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Abstract We generalize Weil’s converse theorem to Jacobi cusp forms of weight k,
index m and Dirichlet character χ over the group Γ0(N)�Z

2. Then two applications
of this result are given; we generalize a construction of Jacobi forms due to Skogman
and present a new proof for several known lifts of such Jacobi forms to half-integral
weight modular forms.
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1 Introduction

A converse theorem in the theory of automorphic forms always refers to the equiv-
alence of Dirichlet series satisfying certain analytic properties, on the one hand,
and automorphic forms over some group, on the other. Most familiar is the con-
verse theorem due to E. Hecke, which says that a sequence of complex numbers
{c(n)}n≥1 with c(n) = O(nσ ) for some σ > 0 defines a cuspidal modular form
f (τ) = ∑

n≥1 c(n) exp (2πinτ) of weight 2k over the group SL2(Z) if and only if
the completed Dirichlet series Λ(f ; s) = (2π)−sΓ (s)

∑∞
n=1 c(n)n−s admits a holo-

morphic continuation to C which is bounded on any vertical strip and satisfies
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Λ(f ; s) = (−1)kΛ(f ; k − s). (Hecke’s result is more general, but this statement suf-
fices for our purposes.)

Weil’s converse theorem is the analytic characterization all Dirichlet series con-
structed with the Fourier coefficients of modular forms over congruence subgroups
Γ0(N) of SL2(Z). It was obtained by André Weil [20] in 1967 and is a very sig-
nificant generalization of the corresponding result for N = 1, proved by Hecke [7]
in 1936. Among the applications of Weil’s theorem one finds Shimura’s proof [16]
of a remarkable correspondence between elliptic cusp forms of half-integral weight
k + 1/2 and integral even weight 2k cusp forms.

Analogues of these converse theorems have been proved in other contexts; for
Maass wave forms by H. Maass [14], for certain Hilbert modular forms by K. Doi
and H. Naganuma [4], and for automorphic integrals with rational period functions by
J. Hawkins and M. Knopp [6]. G. Shimura mentions in [16] the corresponding con-
verse theorem for half-integral weight modular forms (a detailed proof of the later can
be found in J. Bruinier’s work “Modulformen halbganzen Gewichts und Beziehungen
zu Dirichletreihen”, www.mathematik.tu-darmstadt.de/b̃ruinier/). The converse theo-
rem for GL(n) automorphic representations is a great achievement of several authors:
H. Jacquet and R. Langlands [9] when n = 2, H. Jacquet, I. Piatetski-Shapiro and J.
Shalika [10] if n = 3, J. Cogdell and I. Piatetski-Shapiro [3] for general n. The first
named author found in [13] the analogue of the classical Hecke converse theorem for
Jacobi cusp forms. The same result for Hilbert–Jacobi forms was established by K.
Bringmann and S. Hayashida [2].

The purpose of this article is to find the generalization of Weil’s converse theorem
for Jacobi cusp forms over subgroups Γ0(N) � Z

2 of SL2(Z) � Z
2 and show that, as

a simple consequence of this result, one gets several known lifts from Jacobi forms
to elliptic half-integral weight modular forms.

Jacobi forms have been studied systematically in the last 25 years or so, even
though particular examples of them have been used in mathematics and physics for
about two centuries. They are automorphic forms of two complex variables which
combine properties of modular forms and elliptic functions. Typical examples are
theta series and Fourier–Jacobi coefficients of Siegel modular forms of degree two.
Mostly, the existing literature is on Jacobi forms over the group SL2(Z) � Z

2. In
this article, we study Jacobi forms over groups Γ0(N) � (Z × β−1

Z)〈exp (2πi/β)〉,
where N and β are positive integers.

In order to state our results precisely, fix positive integers k,m,β,N with β|N and
a Dirichlet character χ mod N . For each integer 1 ≤ μ ≤ 2m, consider a sequence of
complex numbers {cμ(D)} (resp., {dμ(D)}) indexed by the set of positive integers D

such that −D ≡ βμ2 (mod 4m) (resp., −D ≡ Nμ2 (mod 4m)). Then put

fμ(τ) =
∞∑

D=1

cμ(D) exp

(
πiD

2m
τ

)

, gμ(τ) =
∞∑

D=1

dμ(D) exp

(
πiD

2mβ
τ

)

,

and build with them series of two variables

f (τ, z) =
2m∑

μ=1

fμ(τ)Θm,μ(βτ,βz), g(τ, z) =
2m∑

μ=1

gμ(τ)Θm,μ

(
N

β
τ,Nz

)

, (1)

http://www.mathematik.tu-darmstadt.de/~bruinier/
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where Θm,μ(τ/2m,z/2m) is the theta function associated to the lattice Z translated
by μ/2m (see Definition 2).

As in the classical case, it is possible to twist the Fourier series f (τ, z) and g(τ, z)

by a Dirichlet character ψ mod M in a sensible way. Namely,

fψ(τ, z) =
2mM∑

μ=1

fψ,μ(τ )ΘmM,μ(Mβτ,βz) (2)

with fψ,μ(τ ) = ∑∞
D=1 ψ(

D+βμ2

4m
)cμ(D) exp (πiD

2m
τ), and

gψ(τ, z) =
2mM∑

μ=1

gψ,μ(τ )ΘmM,μ

(
MN

β
τ,Nz

)

(3)

with gψ,μ(τ ) = ∑∞
D=1 ψ(

D+Nμ2

4m
)dμ(D) exp (πiD

2mβ
τ).

We observe here that neither fψ,μ(τ ) nor gψ,μ(τ ) is the standard twist of the
Fourier series fμ(τ) or gμ(τ) by the character ψ . Anyhow, using this definition
we associate to hψ(τ, z) ∈ {fψ(τ, z), gψ(τ, z)} and each 1 ≤ μ ≤ 2mM a completed
Dirichlet series ΛN,μ(hψ ; s) = ( 2π

M
√

N
)−sΓ (s)Lμ(hψ ; s) with

Lμ(fψ ; s) =
∞∑

D=1

ψ

(
D + βμ2

4m

)

cμ(D)

(
D

4m

)−s

(4)

and

Lμ(gψ ; s) =
∞∑

D=1

ψ

(
D + Nμ2

4m

)

dμ(D)

(
D

4mβ

)−s

. (5)

Finally, we denote by M any set of odd prime numbers or 4 which are relatively
prime to N whose intersection with every arithmetic progression is not empty, and
consider an analogue of the Fricke involution for Jacobi forms. The latter is a partic-
ular linear function denoted as W̃N that takes Jacobi forms to Jacobi forms, preserves
the weight but changes the index (see Sect. 3 for more details on these concepts).

The main theorem of this paper combines all these elements and characterize the
Dirichlet series associated to Jacobi cusp forms.

Theorem 1 Let

{
cμ(D)

}∞
D=1,−D≡βμ2 (4m)

and
{
dμ(D)

}∞
D=1,−D≡Nμ2 (4m)

be two collections of sequences in C indexed by 1 ≤ μ ≤ 2m, which satisfy the esti-
mates cμ(D) = O(Dσ ) and dμ(D) = O(Dσ ) for some real number σ > 0 plus the
compatibility condition (−1)kd2m−μ(D) = χ(−1)dμ(D) for all D ≥ 1, 0 ≤ μ ≤ m

(by definition, d0(D) = d2m(D) for all D). Then the following two statements are
equivalent:
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(i) The Fourier series f (τ, z) is a Jacobi cusp form of weight k, index mβ and
character χ over the group Γ0(N) � (Z × β−1

Z)〈exp (2πi/β)〉. The function
g(τ, z) is the image of f (τ, z) under the Fricke involution W̃N .

(ii) If ψ denotes the trivial character of conductor M = 1 or any primitive Dirich-
let character of conductor M in M and 1 ≤ μ ≤ 2mM , each one of the series
ΛN,μ(fψ, s), ΛN,μ(gψ, s) admits a holomorphic continuation to the whole s-
plane, they are bounded on any vertical strip, and satisfy the system of 2mM

functional equations

ΛN,a(fψ ; s) = ikCψ

√
β

2mM
√

N

2mM∑

μ=1

e

(
aμ

2mM

)

ΛN,μ

(

gψ ; k − s − 1

2

)

where 1 ≤ a ≤ 2mM , Cψ = χ(M)ψ(−N)Gψ G−1
ψ

and Gψ is the Gauss sum as-

sociated to ψ . Moreover, each Lμ(f ; s) (1 ≤ μ ≤ 2m) converges absolutely at
s = k − 1 − ε for some ε > 0.

Essentially, our proof is modeled after the one given by Weil. The key new idea
is that the relevant characteristic twists are not the standard ones on each of the 2m

Dirichlet series associated to a Jacobi form of index m introduced in [1] (see also
[13]), but the twists of a Fourier series in two variables mentioned above (see also
Definition 3). These objects have been investigated in [8] as they play a role in the
study of certain Rankin–Selberg convolution of Siegel modular forms. The rest of the
proof is an adaptation of Weil’s argument which presents some technical difficulties
due to the nature of Jacobi forms. For example, one has to deal with two different
integral transforms (as opposed to one in the elliptic case) in order to represent the
two sides of the functional equations.

Then we give, as applications of this theorem, very simple proofs of certain state-
ments known otherwise by some complicated computations. Indeed, by elementary
arguments we derive from our theorem and basic properties of theta functions the
following: (i) a new proof for the construction of distinct Jacobi forms from the theta
decomposition of a given one due to H. Skogman [17], (ii) its generalization to higher
levels, (iii) a new proof of the lift from Jacobi forms to half-integral weight modular
forms used in the argument for the Saito–Kurokawa conjecture presented in [5], and
(iv) a family of similar lifts labeled by the divisors of the index of a Jacobi cusp form.
More precisely, we get

Corollary 1 Let f (τ, z) be a Jacobi cusp form as in part (i) of Theorem 1 with theta
series expansion (1). Let δ be a positive divisor of m. Then

F(τ, z) =
2m∑

μ=1
δ|μ

fμ(τ)Θm,μ(βτ,βz)

is a Jacobi cusp form of weight k, index mβ and character χ over the group Γ0(N
′)�

(Z × (δβ)−1
Z)〈exp (2πi/δβ)〉, where N ′ = Nδ/gcd (δ,N/β).
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This result for N = 1 and m square-free was established by Skogman in [17]. His
proof is based on explicit formulas for the Γ0(2m)-action on the space of theta series⊕

μ CΘm,μ(τ, z). Our approach makes those formulas unnecessary as we work with
the set of functional equations determined in Theorem 1.

A particular case of the previous corollary (namely, δ = m) can be used to give
a new proof of a classical lift from Jacobi cusp forms to elliptic half-integral weight
cusp forms.

Corollary 2 Let f (τ, z) be a Jacobi cusp form as in the previous corollary subject
to the condition β = 1. Then

F2m(τ) =
2m∑

μ=1

fμ(4mτ)

is a cusp form of weight k − 1
2 and character γ = ( ∗ ∗

∗ d

) �→ χ(γ )(−1
d

)k(Nm
d

) over
Γ0(4Nm).

Here ( ∗
d
) denotes the Legendre symbol as defined, for example, in [15, p. 82].

This result for N = 1 is discussed in [5], and plays an important part in the proof
of the Saito–Kurokawa lift. In a very similar way, we can derive from Corollary 1 a
different, less known, lift.

Corollary 3 Let f (τ, z) be a Jacobi cusp form as above and assume 4|Nm. Then
both

Fm(τ) =
2m∑

μ=1
μ≡0 (2)

fμ(4mτ) and F2m(τ) − Fm(τ) =
2m∑

μ=1
μ≡1 (2)

fμ(4mτ)

are cusp forms of weight k − 1
2 and character γ = ( ∗ ∗

∗ d

) �→ χ(γ )(−1
d

)k(Nm
d

) over
Γ0(4Nm).

At the end of this work, we indicate how to get a similar statement for the func-
tion Fδ(τ) = ∑2m

μ=1, δ|μ fμ(4mτ) where δ is any positive divisor of m. Moreover, we
write a few words about the compatibility of the lift Fm(τ) with the action of Hecke
operators. The maps f (τ, z) �→ Fδ(τ) mentioned above have been investigated thor-
oughly by N.-P. Skoruppa [18] in the case N = 1 using a different approach. Also,
there are several statements on this topic in [11] and in Sect. 4 of [12].

This article is organized as follows: In the next section, we recall basic concepts
from the theory of Jacobi forms with level, in particular, the theta decomposition at
infinity of a Jacobi cusp form. Then we collect some technical estimates which are
necessary for later manipulations of integrals and infinite series. In Sect. 3, we study
the character twists and Fricke involution of Jacobi forms. In Sect. 4, we set the stage
for the statement and proof of the converse theorem. Namely, we associate a finite
set of Dirichlet series to each Fourier series in two variables of a certain type and
to their character twists. Then we exhibit an integral representation of such Dirichlet
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series. Our main theorem is proved in Sect. 5. In Section 6, we obtain the applications
mentioned above.

Notation Throughout the article, we write I2 for the 2 by 2 identity matrix, detY for
the determinant of a matrix Y and e(z) for the exponential function e2πiz (z ∈ C).
We often write ea(z) instead of e(az) when a is a rational number. If t is a positive
integer, ζt denotes a primitive t th root of unity. In this article, the symbol χ denotes
both a Dirichlet character mod N and the linear representation χ : Γ0(N) → C

∗ given
by χ(γ ) := χ(d) for the matrix γ = (

a b
c d

)
. We write a|b for positive integers a, b,

whenever a divides b.

2 Basic definitions

The real Jacobi group GJ is the set of triples [γ,Y, ζ ] where

γ =
(

a b

c d

)

∈ SL2(R), Y = (λ, ν) ∈ R
2,

ζ ∈S1 := {
w ∈ C | |w| = 1

}
.

(6)

Its product is

[γ1, Y1, ζ1][γ2, Y2, ζ2] :=
[

γ1γ2, Y1γ2 + Y2, ζ1ζ2e

(

det

(
Y1γ2
Y2

))]

.

There is a group action of GJ on H × C, where H = {τ ∈ C | Im(τ ) > 0}. Namely,
any group element h = [γ,Y, ζ ] as in (6) sends the pair (τ, z) ∈ H × C to

h(τ, z) :=
(

aτ + b

cτ + d
,
z + λτ + ν

cτ + d

)

.

Now fix positive integers k and m. We consider a map jk,m : GJ × H ×C → C given
by

jk,m(h, τ, z) := ζm(cτ + d)−kem

(−c(z + λτ + ν)2

cτ + d
+ λ2τ + 2λz + λν

)

.

This is a 1-cocycle, and it is used to define a group action of GJ on the set of holomor-
phic functions on H × C. Indeed, any such f (τ, z) : H × C → C is send by h ∈ GJ

to f |k,m[h](τ, z) := jk,m(h, τ, z)f (h(τ, z)).
For positive integers α,N , we write

Γ0(α,N) :=
{(

a b

c d

)

∈ SL2(Z) | N |c, α|b
}

.

As usual, Γ0(N) = Γ0(1,N). Clearly, SL2(Z) acts on Z×Z via multiplication on the
right, and we may consider the semidirect product Γ0(N)� Z

2. In this article, we are
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mainly interested in Jacobi forms over such a group, but for technical reasons it is
better to study Jacobi forms over more general discrete subgroups of GJ .

Let α,β,η and N be positive integers such that ηβ|N . We consider the groups
Γ = Γ0(α,N), T = ηα−1

Z × β−1
Z ⊆ Q × Q and 〈ζαβ〉 ⊆ S1, where the latter is the

cyclic group generated by a primitive αβth root of unity ζαβ . Then Γ � (T · 〈ζαβ〉)
is a discrete subgroup of the real Jacobi group GJ which we simply denote as Γ �

T 〈ζαβ〉.

Definition 1 Let k,m,α,β,η and N be positive integers such that ηβ|N . Let Γ , T

be as above and χ a Dirichlet character mod N . A Jacobi form of weight k, index
mαβ and character χ over the discrete group Γ �T 〈ζαβ〉 is any holomorphic function
f (τ, z) : H × C → C satisfying the following conditions:

(i) If h = [γ,Y, ζ ] ∈ Γ � T 〈ζαβ〉 then

f |k,mαβ [h](τ, z) = χ(γ )f (τ, z).

(ii) For every σ in SL2(Q) the function f |k,mαβ [σ−1,0,0,1](τ, z) has a series rep-
resentation

f |k,mαβ [σ−1,0,0,1](τ, z) =
∑

n,r∈Z

4mαβntσ ≥r2

cσ (n, r)e

(
n

tσ
τ

)

e

(
r

tσ
z

)

for some complex numbers cσ (n, r), where tσ is a positive integer which depends
on σ−1(∞) ∈ Q ∪ {∞}.

The set of all these functions is a finite dimensional C-vector space (see, for exam-
ple, [5, p. 10]) which we denote as Jk,mαβ,χ (Γ � T 〈ζαβ〉). If a Jacobi form as above
has all its series representations (ii) indexed by integers n, r such that 4mαβntσ > r2,
we call it a Jacobi cusp form. The set of all of them is a subspace which we denote as
J

cusp
k,mαβ,χ (Γ � T 〈ζαβ〉). In the particular case αβ = 1, we just write J

cusp
k,m,χ (Γ � T ).

Any Jacobi form f (τ, z) is a finite sum of theta series multiplied by certain func-
tions on the upper half-plane. Since such decomposition plays an important role in
the following, we recall it with some detail.

Definition 2 Let L be a positive integer and μ any integer. The theta function
ΘL,μ(τ, z) is

ΘL,μ(τ, z) :=
∑

l∈Z

l≡μ (2L)

e

(
l2

4L
τ

)

e(lz).

Next we observe that any Jacobi form f (τ, z) as in Definition 1 is invariant under
translations (τ, z) → (τ + α, z) and (τ, z) → (τ, z + 1/β). Hence

f (τ, z) =
∑

n,r∈Z

c(n, r)e

(
n

α
τ

)

e(rβz) (7)
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for some complex numbers c(n, r). By part (ii) in Definition 1, one has c(n, r) = 0
whenever 4mn < βr2. On the other hand, the functional equation

f (τ, z) = emβ
(
η2α−1λ2τ + 2ηλz

)
f

(
τ, z + ηα−1λτ

)
,

valid for any λ ∈ Z by (i) of the same definition, yields the relation c(n, r) =
c(n + rβηλ + mβη2λ2, r + 2mηλ). Therefore, if we set cr(D) := c(n, r) whenever
D = 4mn − βr2, the previous equation is equivalent to the identity cr(D) = cr ′(D)

for any integers r, r ′ such that r ≡ r ′ (mod 2mη). If we use this equation in (7) we
can write

f (τ, z) =
2mη∑

μ=1

fμ(τ)Θmη,μ

(
ηβ

α
τ,βz

)

where fμ(τ) =
∞∑

D=0

cμ(D)e

(
D

4mα
τ

)

(see [5, p. 58] for the explicit argument). This is called the theta decomposition of
f (τ, z) (at infinity).

An important technical ingredient of this work is the following parameterization of
H × C by real coordinates; a pair (τ, z) is identified with the 4-tuple of real numbers
(x, y,p, q) determined by τ = x + iy and z = pτ + q .

A straightforward computation yields that any Jacobi cusp form f (τ, z) in
J

cusp
k,mβ,χ (Γ0(N) � (Z × β−1

Z)〈ζβ〉) defines a function yk/2|emβ(pz)f (τ, z)| on
H × C, invariant under the action of the group. Since f (τ, z) is cuspidal, such a
real-valued continuous function is well-defined on the compactification of the quo-
tient space H ×C/Γ0(N)� (Z×β−1

Z)〈ζβ〉. Thus yk/2|emβ(pz)f (τ, z)| is bounded.
In complete analogy with the case of elliptic cusp forms, this bound yields an estimate
on the size of the Fourier coefficients of f (τ, z).

Lemma 1 Let f (τ, z) ∈ J
cusp
k,mβ,χ (Γ0(N) � (Z × β−1

Z)〈ζβ〉) with Fourier series rep-
resentation (7). Then there exists a real constant K which depends on f (τ, z) such
that

∣
∣c(n, r)

∣
∣ = ∣

∣cr(D)
∣
∣ ≤ KDk/2 for all n, r.

For technical reasons, we recall some analytic consequences of an estimate like
this.

Lemma 2 For any 1 ≤ μ ≤ 2m, let {cμ(D)} be a sequence in C indexed by the set of
positive integers D such that −D ≡ βμ2 (mod 2m). To each one of these sequences
associate the series

fμ(τ) =
∞∑

D=1

cμ(D)e

(
D

4m
τ

)

(τ ∈ H).

If cμ(D) = O(Dσ ) for some σ > 0 then:

(i) Each series converges absolutely and uniformly on any compact subset of H. In
particular, every fμ(τ) defines a holomorphic function on H.
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(ii) Each series

fμ(τ)Θm,μ(βτ,βz) =
∑

D,r∈Z

r≡μ (2m)

D=4mn−βr2>0

cμ(D)e(nτ)e(rβz)

is absolutely and uniformly convergent on any compact subset of H × C. Hence
the function f (τ, z) = ∑2m

μ=1 fμ(τ)Θm,μ(βτ,βz) is holomorphic on H × C.
(iii) The estimates

emβ(pz)fμ(τ)Θm,μ(βτ,βz) = O
(
y−σ−3/2) as y → 0,

emβ(pz)fμ(τ)Θm,μ(βτ,βz) = O

(

e

(
iy

4mαβ

))

as y → ∞

hold uniformly on x = Re(τ ).

Proof This lemma is a straightforward generalization of a similar statement proved
in [15, p. 117] for elliptic modular forms; see also [13, p. 186]. �

Lemma 3 Let f (τ, z) : H × C → C be a holomorphic function satisfying part
(i) of Definition 1 over the group Γ0(N) � (Z × β−1

Z)〈ζβ〉. If the estimate
emβ(pz)f (τ, z) = O(y−ν) as y → 0 holds uniformly with respect to Re(τ ) for
some positive real number ν, then f (τ, z) is a Jacobi form in Jk,mβ,χ (Γ0(N) � (Z ×
β−1

Z)〈ζβ〉). Moreover, if ν < k − 1/2 then f (τ, z) is a cusp form.

Sketch of the Proof Let σ be any matrix in SL2(Q). As above, the holomorphicity and
symmetries of f (τ, z) under Γ0(N) � (Z × β−1

Z)〈ζβ〉 yield a theta decomposition
for f |k,mβ [σ−1,0,0,1](τ, z). Namely,

f |k,mβ

[
σ−1,0,0,1

]
(τ, z) =

2mβtσ Nσ∑

μ=1

fσ,μ

(
τ

tσ

)

Θmβtσ Nσ ,μ

(
Nσ τ

tσ
,

z

tσ

)

for some positive integers Nσ , tσ depending on σ , and component functions

fσ,μ(τ ) =
∑

D∈Z

cσ,μ(D)e

(
D

4mβtσ
τ

)

determined by certain Fourier coefficients cσ,μ(D). Using that for any fixed τ in H
one has

∫ Nσ

p=0

∫ tσ

q=0
Θmβtσ Nσ ,μ

(
Nσ τ

tσ
,

z

tσ

)

Θmβtσ Nσ ,ν

(
Nσ τ

tσ
,

z

tσ

)

e
(
2mβp2iy

)
dp dq

= tσ√
4mβy

δμ,ν
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(where δμ,ν = 1 if μ = ν and zero otherwise), we get an integral representation for
the coefficients of fσ,μ(τ ). Indeed, for any τ0 in H

cσ,μ(D) = 1

2
√

mβt3
σ

∫ τ0+4mβt2
σ

τ0

∫ Nσ

p=0

∫ tσ

q=0
f |k,mβ

[
σ−1,0,0,1

]
(τ, z)

× Θmβtσ Nσ ,μ

(
Nσ τ

tσ
,

z

tσ

)

e
(
2mβp2iy

)

× e

(

− D

4mβt2
σ

τ

)

y1/2 dp dq dτ. (8)

Using Definition 2, one can prove that |Θmβtσ Nσ ,μ(Nσ τ
tσ

, z
tσ

)|e(mβp2iy) is bound-

ed as y → ∞. On the other hand, for any σ−1 = (
a b
c d

)
with c �= 0, an argument like

the one in [15, p. 42] yields emβ(pz)f |k,mβ [σ−1,0,0,1](τ, z) = O(yν−k) as y → ∞
uniformly on Re(τ ). Therefore, (8) and these estimates imply the existence of positive
real constants K and yK such that

∣
∣cσ,μ(D)

∣
∣ ≤ (2

√
mβKNσ )y

ν−k+ 1
2

0 eπDy0/2mβt2
σ

whenever τ0 is chosen with y0 = Im(τ0) > yK . If D < 0, the right hand side of
this inequality goes to 0 as y0 → ∞. Thus cσ,μ(D) = 0 for every D < 0. This
shows that f (τ, z) satisfies Condition (ii) in Definition 1, and therefore f (τ, z) ∈
Jk,mβ,χ (Γ0(N)�(Z×β−1

Z)〈ζβ〉). If ν < k−1/2, the previous inequality also yields
cσ,μ(0) = 0 for every σ and μ. Hence f (τ, z) is a Jacobi cusp form. �

3 Characteristic twists of Jacobi forms and a generalization of the Fricke
involution

As in the previous section, we fix positive integers k,m,α,β,η and N such that
ηβ|N . Also we fix a Dirichlet character χ mod N .

Definition 3 Let f (τ, z) ∈ Jk,mαβ,χ (Γ0(α,N) � (α−1
Z × β−1

Z)〈ζαβ〉) with Fourier
series representation (7). Let ψ be a primitive Dirichlet character mod M with
gcd (N,M) = 1. We associate to f (τ, z) and ψ the holomorphic function on H × C

defined by the series

fψ(τ, z) :=
∑

n,r∈Z

ψ(n)c(n, r)e

(
n

α
τ

)

e(rβz).

Lemma 4 Consider f (τ, z) and ψ as in Definition 3. Then

fψ(τ, z) ∈ Jk,mαβ,χψ2

(
Γ0

(
α,NM2)

�

(
Mα−1

Z × β−1
Z

)〈ζαβ〉).
If f (τ, z) is a cuspidal Jacobi form, then so is fψ(τ, z).
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Proof For any x in R, set θ(x) = ( 1 x
0 1

) ∈ SL2(R) and θ̃ (x) = [θ(x),0,0,1]. Then

θ̃ (x) ∈ GJ and, clearly,

f |k,mαβ

[

θ̃

(
αa

M

)]

(τ, z) = f

(

τ + αa

M
,z

)

=
∑

n,r∈Z

e

(
an

M

)

c(n, r)e

(
n

α
τ

)

e(rβz)

for any a ∈ Z. Therefore,

M−1∑

a=0

ψ(a)f |k,mαβ

[

θ̃

(
αa

M

)]

(τ, z) = Gψfψ(τ, z), (9)

where Gψ = ∑M−1
a=0 ψ(a)e( a

M
) is the Gauss sum associated to the primitive Dirichlet

character ψ .
For convenience set L = NM2 and consider any γ = (

a b
cL d

) ∈ Γ0(α,L). It is

easy to see that γ ′ = θ(αu
M

)γ θ(αd2u
M

)−1 is in Γ0(α,L) ⊆ Γ0(α,N) and χ(γ ′) =
χ(γ ) = χ(d). Thus, for any group element [γ, (λ, ν), ζ

j
αβ ] in Γ0(α,L) � (Mα−1

Z ×
β−1

Z)〈ζαβ〉 one has

f |k,mαβ

[

θ̃

(
αu

M

)]
[
γ, (λ, ν), ζ

j
αβ

]
(τ, z)

= f |k,mαβ

[

γ ′,
(

λ, ν − λα d2u

M

)

, ζ
j
αβ

][

θ

(
α d2u

M

)

, (0,0),1

]

(τ, z)

= χ(γ )f |k,mαβ

[

θ̃

(
α d2u

M

)]

(τ, z).

This equation and (9) yield fψ |k,mαβ [γ, (λ, ν), ζ
j
αβ ](τ, z) = χψ2(γ )fψ(τ, z). Thus

fψ(τ, z) is a holomorphic function on H × C which satisfies part (i) of Definition 1.
Observe next, for σ ∈ SL2(Q) and 0 ≤ a ≤ M − 1, that

f |k,mαβ

[

θ̃

(
αa

M

)]∣
∣
∣
∣
k,mαβ

[σ,0,0,1](τ, z) = f |k,mαβ

[

θ

(
αa

M

)

σ,0,0,1

]

(τ, z)

must have a Fourier series representation like the one in part (ii) of Definition 1.
Hence the same holds for the function fψ |k,mαβ [σ−1,0,0,1](τ, z). This proves the
first half of the lemma. The statement about the cuspidal form f (τ, z) is handled
similarly. �

Definition 4 For any Jacobi form f (τ, z) and positive real number L define

ULf (τ, z) := f (τ,Lz).

Notice that the operator UL maps any Jacobi (cusp) form of index m onto a Ja-
cobi (cusp) form of index mL2. The weight remains the same and the corresponding
groups change a bit.
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Definition 5 Any matrix WL = ( 0 −1
L 0

)
in GL+

2 (R) with L a positive integer is called

a Fricke involution. It normalizes Γ0(L). We define the linear operator |k,m[W̃L] on
Jacobi forms of weight k and index m by

f |k,m[W̃L](τ, z) := L−k/2τ−kemL

(

−z2

τ

)

f

(−1

Lτ
,
z

τ

)

.

It is immediate to check that

f |k,m[W̃L](τ, z) = (U√
L
f )|k,mL

[(
0 −1/

√
L√

L 0

)

,0,0,1

]

(τ, z). (10)

Lemma 5 Let β,η,L be positive integers such that ηβ|L. Let ρ be a Dirichlet char-
acter mod L. If f (τ, z) ∈ Jk,mβ,ρ(Γ0(L) � (ηZ × β−1

Z)〈ζβ〉) then

f |k,mβ [W̃L](τ, z) ∈ Jk,mβL,ρ

(
Γ0(β,L) �

(
β−1

Z × (L/η)−1
Z

)〈ζβL/η〉
)
.

If f (τ, z) is a cuspidal Jacobi form, then so is f |k,mβ [W̃L](τ, z).

Proof Clearly, f |k,mβ [W̃L](τ, z) is a holomorphic function on H × C. Using direct
computations, it is easy to see for

(
a b
cL d

)
in Γ0(β,L) ⊆ Γ0(L) that

f |k,mβ [W̃L]|k,mβL

[(
a b

cL d

)

,0,0,1

]

(τ, z)

= (U√
L
f )|k,mβL

[(
d −c

−bL a

)

,0,0,1

][(
0 −1/

√
L√

L 0

)

,0,0,1

]

(τ, z)

= U√
L

(

f |k,mβ

[(
d −c

−bL a

)

,0,0,1

])∣
∣
∣
∣
k,mβL

[(
0 −1/

√
L√

L 0

)

,0,0,1

]

(τ, z)

= ρ(d)f |k,mβ [W̃L](τ, z). (11)

On the other hand, f |k,mβ [W̃L]|k,mβL[I2, λ, ν, ζ
j
βL](τ, z) is equal to

(U√
L
f )|k,mβL

[

I2,−
√

Lν,
λ√
L

,ζ
j
βL

][(
0 − 1√

L√
L 0

)

,0,0,1

]

(τ, z),

and for λ ∈ β−1
Z, Lν ∈ ηZ, we have

(U√
L
f )|k,mβL

[

I2,−
√

Lν,
λ√
L

,ζ
j
βL

]

(τ, z)

= emβ
(
(−Lν)2τ − 2Lν

√
Lz − Lνλ

)
f (τ,

√
Lz − Lντ + λ) = (U√

L
f )(τ, z).

These two identities plus (10) yield

f |k,mβ [W̃L]|k,mβL

[
I2, λ, ν, ζ

j
βL

]
(τ, z) = f |k,mβ [W̃L](τ, z) (12)
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for any (λ, ν) ∈ β−1
Z × (L/η)−1

Z. In order to check that f |k,mB [W̃L](τ, z) satisfies
Condition (ii) of Definition 1, notice that for any σ−1 = (

a b
c d

)
in SL2(Q) one has

f |k,mβ [W̃L]|k,mβL

[
σ−1,0,0,1

]
(τ, z)

= (U√
L
f )|k,mβL

[(−c/L −d

a bL

)(√
L 0

0 1/
√

L

)

,0,0,1

]

(τ, z)

= Lk/2
(

f |k,mβ

[(−c/L −d

a bL

)

,0,0,1

])

(Lτ,Lz).

Therefore, f |k,mβ [W̃L]|k,mβL[σ−1,0,0,1](τ, z) has a Fourier series representation
as required. This fact plus (11) and (12) imply that the function f |k,mβ [W̃L](τ, z) is
a Jacobi form as stated. The second part of the lemma is proved in a similar way. �

Lemma 6 Given any f (τ, z) in Jk,mβ,χ (Γ0(N) � (ηZ × β−1
Z)〈ζβ〉) and a primitive

Dirichlet character ψ mod M with gcd (N,M) = 1, set g(τ, z) := f |k,mβ [W̃N ](τ, z).
Then

fψ |k,mβ [W̃NM2](τ, z) = Cψgψ(τ,Mz) with Cψ = CN,ψ = χ(M)ψ(−βN)
Gψ

Gψ

.

Proof For an integer u with gcd (u,M) = 1, pick integers x and y such that xM −
yuβN = 1. Then

(
M −yβ

−uN x

) ∈ Γ0(β,N) and

θ

(
u

M

)(
0 −1/M

√
N

M
√

N 0

)

=
(

0 −1/
√

N√
N 0

)(
M −yβ

−uN x

)

θ

(
βy

M

)

.

Since UM
√

N(f |k,mβ [θ̃ ( u
M

)])(τ, z) = (UM
√

Nf )|k,mβNM2 [θ̃ ( u
M

)](τ, z), the previ-
ous identity yields

f |k,mβ

[

θ̃

(
u

M

)

W̃NM2

]

(τ, z)

= (UM
√

Nf )|k,mβNM2

[(
0 −1/

√
N√

N 0

)(
M −yβ

−uN x

)

θ

(
βy

M

)

,0,0,1

]

(τ, z)

= UM

(

f |k,mβ [W̃N ]|k,mβN

[(
M −yβ

−uN x

)

,0,0,1

]∣
∣
∣
∣
k,mβN

[

θ̃

(
βy

M

)])

(τ, z)

= UM

(

g|k,mβN

[(
M −yβ

−uN x

)

,0,0,1

]∣
∣
∣
∣
k,mβN

[

θ̃

(
βy

M

)])

(τ, z).

On the other hand, by Lemma 5, we know that g(τ, z) = f |k,mβ [W̃N ](τ, z) is in
Jk,mβN,χ (Γ0(β,N) � (β−1

Z × (N/η)−1
Z)〈ζβN/η〉). Hence

f |k,mβ

[

θ̃

(
u

M

)

W̃NM2

]

(τ, z) = χ(M)g|k,mβN

[

θ̃

(
βy

M

)]

(τ,Mz),
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using that χ(x) = χ(M). From this relation and (9), one gets

fψ |k,mβ [W̃NM2](τ, z) = 1

Gψ

M−1∑

u=0

ψ(u)f |k,mβ

[

θ̃

(
u

M

)]∣
∣
∣
∣
k,mβ

[W̃NM2](τ, z)

= χ(M)ψ(−βN)
Gψ

Gψ

gψ(τ,Mz).
�

For completeness sake, we observe that the function g(τ, z) introduced in
Lemma 6 is in J

k,mβNM2,χψ
2(Γ0(β,NM2)�(β−1

Z×(NM)−1
Z)〈ζβNM 〉) whenever

f (τ, z) is in Jk,mβ,χ (Γ0(N) � (Z × β−1
Z)〈ζβ〉) (Lemmas 4, 5).

4 Dirichlet series

Previously we have studied some basic properties of Jacobi forms, their characteristic
twists and their images under a linear operator based on a Fricke involution. In this
section, we put ourselves in a more general situation and consider instead Fourier
series in two variables of a particular kind. We associate to them a set of Dirichlet
series builded with their Fourier coefficients and show that such Dirichlet series have
integral representations.

Definition 6 Fix positive integers m and β . We say that a Fourier series f (τ, z) in
the variables τ ∈ H and z ∈ C is of type J if

f (τ, z) =
∑

n,r∈Z

4mn>βr2

c(n, r)e(nτ)e(rβz) (13)

for some c(n, r) ∈ C and the following properties hold:

(I) The series f (τ, z) converges absolutely and uniformly on every compact subset
of H × C.

(II) There are positive real numbers C, σ such that |c(n, r)| < C(4mn − βr2)σ for
all n, r .

(III) The Fourier coefficients in (13) satisfy c(n, r) = c(n + λrβ + λ2mβ, r + 2mλ)

for all λ ∈ Z.

Observe that Condition I is equivalent to the fact that the series (13) defines a
holomorphic function f (τ, z) : H × C → C. Moreover, it is possible to deduce from
I and III (as we did for Jacobi forms in a previous section) that (13) can be written as
a finite combination of theta functions:

f (τ, z) =
2m∑

μ=1

fμ(τ)Θm,μ(βτ,βz) where fμ(τ) =
∞∑

D=1

cμ(D)e

(
D

4m
τ

)

(14)

and cr(D) = c(n, r) whenever D = 4mn−βr2. We call (14) the theta decomposition
of f (τ, z).
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Any cuspidal Jacobi form f (τ, z) in J
cusp
k,mβ,χ (Γ0(N) � (Z × β−1

Z)〈ζβ〉) is repre-
sented by a Fourier series of type J (with σ = k/2).

Definition 7 Let f (τ, z) be a series of type J , M any positive integer and ψ a prim-
itive Dirichlet character mod M . The twist of f (τ, z) by ψ is defined as the series

fψ(τ, z) :=
∑

n,r∈Z

4mn>βr2

ψ(n)c(n, r)e(nτ)e(rβz).

It is easy to see that the Fourier series fψ(τ, z) satisfies Conditions I and II of
Definition 6. Also it satisfies III with λ ∈ MZ instead of λ ∈ Z. As before, these
properties yield the theta decomposition (2) for fψ(τ, z).

Of course, f (τ, z) = fψ(τ, z) whenever ψ is the trivial character with conductor
M = 1.

Definition 8 To any series f (τ, z) of type J and to any primitive Dirichlet character
ψ mod M we associate 2mM Dirichlet series related to the theta decomposition (2)
of fψ(τ, z). Namely, Lμ(fψ ; s) for μ = 1,2, . . . ,2mM is defined as the series in (4).
Furthermore, in analogy with the elliptic case, we complete these series with some ex-
ponential and gamma factors. For a positive integer N with β|N and gcd (N,M) = 1,
we set

ΛN,μ(fψ ; s) :=
(

2π

M
√

N

)−s

Γ (s)Lμ(fψ ; s). (15)

Notice that II yields that all these series are uniformly convergent on the complex
half-plane Re(s) > 1 + σ .

Our next task is to find an integral representation for the series (15). With that goal
in mind we recall the real coordinates x, y,p, q of H × C and consider

Ia(s) :=
∫ ∞

y=0

∫ M

p=0
em

(

p2 iy

M
√

N

)

fψ

(
iy

βM
√

N
,p

iy

βM
√

N
− a

2mβM

)

× ys−1/2 dp dy. (16)

Lemma 7 Let f (τ, z) and ψ be as in Definition 8. For any a = 1,2, . . . ,2mM and
any s ∈ C with Re(s) > 0, one has

Ia(s) =
(

2m

M
√

N

)−1/2

βs

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s).

Proof Using the theta representation of fψ(τ, z), we can write the double integral
Ia(s) in (16) as

∫ ∞

y=0

∫ M

p=0

2mM∑

μ=1

fψ,μ

(
iy

βM
√

N

)

ΘmM,μ

(
iy√
N

,p
iy

M
√

N
− a

2mM

)
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× em

(

p2 iy

M
√

N

)

ys−1/2 dp dy.

Then we plug the Fourier series representations of fψ,μ(τ, z) and ΘmM,μ(τ, z) in this
expression and get

Ia(s) =
2mM∑

μ=1

e

(

− aμ

2mM

)∫ ∞

y=0

∞∑

D=1

ψ

(
D + βμ2

4m

)

cμ(D)e

(
D

4m

iy

βM
√

N

)

× ys−1/2
∑

r∈Z

r≡μ (2mM)

∫ M

p=0
e

(
(r + 2mp)2

4m

iy

M
√

N

)

dp dy.

Next we make the change of variable p̃ = p + r
2m

in the inner integral and obtain

Ia(s) =
2mM∑

μ=1

e

(

− aμ

2mM

)∫ ∞

y=0

∞∑

D=1

ψ

(
D + βμ2

4m

)

cμ(D)e

(
D

4m

iy

βM
√

N

)

×
(∫ ∞

p̃=−∞
em

(

p̃2 iy

M
√

N

)

dp̃

)

ys−1/2 dy

=
(

2m

M
√

N

)−1/2 2mM∑

μ=1

e

(

− aμ

2mM

) ∞∑

D=1

ψ

(
D + βμ2

4m

)

cμ(D)

×
∫ ∞

y=0
e

(
D

4m

iy

βM
√

N

)

ys−1 dy.

The last integral is equal to ( πD

2mβM
√

N
)−sΓ (s) whenever s ∈ C is in the right half-

plane Re(s) > 0, and the lemma follows. �

Definition 9 Fix positive integers m, β and N with β|N . We say that a Fourier series
g(τ, z) in the variables τ ∈ H and z ∈ C is of type JN if

g(τ, z) =
∑

n,r∈Z

4mn>Nr2

d(n, r)e

(
n

β
τ

)

e(rNz) (17)

for some c(n, r) ∈ C and the properties I, II, III given in Definition 6 hold for g(τ, z)

with a parameter N instead of β . (In other words, Conditions II and III satisfied
by (17) are |d(n, r)| < C(4mn − Nr2)σ for all n, r and d(n, r) = d(n + λrN +
λ2mN,r + 2mλ) for all λ ∈ Z.)

As in the case of series of type J , Conditions I and III yield a theta decomposition
for g(τ, z):

g(τ, z) =
2m∑

μ=1

gμ(τ)Θm,μ

(
N

β
τ,Nz

)
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where gμ(τ) =
∞∑

D=1

dμ(D)e

(
D

4mβ
τ

)

, (18)

and dr(D) = d(n, r) whenever D = 4mn − Nr2.
If f (τ, z) ∈ J

cusp
k,mβ,χ (Γ0(N) � (Z × β−1

Z)〈ζβ〉) then the map g(τ, z) = f |k,mβ ×
[W̃N ](τ, z) is in J

cusp
k,mβN,χ (Γ0(β,N)� (β−1

Z×N−1
Z)〈ζβN 〉) (see Lemma 5). Hence

g(τ, z) is represented by a series of type JN (with σ = k/2).
The obvious generalization of Definition 7 indicate us how to twist the series

g(τ, z) in (17) with a primitive Dirichlet character ψ mod M . In this way, we get
a Fourier series gψ(τ, z) which satisfies I and II. It also satisfies III as above with
λ ∈ MZ instead of λ ∈ Z. At any rate, these properties yield the theta decomposition
(3) for gψ(τ, z).

As in Definition 8, we associate to gψ(τ, z) the collection of 2mM Dirichlet series
Lμ(gψ ; s) where μ = 1,2, . . . ,2mM given in (5), and the corresponding completed
Dirichlet series ΛN,μ(gψ ; s).

Next we consider the conjugate character ψ of ψ and the integral

Ja(s) :=
∫ ∞

y=0

∫ M

p=0
e

(
ap

M
+ a2

√
Niy

4mM

)

gψ

(
βiy

M
√

N
,− aiy

2mM
√

N
− p

NM

)

× ys−1 dp dy. (19)

Lemma 8 Let g(τ, z) and ψ be as above. For any a = 1,2, . . . ,2mM and any s ∈ C

with Re(s) > 0, one has

Ja(s) = Mβ−sΛN,a(gψ ; s).

Proof If the theta representation of gψ(τ, z) is used on the right hand side of (19),
we get

Ja(s) =
∫ ∞

y=0

∫ M

p=0

2mM∑

μ=1

gψ,μ

(
βiy

M
√

N

)

ΘmM,μ

(√
Niy,−a

√
Niy

2mM
− p

M

)

× e

(
ap

M
+ a2

√
Niy

4mM

)

ys−1 dp dy.

Hence

Ja(s) =
∫ ∞

y=0

2mM∑

μ=1

∞∑

D=1

ψ

(
D + Nμ2

4m

)

dμ(D)e

(
D

4m

iy

M
√

N

)

×
∑

r∈Z

r≡μ (2mM)

e

(
r2 − 2ar + a2

4mM

√
Niy

)(∫ M

p=0
e

(

(a − r)
p

M

)

dp

)

ys−1 dy.
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Since the inner integral is zero whenever a �= r and M otherwise, we obtain

Ja(s) = M

∫ ∞

y=0

∞∑

D=1

ψ

(
D + Na2

4m

)

da(D)e

(
D

4m

iy

M
√

N

)

ys−1 dy

= M

∞∑

D=1

ψ

(
D + Na2

4m

)

da(D)

(
πD

2mM
√

N

)−s

Γ (s)

= Mβ−sΛN,a(gψ ; s). �

5 Proof of the main theorem

Now that we have integral representations for
∑

μ e(−aμ/2mM)ΛN,μ(fψ ; s) and
ΛN,a(gψ ; s), we adapt the classical argument of A. Weil for the proof of our con-
verse theorem. We break the argument into a proposition, its corollary, two lemmas,
and another proposition. In each proof, we only sketch steps which are completely
analogous to some in the elliptic case (see [15, pp. 125–127] and [20] for details).
The corollary and the last proposition of this section constitute our main result as
they together yield Theorem 1.

Proposition 1 Fix positive integers m, β and N with β|N . Let f (τ, z) be a Fourier
series of type J and g(τ, z) a Fourier series of type JN . Also, let ψ be a primitive
Dirichlet character mod M with gcd (N,M) = 1. Then, for any positive integer k,

the following two statements are equivalent:

(A) There exists a complex number Cψ such that

fψ |k,mβ [W̃NM2](τ, z) = Cψgψ(τ,Mz).

(B) Each series ΛN,μ(fψ, s) and ΛN,μ(gψ, s) (1 ≤ μ ≤ 2mM) admits a holomor-
phic continuation to the whole s-plane, they are bounded on any vertical strip,
and satisfy the functional equations

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s) = ikCψ

(
2mβM√

N

)1/2

ΛN,a

(

gψ ; k − s − 1

2

)

for 1 ≤ a ≤ 2mM .

Proof First, we prove that (A) implies (B).
The integral (16) can be written as a sum Ia(s) = I 0

a (s)+ I ∞
a (s), where the terms

on the right hand side are the integrals I 0
a (s) := ∫ 1

y=0

∫ M

p=0 . . . dp dy and I ∞
a (s) :=

∫ ∞
y=1

∫ M

p=0 . . . dp dy (the integrand in each of them is the same as the one in Ia(s)).
From Condition II, one deduces

emβ(pz)fψ,μ(τ )ΘmM,μ(Mβτ,βz) = O

(

e

(
iy

4m

))

as y → ∞
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for μ = 1,2, . . . ,2mM (see, for example, [13, p. 186] or [15, p. 117]). Hence

emβ(pz)fψ(τ, z) = O

(

e

(
iy

4m

))

as y → ∞.

This estimate applied to the integrand of I ∞
a (s) yields the existence of a real constant

T such that

∣
∣I ∞

a (s)
∣
∣ < T

∫ ∞

y=1

∫ M

p=0
e

(
iy

4mβM
√

N

)

yRe(s)−1/2 dp dy.

Therefore, I ∞
a (s) is a well-defined, entire function of s, bounded on any vertical strip

of the s-plane.
Analogously, Ja(s) = J 0

a (s) + J ∞
a (s) with J 0

a (s) := ∫ 1
y=0

∫ M

p=0 . . . dp dy and

J ∞
a (s) := ∫ ∞

y=1

∫ M

p=0 . . . dp dy. Arguing as before, one can prove that J ∞
a (s) defines

an entire function of s, bounded on any vertical strip.
In order to get similar properties for I 0

a (s) and J 0
a (s), we proceed in a different

way. A straightforward computation allow us to deduce from (A) the identity

em

(

p2 iy

M
√

N

)

fψ

(
iy

βM
√

N
,p

iy

βM
√

N
− a

2mβM

)

= Cψ

(

− iy

β

)−k

e

(
ap

M
+ a2

√
Ni

4mMy

)

× gψ

(
βi

M
√

Ny
,− p

NM
− ai

2mM
√

Ny

)

.

(20)

Using this in I 0
a (s) and the change of variable ỹ = y−1, we get I 0

a (s) =
(iβ)kCψ J ∞

a (k − s − 1
2 ). Consequently, we can write the integral (16) as

Ia(s) = I ∞
a (s) + (iβ)kCψ J ∞

a

(

k − s − 1

2

)

. (21)

From this expression, Lemma 7 and the properties of I ∞
a (s), J ∞

a (s) obtained above,
we conclude that

(
2m

M
√

N

)−1/2

βs
2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s)

has a holomorphic continuation to the whole complex plane, which is bounded on
any vertical strip.

Observe that the change of variables used in I 0
a (s) can also be applied to

J 0
a (k − s − 1

2 ). More precisely, we can write the integrand of the latter in terms
of fψ(τ, z) using (20). Then we make the change of variable ỹ = y−1 and get
J 0

a (k − s − 1
2 ) = (iβ)−kC−1

ψ I ∞
a (s). This allows us to write (19) as

ikβkCψ Ja

(

k − s − 1

2

)

= I ∞
a (s) + (iβ)kCψ J ∞

a

(

k − s − 1

2

)

. (22)
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Comparing now the right hand side of (21) and (22) (expressions which are holomor-
phic functions on C) we obtain Ia(s) = ikβkCψ Ja(k − s − 1

2 ). Thus

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s) = ikCψ

(
2mβM√

N

)1/2

ΛN,a

(

gψ ; k − s − 1

2

)

.

One consequence of this relation is that ΛN,a(gψ ; s) admits a holomorphic contin-
uation to the whole s-plane bounded on vertical strips. In order to get the same con-
clusion for each series ΛN,μ(fψ ; s), it suffices to observe that (e(− ar

2mM
))1≤a,r≤2mM

is an invertible matrix, and therefore every ΛN,μ(fψ ; s) is a combination of the 2mM

series ΛN,a(gψ ; s). This proves (B).
For the proof of the converse implication, we first rewrite (A) as

(
NM2)−k/2

τ−kemβNM2
(

−z2

τ

)

fψ

( −1

NM2τ
,
z

τ

)

= Cψgψ(τ,Mz).

Then we replace τ by −1/NM2τ and z by −z/NM2τ , obtaining

fψ(τ, z) = (−1)kCψ

(
NM2)−k/2

τ−kemβ

(

−z2

τ

)

gψ

( −1

NM2τ
,

−z

NMτ

)

. (23)

Next we use the theta decompositions of fψ(τ, z) and gψ(τ, z) plus the functional
equation of theta functions

ΘL,μ

(−1

τ
,
z

τ

)

=
√

τ

2Li
eL

(
z2

τ

) ∑

ν (2L)

e

(

−μν

2L

)

ΘL,ν(τ, z)

in order to write (23) as

2mM∑

μ=1

fψ,μ(τ )ΘmM,μ(Mβτ,βz)

= (−1)kCψ

(
NM2)−k/2

τ−kemβ

(

−z2

τ

) 2mM∑

μ=1

gψ,μ

( −1

NM2τ

)

× ΘmM,μ

( −1

βMτ
,

−z

Mτ

)

= (−1)kCψ

(
NM2)−k/2

τ−k

√
βτ

2mi

2mM∑

μ=1

gψ,μ

( −1

NM2τ

) 2mM∑

ν=1

e

(

− μν

2mM

)

× ΘmM,ν(Mβτ,−βz)

=
2mM∑

ν=1

(

(−1)kCψ

(
NM2)−k/2

τ−k

√
βτ

2mi

2mM∑

μ=1

e

(
μν

2mM

)

gψ,μ

( −1

NM2τ

))
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× ΘmM,ν(Mβτ,βz).

Consequently (23), and therefore (A), is equivalent to the system of equations

fψ,r0(τ ) = (−1)kCψ

(
NM2)−k/2

τ−k

√
βτ

2mi

2mM∑

μ=1

e

(
μr0

2mM

)

gψ,μ

( −1

NM2τ

)

indexed by r0 = 1,2, . . . ,2mM . In the following, we show how to get such a set of
identities from (B). Since fψ,μ(τ ) and gψ,μ(τ ) are holomorphic functions on H (by
Condition II), it suffices to prove that (B) yields

2mM∑

μ=1

e

(

− aμ

2mM

)

fψ,μ

(
iy

βM
√

N

)

= ikβkCψy−k

√
2mMy√

N
gψ,a

( −β

M
√

Niy

)

(24)

for every y ∈ R, y > 0. Using the expression for fψ,μ(τ ) in (2) and the inverse Mellin
transform of the exponential function, we have

fψ,μ

(
iy

βM
√

N

)

= 1

2πi

∞∑

D=1

ψ

(
D + βμ2

4m

)

cμ(D)

∫

Re(s)=r

(

π
D

2m

y

βM
√

N

)−s

Γ (s) ds

for any real r > 0. If r > σ + 1, the Dirichlet series Lμ(fψ ; s) is uniformly con-
vergent and bounded on Re(s) = r . Hence Stirling’s formula for Γ (s) implies that
ΛN,μ(fψ ; s) is absolutely integrable. Thus we can exchange the order of summation
and integration in the previous identity and get

2mM∑

μ=1

e

(

− aμ

2mM

)

fψ,μ

(
iy

βM
√

N

)

= 1

2πi

∫

Re(s)=r

y−sβs
2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s) ds. (25)

The Dirichlet series Lμ(fψ ; s) is bounded on Re(s) = r . Thus the estimate
|ΛN,μ(fψ ; s)| = O(| Im(s)|−t ) as | Im(s)| → ∞ is valid for any t > 0 on the ver-
tical line Re(s) = r . Henceforth,

∣
∣
∣
∣
∣
βs

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s)
∣
∣
∣
∣
∣
= O

(∣
∣ Im(s)

∣
∣−t) (26)
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as | Im(s)| → ∞ on the line Re(s) = r . Next take r ′ in R such that k − r ′ > σ + 3
2 .

Then the Dirichlet series La(gψ ; k − s − 1
2 ) is bounded on Re(s) = r ′ and we may

conclude

(
2mM√

N

)1/2∣∣
∣
∣β

kCψΛN,a

(

gψ ; k − s − 1

2

)∣
∣
∣
∣ = O

(∣
∣ Im(s)

∣
∣−t) (27)

as | Im(s)| → ∞ for any t > 0 on the vertical line Re(s) = r ′. As the left hand sides
of (26) and (27) are equal and bounded on the strip r ′ ≤ Re(s) ≤ r by hypothesis,
these two estimates and the Phragmen–Lindelof theorem yield

∣
∣
∣
∣
∣
βs

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s)
∣
∣
∣
∣
∣

=
(

2mM√
N

)1/2

βk

∣
∣
∣
∣CψΛN,a

(

gψ ; k − s − 1

2

)∣
∣
∣
∣ = O

(∣
∣Im(s)

∣
∣−t)

as | Im(s)| → ∞, uniformly on the vertical strip {s ∈ C | r ′ ≤ Re(s) ≤ r}. This fact
and the holomorphic continuation to C of the completed Dirichlet series ΛN,μ(fψ ; s)
and ΛN,a(gψ ; s) allow us to change the path of integration in (25) from Re(s) = r to
Re(s) = r ′. Thus

2mM∑

μ=1

e

(

− aμ

2mM

)

fψ,μ

(
iy

βM
√

N

)

= ikCψ

(
2mβM√

N

)1/2 1

2πi

∫

Re(s)=r ′
y−sβsΛN,a

(

gψ ; k − s − 1

2

)

ds

= ikβkCψy−k

√
2mMy√

N

1

2πi

∫

Re(s)=k−r ′− 1
2

ysβ−sΛN,a(gψ ; s) ds.

Finally, we use the argument prior to (25) and the absolute integrability of
ΛN,a(gψ ; s) to get the following:

gψ,a

( −β

M
√

Niy

)

= 1

2πi

∫

Re(s)=k−r ′− 1
2

ysβ−sΛN,a(gψ ; s) ds.

From the last two sets of identities, we obtain (24), as desired. �

The first half of our main result is an immediate consequence of Lemma 6, the
remark prior to Definition 7, the remark below Definition 9 and Proposition 1, e.g.,

Corollary 4 Let m, β , N and M be positive integers with β|N , gcd (M,N) = 1. Let
χ be a Dirichlet character mod N and ψ a primitive Dirichlet character mod M . If
f (τ, z) is a Jacobi form in J

cusp
k,mβ,χ (Γ0(N) � (Z × β−1

Z)〈ζβ〉) then the completed
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Dirichlet series ΛN,μ(fψ ; s), for μ = 1,2, . . . ,2mM , admits a holomorphic contin-
uation to the whole s-plane. They are all bounded on vertical strips and satisfy the
system of functional equations

2mM∑

μ=1

e

(

− aμ

2mM

)

ΛN,μ(fψ ; s) = ikCψ

(
2mβM√

N

)1/2

ΛN,a

(

gψ ; k − s − 1

2

)

for 1 ≤ a ≤ 2mM , g(τ, z) = f |k,mβ [W̃N ](τ, z), Cψ = χ(M)ψ(−βN)Gψ G−1
ψ

.

The rest of this section is devoted to prove a converse of this corollary.
For two integers a, b such that gcd (a, bN) = 1, consider integers c, d so that ad −

bcβN = 1 (recall that we always assume β|N ) and define γ (a, b) = (
a −bβ

−cN d

) ∈
Γ0(β,N). Though γ (a, b) is not uniquely determined, the value of c (mod a) is
uniquely determined, and we have the key identity

θ

(
c

a

)

WNa2 = aWNγ (a, b)θ

(
bβ

a

)

. (28)

Lemma 9 Let m, β , N and k be positive integers such that β|N . Consider a Fourier
series f (τ, z) of type J and a Fourier series g(τ, z) of type JN . Let a be 1, 4 or an
odd prime number with gcd (a,N) = 1. If

fψ |k,mβ [W̃Na2 ](τ, z) = Cψgψ(τ, az) with Cψ = χ(a)ψ(−βN)Gψ G−1
ψ

for all primitive Dirichlet characters ψ mod a, then

g|k,mβ

(
χ(a)[I2,0,0,1] − [

γ (a, c),0,0,1
])∣

∣
k,mβ

[

θ̃

(
cβ

a

)]

(τ, z)

= g|k,mβ

(
χ(a)[I2,0,0,1] − [

γ (a, b),0,0,1
])∣

∣
k,mβ

[

θ̃

(
bβ

a

)]

(τ, z)

for all integers b, c relatively prime to a.

Sketch of the Proof This is a straightforward adaptation of the proof given for the
corresponding statement in the case of elliptic cusp forms (see, for example, [15,
p. 126]). Here one uses (28). �

Lemma 10 Let m, β , N and k be positive integers such that β|N . Consider a Fourier
series f (τ, z) of type J and a Fourier series g(τ, z) of type JN . Let a, d be odd prime
numbers or 4 with gcd (a,N) = gcd (d,N) = 1. If

fψ |k,mβ [W̃Na2 ](τ, z) = Cψgψ(τ, az) with Cψ = χ(a)ψ(−βN)Gψ G−1
ψ

for the trivial primitive character and for all primitive Dirichlet characters ψ mod a

and mod d , then g|k,mβ [γ,0,0,1](τ, z) = χ(γ )g(τ, z) whenever γ is a matrix of the
form γ = (

a −bβ

−cN d

)
in Γ0(β,N).
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Proof Again, this is a direct adaptation of a proof given for the corresponding state-
ment in the case of elliptic cusp forms (see, for example, [15, pp. 126–127]). �

In order to have a complete analogy with Weil’s theorem, we denote by M any
set of odd prime numbers or 4 such that (i) every element of M is prime to N and
(ii) M ∩ P(a, b) �= ∅ for any P(a, b) = {a + lb | l ∈ Z}.

Proposition 2 Let m, β , N and k be positive integers such that β|N and χ a Dirichlet
character mod N . Let {c(n, r)} and {d(n, r)} be two sequences of complex numbers
such that

f (τ, z) =
∑

n,r∈Z

4mn>βr2

c(n, r)e(nτ)e(rβz)

and

g(τ, z) =
∑

n,r∈Z

4mn>Nr2

d(n, r)e

(
n

β
τ

)

e(rNz)

are series of type J and JN respectively, with (−1)kg(τ,−z) = χ(−1)g(τ, z). As-
sume that for every primitive character ψ of conductor M in M ∪ {1} and all
1 ≤ μ ≤ 2mM each one of the series ΛN,μ(fψ, s), ΛN,μ(gψ, s) satisfies the con-

ditions in (B) of Proposition 1 with Cψ = χ(M)ψ(−βN)Gψ G−1
ψ

. Assume also that

all series Lμ(f ; s) (1 ≤ μ ≤ 2m) converge absolutely at s = k − 1 − ε for some
ε > 0. Then

f (τ, z) ∈ J
cusp
k,mβ,χ

(
Γ0(N) � (Z × β−1

Z)〈ζβ〉)

and

g(τ, z) = f |k,mβ [W̃N ](τ, z).

Proof First, we observe that f (τ, z) and g(τ, z) are holomorphic functions on H ×
C by Lemma 2. Second, we notice that the hypothesis with ψ equal to the trivial
character plus Proposition 1 yield g(τ, z) = f |k,mβ [W̃N ](τ, z).

The invariance of g(τ, z) under the group (β−1
Z × N−1

Z)〈ζβN 〉 follows imme-
diately from the theta decomposition (18) and the transformation law satisfied by
Θm,μ( N

βτ
,Nz) whenever z is replaced by z + λτ

β
+ ν

N
with λ, ν ∈ Z. Consequently,

if we want to show g|k,mβM [h](τ, z) = χ(γ )g(τ, z) for every h = [γ,∗,∗,∗] in
Γ0(β,N) � (β−1

Z × N−1
Z)〈ζβN 〉, it suffices to check

g|k,mβM [γ,0,0,1](τ, z) = χ(γ )g(τ, z) for any γ =
(

a bβ

cN d

)

∈ Γ0(β,N). (29)

Notice that now we are in a situation where the classical argument works perfectly
well (see [15, p. 128]). For the reader’s convenience, we repeat it here.

If c = 0 then (29) is clear. Assume next c �= 0. Since gcd (a, cN) = gcd (d, cN) =
1 and β|N , there exist integers s, t such that a + tcβN ∈ M and d + scβN ∈ M. Put
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a′ = a + tcβN , d ′ = d + scβN , c′ = −c and b′ = −(b + as + stcβN + dt). Then
(

a bβ

cN d

)

=
(

1 −tβ

0 1

)(
a′ −b′β

−c′N d ′
)(

1 −sβ

0 1

)

.

By Lemma 10, one has

g|k,mM

[(
a′ −b′β

−c′N d ′
)

,0,0,1

]

(τ, z) = χ(d ′)g(τ, z) = χ(γ )g(τ, z).

Equation (29) follows from these identities and the invariance of g(τ, z) under the
translation τ → τ + β . Equations (29) and g(τ, z) = f |k,mβ [W̃N ](τ, z) imply that
f (τ, z) is invariant (up to χ ) under Γ0(N) � (Z × β−1

Z)〈ζβ〉.
Finally, the behavior of f (τ, z) at the cusps of Γ0(N) can be determined as in

the case of elliptic modular forms. Indeed, for every 1 ≤ μ ≤ 2m one can show the
estimate emβ(pz)fμ(τ)Θm,μ(βτ,βz) = O(y−k+ε+1/2) as y → 0 uniformly on x =
Re(τ ) using, for example, the argument in [15, p. 129]. This implies the estimate
emβ(pz)f (τ, z) = O(y−(k−ε−1/2)) as y → 0 uniformly on x = Re(τ ). Now we apply
Lemma 3 to f (τ, z) and the proposition follows. �

As we already mentioned, Corollary 4 and Proposition 2 constitute the main results
of this work. Indeed, if we use the relation

2mM∑

a=1

e

(
a(b − μ)

2mM

)

=
{

2mM if μ = b,

0 otherwise,

Lemmas 1 and 2 plus (14) and (18), both results are summarized in the equivalence
stated in Theorem 1.

Remark This result can be easily extended to a converse theorem for Jacobi cusp
forms f (τ, z) in J

cusp
k,mαβ,χ (Γ0(α,N) � (α−1

Z × β−1
Z)〈ζαβ〉) using essentially the

same proof. In such a case, f (τ, z) = ∑2m
μ=1 fμ(τ)Θm,μ(

β
α
τ,βz) with fμ(τ) =

∑∞
D=1 cμ(D)e( D

4mα
τ), and the functional equations of the corresponding Dirichlet

series are

ΛN,a(fψ ; s) = ikC̃ψ

√
β

2mαM
√

N

2mM∑

μ=1

e

(
aμ

2mM

)

ΛN,μ

(

gψ ; k − s − 1

2

)

where 1 ≤ a ≤ 2mM and C̃ψ = χ(M)ψ(−αβN)Gψ G−1
ψ

. The precise statement and

its proof are left to the interested reader.

6 Applications

Our first application is both a new proof and a generalization of a theorem established
by H. Skogman in [17]. We are referring to Corollary 1, given in the introduction.
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Proof of Corollary 1 Without loss of generality, N can be changed by N ′ in
the hypothesis, so we assume that δβ|N . Next we consider the theta decompo-
sition (14) of f (τ, z) and define F(τ, z) := ∑2m′

μ′=1 Fμ′(τ )Θm′,μ′(δβτ, δβz) with

Fμ′(τ ) := fμ′δ(τ ) = ∑∞
D=1 cμ′δ(D)e( D′

4m′ τ), where D = D′δ. This makes sense be-
cause cμ′δ(D) �= 0 only if 4m|D +β(μ′δ)2. It is easy to check that the character twist
of F(τ, z) by any primitive Dirichlet character ψ mod M has a theta representation
Fψ(τ, z) = ∑2m′M

μ′=1 Fψ,μ′(τ )Θm′M,μ′(Mδβτ, δβz) where

Fψ,μ′(τ ) =
∞∑

D′=1

ψ

(
D′ + δβ(μ′)2

4m′

)

cμ′δ(D
′δ)e

(
D′

4m′ τ
)

.

Notice that Fψ,μ′(τ ) = fψ,μ′δ(τ ) for all 1 ≤ μ′ ≤ 2m′M . It is straightforward to
check that Lμ′(Fψ ; s) = Lμ′δ(fψ ; s) and ΛN,μ′(Fψ ; s) = ΛN,μ′δ(fψ ; s).

On the other hand, we consider g(τ, z) = f |k,mβ [W̃N ](τ, z), which has a theta
decomposition g(τ, z) = ∑2m

μ=1 gμ(τ)Θm,μ(N
β

τ,Nz). From it we define

G(τ, z) =
2m′
∑

μ′=1

Gμ′(τ )Θm′,μ′
(

N

δβ
τ,Nz

)

with Gμ′(τ ) =
2m∑

μ=1
μ≡μ′ (2m′)

gμ(τ ).

As before, one observes that for any primitive Dirichlet character ψ mod M one has
Gψ(τ, z) = ∑2m′M

μ′=1 Gψ,μ′(τ )Θm′M,μ′(MN
δβ

τ,Nz) with

Gψ,μ′(τ ) = ψ(δ)

2mM∑

μ=1
μ≡μ′ (2m′M)

gψ,μ(τ ).

In turn, these identities yield Lμ′(Gψ ; s) = ψ(δ)
∑

μ (2mM)

μ≡μ′ (2m′M)

Lμ(gψ ; s) and

ΛN,μ′(Gψ ; s) = ψ(δ)
∑

μ (2mM)

μ≡μ′ (2m′M)

ΛN,μ(gψ ; s), for all 1 ≤ μ′ ≤ 2m′M .

At this point, we use that part (ii) of Theorem 1 holds for f (τ, z). Hence for
any primitive ψ of conductor M ∈ M ∪ {1} and every 1 ≤ μ′ ≤ 2m′M , the series
ΛN,μ′(Fψ, s), ΛN,μ′(Gψ, s) satisfy the functional equations

ΛN,a′(Fψ ; s) = ikCψ

√
β

2mM
√

N

2mM∑

μ=1

e

(
a′δμ
2mM

)

ΛN,μ

(

gψ ; k − s − 1

2

)

= ikC̃ψ

√
δβ

2m′M
√

N

2m′M∑

μ′=1

e

(
a′μ′

2m′M

)

ΛN,μ′
(

δ−1Gψ ; k − s − 1

2

)

,

where Cψ = χ(M)ψ(−βN)Gψ G−1
ψ

and C̃ψ = ψ(δ)Cψ for every 1 ≤ a′ ≤ 2m′M . In

other words, part (ii) of the previous theorem holds for the 4m′ sequences of Fourier
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coefficients determined by F(τ, z) and δ−1G(τ, z). The equivalence stated in Theo-
rem 1 proves the corollary. �

As a consequence of the previous result, we can give a simple proof for the
lifts described in Corollaries 2 and 3 from J

cusp
k,m,χ (Γ0(N) � Z

2) to the space

S
k− 1

2
(4Nm, (Nm

· )(−1
· )kχ) of elliptic cusp forms of weight k − 1/2 and character

(Nm
· )(−1

· )kχ over the group Γ0(4Nm). Since the arguments are very similar, we just
prove Corollary 3.

Proof of Corollary 3 Let f (τ, z) = ∑2m
μ=1 fμ(τ)Θm,μ(τ, z) be a Jacobi form

in J
cusp
k,m,χ (Γ0(N) � Z

2) and g(τ, z) = f |k,m[W̃N ](τ, z) with theta decomposition

g(τ, z) = ∑2m
μ=1 gμ(τ)Θm,μ(Nτ,Nz). If we apply Corollary 1 to g(τ, z) with δ = m,

we obtain that

G(τ, z) = gm(τ)Θm,m(Nτ,Nz) + g2m(τ)Θm,2m(Nτ,Nz)

is a Jacobi form in J
cusp
k,mN,χ (Γ0(N

′) � (Z × (mN)−1
Z)〈ζmN 〉) where N ′ = Nm/

gcd (N,m).
As Θm,m(τ, z) = ϑ2(2mτ,2mz) and Θm,2m(τ, z) = ϑ3(2mτ,2mz), where

ϑ2(τ, z) = ∑
l∈Z

eπi(l+1/2)2τ e2πi(l+1/2)z and ϑ3(τ, z) = ∑
l∈Z

eπil2τ e2πilz are the
classical Jacobi theta series, we can write

G(τ, z) = gm(τ)ϑ2(2mNτ,2mNz) + g2m(τ)ϑ3(2mNτ,2mNz), (30)

G

(

τ, z + 1

2mN

)

= −gm(τ)ϑ2(2mNτ,2mNz) + g2m(τ)ϑ3(2mNτ,2mNz).

(31)

From these equations and ϑ2(2τ, τ ) = e(−τ/4)ϑ3(2τ,0), we deduce

G

(

τ,
τ

2

)

− G

(

τ,
τ

2
+ 1

2mN

)

= 2gm(τ)emN

(

−τ

4

)

ϑ3(2mNτ,0). (32)

On the other hand, from emN( τ
4 )G(τ, τ

2 ) = G|k,mN [I2,
1
2 ,0,1](τ,0) and emN( τ

4 +
1

4mN
)G(τ, τ

2 + 1
2mN

) = G|k,mN [I2,
1
2 , 1

2mN
,1](τ,0), one gets that emN( τ

4 )G(τ, τ
2 )+

iemN( τ
4 + 1

4mN
)G(τ, τ

2 + 1
2mN

) is an elliptic cusp form of weight k and character
χ over the group Γ0(4Nm) (in this argument we use the hypothesis 4|mN ). Next
we recall that ϑ3(2τ,0)2 is a modular form of weight 1 and character (−1

· ) over
Γ0(4). Hence ϑ3(2mNτ,0)2k is a modular form of weight k and character (−1

· )k

over Γ0(4Nm). Putting together these facts and (32), one gets that gm(τ) is a cusp
form in S

k− 1
2
(4Nm, (−1

· )kχ).
Next we consider

2m∑

μ=1

e

(

−μ

2

)

ΛN,μ(f ; s) = ik
(

2m√
N

)1/2

ΛN,m

(

g; k − s − 1

2

)

.
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This is one of the functional equations satisfied by f (τ, z) according to Theorem 1
(or Corollary 4), and it is equivalent to

(
2π√
4Nm

)−s

Γ (s)L(F ; s)

=
(

2π√
4mN

)s−k+ 1
2

Γ

(

k − 1

2
− s

)

L

(

ĝm; k − 1

2
− s

)

, (33)

where F(τ) = ∑2m
μ=1(−1)μfμ(4mτ), ĝm(τ ) = ik(

√
4m)−k+3/2(4N)−1/4gm(τ) and

L(F ; s) (resp., L(gm; s)) denotes the usual Dirichlet series associated to the Fourier
expansion of F(τ) (resp., gm(τ)). This is the other place where we use that 4|Nm,
since then L(gm; s) = Lm(g; s). At any rate, (33) yields that F(τ) is the image
of ĝm(τ ) under the Fricke involution of half-integral weight modular forms. Using
now a basic property of such an involution [16, p. 448], we deduce that F(τ) is in
S

k− 1
2
(4Nm, (Nm

· )(−1
· )kχ). Corollary 3 follows from this and Corollary 2. �

Two final remarks One can generalize Corollaries 2 and 3 a bit. If f (τ, z) =∑2m
μ=1 fμ(τ)Θm,μ(τ, z) is a Jacobi form in J

cusp
k,m,χ (Γ0(N) � Z

2) and δ is a positive
divisor of m, say m = m′δ, then Corollary 1 yields

F(τ, z) =
2m′
∑

μ′=1

fμ′δ(τ )Θm′,μ′(δτ, δz) ∈ J
cusp
k,m′δ,χ

(
Γ0(N

′) �

(
Z × δ−1

Z

)〈ζδ〉
)

where N ′ = Nδ/gcd (δ,N). Clearly, we cannot apply Corollary 2 to F(τ, z) as it is.
However, it is possible to extend Corollary 2 using the final remark of Sect. 5 and
then apply it to F(τ, z). In order to keep this short, we leave the details to the reader
and just state the conclusion obtained in this way.

Fδ(τ) =
2m∑

μ=1
δ|μ

fμ(4m′τ) ∈ S
k− 1

2

(

4N ′m,

(
N ′m′

·
)(−1

·
)k

χ

)

.

As a final comment, we note that the lift f (τ, z) �→ Fm(τ) established in Corol-
lary 3 is compatible with the action of the Hecke algebra whenever k is even, χ = 1
is the trivial character and Nm is a square divisible by 4.

More precisely, if f (τ, z) ∈ J
cusp
k,m,1(Γ0(N) � Z

2), T J
l denotes the lth Hecke oper-

ator of Jacobi forms for any prime l with gcd (l,2mN) = 1 (see the definition in [5])
and h(τ, z) = T J

l f (τ, z), then the corresponding half-integral weight modular forms
Fm(τ) and Hm(τ) associated to f (τ, z) and h(τ, z) as indicated in Corollary 3 satisfy
Hm(τ) = TlFm(τ) where Tl is the lth Hecke operator of half-integral weight modu-
lar forms (denoted as T 4Nm

2k−1,1(l
2) in [16]). This statement follows from comparing

the Fourier coefficients of T J
l f (τ, z) (see [19, p. 119], for example) with those of

TlFm(τ) (in [16, p. 450]) and observing in them the lift h(τ, z) �→ Hm(τ) whenever
the quadratic symbol (Nm

l
) is 1.
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