digestibility with individual basal metabolic rate, a sig-
 nificant correlation between the two variables was ob-

 served (r, = 0.781, P < .01; Fig. 2), suggesting that
 elevation of digestibilities by the effect of diet type may

 consequently produce increased basal rates of energy
 metabolism.

 Gut mass contents and turnover time

 Comparing among dietary groups, gut mass content

 was not significantly different between treatments-

 i.e., 34.89 ? 9.67 g under the high-fiber condition and
 37.37 ? 3.99 g in animals fed with the low-fiber diet
 (Z = 0.539, P > .589). However, when we compared

 TABLE 2. Intake and digestive efficiency of two experimental diets by Octodon degus (X + 1 SD). Number of animals and
 body mass as in Table I.

 High fiber Low fiber P

 Intake

 (g/d) 17.00 ? 2.93 12.00 ? 1.69 <.020
 (mgg l h-') 3.50 ? 0.90 2.20 ? 0.40 <.020
 (kJ/d) 325.86 ? 56.17 254.28 ? 35.89 <.045
 (Jog I-h-') 67.11 ? 16.70 46.81 ? 8.87 <.020
 Protein (mg/d) 384.85 ? 66.29 403.88 ? 62.73 >.749
 Protein (mg g - h') 0.08 ? 0.02 0.07 ? 0.01 >.749

 Feces

 (g/d) 5.12 ? 1.68 1.44 ? 0.48 <.005
 (mg-g' lh-') 1.10 ? 0.40 0.30 ? 0.10 <.005
 (kJ/d) 94.67 ? 30.78 24.23 ? 8.38 <.005
 (Jog' -h-1) 19.76 ? 8.04 4.47 ? 1.76 <.005
 Protein (mg/d) 101.10 ? 39.69 44.05 ? 17.07 <.028
 Protein (mg g l -) 0.02 ? 0.01 0.008 ? 0.004 <.043

 Apparent digestibility

 Dry matter (%) 70.60 ? 5.99 88.27 ? 2.39 <.005
 Energy (%) 71.63 ? 5.93 90.68 ? 1.92 <.005
 Proteins (%) 74.59 ? 6.68 89.32 ? 2.99 <.001
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 FIG. 2. Relationship between basal metabolic rate and
 apparent energy digestibility for Octodon degus maintained
 with high and low dietary fiber. Each point represents one
 individual.

 individuals maintained with high and low dietary fiber,

 gut turnover time or throughput time was 36.5% sig-
 nificantly lower in individuals maintained with high

 fiber (46.18 ? 17.32 h under high fiber and 72.73 +

 15.39 h under low fiber; Z = 1.918, P < .050).

 DISCUSSION

 Much of the residual variation in basal rate of me-

 tabolism (BMR) among mammals is correlated with
 their ecological physiology of food exploitation and
 diet quality (McNab 1988). The mechanisms and pro-
 cesses underlying this statistical pattern are not clear
 but appear to be related to the concomitant effects of
 body size, quality of diets, energy expenditure, diges-
 tive strategies, and habitat conditions. Also, physio-
 logical and allometric constraints appear to force small
 mammals to select a higher quality of food and to
 restrict their foraging areas where food is abundant
 enough and suitable. Thus, the general explanation-
 that there is a digestive constraint on the metabolic
 rate set by the individual's capacity to digest and as-
 similate energy and nutrients from the ingested food-
 appears to be experimentally supported here.

 Diet, metabolic rate and digestive strategies

 Octodon degus experienced lower total and mass-
 independent basal rates when fed an experimental high-
 fiber diet. We hypothesize that the low availability of
 energy from this diet and the lower metabolizable en-
 ergy imposed by lower gut processing rates may limit
 BMR compared to animals eating a high-quality diet

 (see Fig. 2). The observed reduction in digestibility
 with increased dietary fiber may be associated with an

 increase in gut motility and a decrease in the turnover

 time of digesta. In fact, the decreased throughput time
 under a high-fiber dietary treatment is achieved with
 a high rate of food intake (Table 2). Therefore, less
 time might be available for digestion, including en-
 zymatic action and nutrient uptake by the small in-

 testine, to satisfy and maintain high levels of basal

 energy metabolism.

 Digestibility depends on digestive strategies and de-

 sign, but primarily on the food type itself (Grodzinski
 and Wunder 1975, Castro et al. 1989). Bulky food is

 less digestible than concentrated (low-fiber) food. In

 fact, Cork and Kenagy (1989) demonstrated that in-
 dividuals of a mycophagous-forest-dwelling squirrel
 exhibited an almost minimal digestibility in order to

 maintain themselves when feeding on fungus. This ex-

 ample illustrates how small mammals may compensate

 for digestive and energy design constraints by behav-
 iorally maximizing the yield of matter-to-energy in re-

 lation of the energy cost of foraging when energy-poor

 food is abundant in the environment.
 Animals with diminished digestibility and increased

 digesta transit times may compensate with high food
 intake, as pointed out by Cork and Foley (1991). In

 other words, diets that have poor nutritional/energy

 contents have to be consumed in higher amounts to

 permit normal and/or higher magnitudes of basal rates.
 However, a high overall intake of fibrous diets to meet

 metabolic requirements may increase endogenous fecal
 protein losses and trade off the protein budget (Table

 2). Also, the volume of food that can be consumed
 appears to be structurally constrained by the volume

 of the alimentary canal. In fact, we obtained no sig-
 nificant change in mass contents of the digestive tract
 between individuals of the two dietary groups (gut con-

 tent is significantly correlated with gut volume in her-
 bivores, Demment and Van Soest 1985). Nevertheless,
 some species of microtine rodents are able to exploit
 highly fibrous diets, but they possess specialized mech-
 anisms of digesta separation in the hindgut (Batzli 1985),
 and some are caecotrophic (Kenagy and Hoyt 1980).

 The response of degus to declining digestibility was

 a significantly (r, = -0.944, P < .002) increased dry-
 matter intake (Fig. 3), and increased energy intake (r,
 =-0.902, P < .0030; Fig. 4), to meet their metabolic

 _ 6

 -. * High fiber
 4 0 Low fiber

 E 4

 o 0

 a) 2 _ 0
 0

 rs =-.944
 E P<.002

 0

 60 70 80 90 100

 Dry-matter digestibility (O/o)

 FIG. 3. Intake of dry matter and dry-matter digestibility
 by Octodon degus in relation to diet quality. The line repre-
 sents the significant correlation between the two variables.
 Each point represents one individual.
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 Fig. 4. Intake of energy and energy digestibility by Oc-

 todon degus in relation to diet quality. The line represents the
 significant correlation between the two variables. Each point
 represents one individual.

 requirements. However, protein intake was not cor-

 related with protein digestibility (r, = -0.576, P >
 .084; Fig. 5), perhaps as a consequence of an equivalent

 protein intake between treatments, but a higher fecal

 loss of proteins under a higher dietary fiber was ob-

 served (Table 2). Thus, in general, under our experi-

 mental conditions degus increased their food con-

 sumption (see Table 2), while basal rate of metabolism,

 apparent digestibility, and turnover time decreased with
 increased dietary fiber content.

 Physiological responses can range from immediate

 (to an acute exposure) to acclimation (to chronic ex-

 posure) to developmental to genetic (evolutionary)

 change. The differences in basal metabolism docu-

 mented by McNab (1986, 1988) were interspecific-

 i.e., apparent evolutionary adaptation to diet. Even the

 present study deals with a relatively short-term phys-

 iological shift at an interspecific level; this particular

 case could be used to explain in part the broadly doc-

 umented statistical correlations between food habits

 and the mass-independent variations in the magnitude

 of basal rates of energy metabolism (McNab 1986, 1988

 and references therein).

 Among other factors related to the level of energy
 expenditure (e.g., climate, activity levels), the mass-

 independent level of basal rate of energy metabolism

 may have been influenced by selective pressures acting

 on structural and functional adjustments of the diges-

 tive tract.

 However, even digestive capacities would at times

 constitute a bottleneck on the animal's acquisition of

 energy and matter (Toloza et al. 1991), and conse-

 quently set the level of metabolic rates. Small mam-
 mals can alternatively be viewed as organisms that may

 plastically lower their energy metabolism when the

 quality and/or availability of food in the environment
 is limited. Cork (in press) hypothesized that individuals

 may drop their basal rate of energy expenditure in order

 to use poor-quality food. That is, the basal rate of
 metabolism is lowered so that the poorer quality diet

 0.15
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 &0.10
 E 0
 C)

 0

 .C 0.05

 CD rs =-0.576
 oI-- P >.084

 0~
 0.00 I i
 60 70 80 90 100
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 FIG. 5. Intake of protein and protein digestibility by Oc-
 todon degus in relation to diet quality. Only in four individuals
 maintained with low-fiber diets did we obtain enough samples
 of feces for the protein determinations. The line represents
 the correlation between the two variables.

 (high fiber) can be exploited and utilized by small mam-

 mals. Based on allometric considerations, a lower rate

 of energy metabolism may enhance digestive efficiency

 by retaining food in the digestive tract, and conse-

 quently extract as much energy/nutrients as possible
 from each unit of food ingested. Also, during nutri-

 tional bottlenecks, small mammals may compensate

 for low-quality food by fine-tuned responses involving

 increases in gut volume and hence increases in food
 turnover time (Gross et al. 1985, Green and Millar

 1987, Hammond and Wunder 1991, Bozinovic 1993).

 Nevertheless, although small mammals like degus may

 select sparsely distributed plants of high quality in their

 foraging habitat, their ability to drop their energy de-
 mands when nutritional conditions in the environment

 deteriorate may help them meet their nutritional and
 energy requirements. In short, lowering metabolic rate

 may also lead to enhanced digestive efficiency and may
 allow small mammals to maintain their energy/matter
 budget when food quality is poor in the environment.
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