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Abstract 22 

This work presents a green and very simple approach which enables the accurate and 23 

simultaneous determination of benzo[a]pyrene, dibenz[a,h]anthracene, benz[a]anthracene, 24 

and chrysene, concerned and potentially carcinogenic heavy-polycyclic aromatic 25 

hydrocarbons (PAHs) in interfering samples. The compounds are extracted from water 26 

samples onto a device composed of a small rotating Teflon disk, with a nylon membrane 27 

attached to one of its surfaces. After extraction, the nylon membrane containing the 28 

concentrated analytes is separated from the Teflon disk, and fluorescence excitation-29 

emission matrices are directly measured on the nylon surface, and processed by applying 30 

parallel factor analysis (PARAFAC), without the necessity of a desorption step. Under 31 

optimum conditions and for a sample volume of 25 mL, the PAHs extraction was carried 32 

out in 20 min. Detection limits based on the IUPAC recommended criterion and relative 33 

errors of prediction were in the ranges 20-100 ng L
–1

 and 5-7 %, respectively. Thanks to the 34 

combination of the ability of nylon to strongly retain PAHs, the easy rotating disk 35 

extraction approach, and the selectivity of second-order calibration, which greatly 36 

simplifies sample treatment avoiding the use of toxic solvents, the developed method 37 

follows most green analytical chemistry principles.  38 

 39 
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1. Introduction 45 

 46 

 Polycyclic aromatic hydrocarbons (PAHs) are a class of bioaccumulative and toxic 47 

organic molecules that consist of two or more fused benzene rings. Humans are exposed to 48 

PAHs through different sources (wild fires, coal tar, grilled food, industrial processes, 49 

transportation, energy production, tobacco smoke, etc.). Because many PAHs have been 50 

identified as carcinogenic, mutagenic or teratogenic, the health risk involved may be very 51 

serious [1]. In this context, it is not surprising that continuous efforts are devoted to 52 

developing methods for PAH quantification, within the framework of green chemistry 53 

principles [2,3]. In fact, there is an increasing consciousness of the need to reduce the 54 

negative impact of certain analytical methodologies on the environment, and it is notable 55 

that one of the most important current trends in analytical chemistry is the development of 56 

new eco-friendly and sustainable methods, with no compromise of their good 57 

performances. 58 

 Most methods for the determination of PAHs in environmental samples are based 59 

on chromatographic techniques: high-performance liquid chromatography (HPLC) with 60 

either fluorescence or mass spectrometry (MS) detection, and gas chromatography (GC) 61 

with MS detection [4]. Chromatographic methods for determination of PAHs in water do 62 

not significantly differ from those applied to either soil or air [4]. However, since the levels 63 

of PAHs to quantify are very low, analyte enrichment is a prerequisite for the analysis of 64 

water samples. Several pre-concentration techniques have been developed for this purpose, 65 

including liquid-liquid extraction, solid-phase extraction (SPE), solid-phase 66 

microextraction, stir-bar sorptive extraction, and membrane extraction systems. In 2009, 67 
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Richter et al. introduced an alternative and very useful extraction method called rotating 68 

disk sorptive extraction (RDSE) [5]. The typical RDSE technique consists of the extraction 69 

of selected analytes onto a rotating Teflon disk coated with a sorbent phase (e.g. 70 

polydimethylsiloxane film, octadecyl membrane) in one of its sides, with several 71 

advantages over traditional extraction procedures already discussed [5–8]. In addition to be 72 

a very simple, rapid and inexpensive approach, other advantages of the RDSE method can 73 

be mentioned: (1) the architecture of the device enables a convenient surface-area-to-74 

volume ratio, (2) extractions are carried out from small amounts of aqueous samples, (3) 75 

the recirculating regime prevents the collapse of the filter in complex samples, allowing the 76 

continuous contact between solid and liquid phases, (4) the fact that the extraction phase is 77 

only in contact with the liquid sample permits one to stir at high speeds, and (5) the 78 

adsorptive phase is easily replaceable, allowing the use of either commercial or laboratory-79 

synthesized sorbents. 80 

 In the present report, a new strategy is proposed which involves, for the first time, a 81 

nylon membrane attached to an RDSE device, aimed at the determination of selected heavy 82 

PAHs, namely benzo[a]pyrene (BaP), dibenz[a,h]anthracene (DBA), benz[a]anthracene 83 

(BaA) and chrysene (CHRY). According to the International Agency for Research on 84 

Cancer (IARC), BaP and DBA are classified as belonging to group 1 (carcinogenic to 85 

humans) and to group 2A (probably carcinogenic to humans) respectively, being the most 86 

serious PAH pollutants. The remaining studied compounds, BaA and CHRY, are included 87 

in the 2B group, indicating that they are possibly carcinogenic to humans. 88 

 Taking advantage of the known ability of the nylon membrane to retain and 89 

concentrate PAHs in its surface [9,10], the indicated analytes were simultaneously 90 

extracted from the sample with a nylon-based RDSE device, and then determined by 91 
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excitation-emission fluorescence matrices (EEFMs), directly recorded on the surface of the 92 

solid substrate. Neither organic solvents nor auxiliary reagents are involved in the 93 

experiments, and the required equipment can be found in laboratories of low complexity. 94 

Subsequently, the chemometric algorithm parallel factor analysis (PARAFAC) [11], which 95 

achieves the second-order advantage [12], was applied to the solid-phase EEFMs, in order 96 

to develop a fast and reliable procedure for the determination of the four investigated 97 

PAHs. The selectivity of the method was evaluated with solutions containing the four 98 

analytes and four additional PAHs which have solid-surface fluorescence spectra 99 

significantly overlapped with those of the studied analytes.  100 

 101 

2. Experimental 102 

 103 

2.1. Reagents and solutions 104 

 105 

BaP, DBA, BaA, CHRY, benzo[b]fluoranthene (BbF), benzo[g,h,i]perylene 106 

(BghiP), indeno[1,2,3-d]pyrene (IcdP), and pyrene (PYR) were purchased from Aldrich 107 

(Milwaukee, WI). Methanol was obtained from Merck (Darmstadt, Germany). All reagents 108 

were of high-purity grade and used as received. Stock solutions of all PAHs of about 100 109 

μg mL
–1

 were prepared in methanol. From these solutions, more diluted methanol solutions 110 

(ranging from 50 to 250 ng mL
–1

) were obtained. Working aqueous solutions were prepared 111 

immediately before their use by taking appropriate aliquots of methanol solutions, 112 

evaporating the methanol by use of nitrogen and diluting with water to the desired 113 
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concentrations. The PAHs were handled with extreme caution, using gloves and protective 114 

clothing. 115 

 116 

2.2. Apparatus 117 

 118 

 Fluorescence measurements were carried out on a PerkinElmer (Waltham 119 

MA, USA) LS 55 luminescence spectrometer equipped with a xenon discharge lamp, using 120 

excitation and emission slit widths of 5 nm. The photomultiplier tube voltage (PMT) was 121 

set at 650 V. The data matrices were collected varying the excitation wavelength between 122 

250 and 367 nm each 3 nm, and registering the emission spectra from 370 to 480 nm each 123 

0.5 nm. A magnetic stirrer HI 190M Hanna (Woonsocket, RI, USA) with speed control was 124 

used for the PAHs extraction. 125 

 126 

2.3. Rotating disk nylon extraction 127 

 128 

 The preparation of the rotating disks and the general procedure was similar to that 129 

previously described [9,10]. Briefly, a 0.2 μm pore size nylon membrane (Varian, Seattle, 130 

WA, USA) was attached with a double-coated sticking tape to one side of a Teflon disk 131 

(1.5 cm diameter) containing a magnetic stirring bar (Teflon-coated Micro Stir bar from 132 

VWR International, Inc., Radnor, PA, USA). The rotating disk with the attached nylon 133 

phase was placed inside a beaker containing 25 mL of aqueous PAHs samples, and the disk 134 

was rotated at 1250 rpm for 20 min at room-temperature. After extraction, the nylon 135 

membrane was removed from the disk, and placed in a laboratory-made membrane holder. 136 
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The latter was then introduced into the spectrofluorimeter, in such a way that the angle 137 

formed between the excitation and emission beams was 90°, with an incident angle of 45°. 138 

 139 

2.4. Chemometric analysis over the nylon surface 140 

 141 

 Previous to the second-order calibration experiment, the linear relation of the 142 

fluorescence signals for BaP, DBA, BaA and CHRY with concentrations was investigated 143 

under the employed experimental conditions. The results indicated that linearity is 144 

maintained at least up to 600 ng L
–1

 for the four investigated PAHs, and no attempts were 145 

made to establish the upper concentration of the linear range. A calibration set of 10 146 

samples containing the four analytes in the ranges 50-300 ng L
–1

 (for BaP and BaA) and 147 

50-600 ng L
–1

 (for DBA and CHRY) was prepared from the corresponding working 148 

solutions (Table 1). Eight samples of the set corresponded to the concentrations provided 149 

by a two-level half-factorial design (i.e., 2
4–1

 samples). One of the remaining samples 150 

corresponded to a blank solution (CBaP = CDBA = CBAA = CCHRY = 0), and the remaining 151 

sample contained the studied analytes at intermediate concentrations (CBaP = CBaA = 150 ng 152 

L
–1

; CDBA = CCHRY = 300 ng L
–1

). Each sample was subjected to the RDSE procedure and 153 

the EEFM measurement described above, and the obtained EEFMs were then analyzed 154 

with second-order multivariate calibration. The spectral ranges 250-320 nm (excitation) and 155 

380-480 nm (emission) for the four analytes were chosen after a suitable consideration of 156 

the spectral regions corresponding to their maximum signals, while avoiding useless 157 

background responses, which may be possibly due to intrinsic impurities of the nylon 158 

membrane or to physical dispersion effects. 159 

 160 
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Table 1 

Composition of the samples used in the calibration set
a
. 

Sample BaP CHRY DBA BaA 

1 0 0 0 0 

2 50 100 600 300 

3 300 100 600 50 

4 50 600 100 300 

5 300 100 100 300 

6 300 600 600 300 

7 50 600 600 50 

8 300 600 100 50 

9 50 100 100 50 

10 150 300 300 150 
 a
 All concentrations are given in ng L

–1
. 

 161 

 A set of 13 validation samples, different from the calibration ones, was prepared and 162 

processed in a similar way as the calibration solutions. The concentrations of the analytes in 163 

the validation set were selected at random from the corresponding calibration ranges. 164 

 As will be demonstrated below, different PAHs, namely BbF, BghiP, IcdP, and 165 

PYR have fluorescence signals that significantly overlapped with those of the studied 166 

compounds. Hence, with the purpose of evaluating the method in the presence of these 167 

additional interfering PAHs, a 10-sample test set was prepared containing random 168 

concentrations of BaP, DBA, BaA and CHRY in the above evaluated ranges, as well as 169 

concentrations of each interferent agent, ranging between 600 and 1000 ng L
–1

.  170 

 171 

2.5. Software 172 

 173 

 The PARAFAC theory is well documented [11] and it is not described here. The 174 

routines employed for PARAFAC are written in MATLAB 7.6 [13]. PARAFAC was 175 
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implemented using the graphical interface of the MVC2 toolbox, which is available on the 176 

Internet [14].  177 

 178 

3. Results and discussion 179 

 180 

3.1. Preliminary studies 181 

 182 

 As already stated, a nylon membrane is able to retain PAHs and other organic 183 

compounds on its surface, and proved to be an appropriate support for their 184 

spectrofluorimetric determination [9,10].
 
Nylon membranes are made from nylon 6,6 (a 185 

polymer of adipic acid and hexamethylene diamine) with a chemical structure consisting of 186 

amide groups separated by methylene sequences. The amide group is essentially planar due 187 

to the partial double-bond character of the C–N bond. The chains are oriented in such a way 188 

as to maximize hydrogen bonding between the amino and carbonyl groups. Nonpolar 189 

interactions are expected between hydrophobic PAHs and the methylene chains of nylon. 190 

The mass transfer towards the membrane is favored by the fact that PAHs are dissolved in 191 

an aqueous phase. 192 

 Different approaches, such as direct deposit or solid-phase extraction through a 193 

syringe procedure, can be performed in order to retain the analyte in the nylon surface. In 194 

the present work, a new strategy is proposed which consists in introducing a rotating disk 195 

attached with a nylon membrane in an aqueous PAHs solution, allowing the adsorption of 196 

the analytes onto the disk. The ability of the nylon membrane to retain PAHs dissolved in 197 

water through the rotating disk procedure can be appreciated in Fig. 1, which shows a 198 
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photograph of two nylon-attached rotating disks irradiated with a UV lamp (365 nm), after 199 

the corresponding RDSE approach using pure water (blank) and a solution of the four 200 

studied PAHs.  201 

 202 

 203 

Fig. 1. Photograph of nylon-attached rotating disks irradiated with a UV lamp, after the 204 

RDSE treatment of 25 mL of water (left) and 25 mL of a solution containing BaP, DBA, 205 

BaA and CHRY (right), all at concentrations of 600 ng L
-1

. 206 

 207 

 Exploratory experiments confirmed that fixing the extraction volume to 25 mL, 208 

optimal conditions to obtain higher signals are observed when 10 mm diameter nylon disks 209 

of 0.2 m pore size are stirred at least 20 min at 1250 rpm and room-temperature, and these 210 

were the experimental conditions maintained in the subsequent experiments. 211 

Fig. 2A shows the fluorescence excitation and emission spectra for BaP, DBA, 212 

CHRY, and BaA simultaneously adsorbed on the extraction nylon surface. Although these 213 

fluorescence signals, directly related to analyte concentrations, are welcome for the 214 

development of a solid-surface fluorescence (SSF) method for the determination of the 215 

studied compounds, it is apparent in this figure that the overlapping among the excitation 216 

and the emission spectra hinders their quantitation through a direct univariate or zeroth-217 

order calibration. Moreover, the situation becomes critical if other PAHs are also present in 218 
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samples (Fig. 2B). Therefore, in order to overcome the spectral overlapping problem, 219 

advanced chemometric modeling was applied.  220 

 221 

 222 

Fig. 2 (A) Normalized solid-surface fluorescence (SSF) excitation (EX) and emission (EM) 223 

spectra for BaP (blue), DBA (green), BaA (red), and CHRY (black), and (B) for BbF 224 

(brown), BghiP (cyan), IcdP (gray), and PYR (pink) immobilized onto nylon after the 225 

rotating disk procedure. The dashed-black lines in (A) correspond to the background 226 

signals.  227 

 228 

3.2. Quantitative second-order analysis 229 

 230 

After the rotating disk procedure under optimal conditions was carried out, the 231 

EEFMs were recorded on the nylon surface for calibration and validation samples (Fig. 232 

3A), and were then subjected to chemometric analysis. It is known that a set of EEFMs can 233 

be arranged as a three-way array, which usually complies with the trilinearity conditions 234 

[15] and, thus, the chemometric analysis was performed using PARAFAC [16], a popular 235 

and easy to implement algorithm which achieves the second-order advantage [12]. Second-236 

order advantage refers to the capacity of selected algorithms to predict the concentrations of 237 

the analytes in the presence of any number of unsuspected constituents which can be 238 
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present in real samples. This useful property avoids the requirement of either interference 239 

removal, as in zeroth-order calibration, or the construction of a large and diverse calibration 240 

set, as in first-order calibration. 241 

 242 

 243 

Fig. 3 Three-dimensional plots for solid-surface excitation-emission fluorescence matrices 244 

corresponding to nylon membranes treated with (A) a typical validation sample containing  245 

100 ng L
–1

 BaP, 400 ng L
–1

 DBA, 100 ng L
–1

 BaA, and 200 ng L
–1

 CHRY, and (B) a test 246 

sample containing 140 ng L
–1 

BaP, 140 ng L
–1

 DBA, 200 ng L
–1

 BaA, 280 ng L
–1

 CHRY, 247 

600 ng L
–1

 BbF, 800 ng L
–1

 BghiP, 700 ng L
–1

 IcdP, and 800 ng L
–1

 PYR. 248 

 249 

 PARAFAC was applied to three-way data arrays built by joining the calibration data 250 

matrices with those for each of the validation samples in turn. The algorithm was initialized 251 

with the loadings giving the best fit after a small number of trial runs, selected from the 252 

comparison of the results provided by a method known as generalized rank annihilation 253 

(GRAM) and several random loadings [11]. The number of PARAFAC components was 254 

selected by the so-called core consistency analysis [17], and also through visual inspection 255 

of the spectral profiles produced by the addition of new components. The estimated number 256 

of components using the above technique was six, which can be justified taking into 257 

account the presence of analytes and background signals. No restrictions were applied 258 

during the PARAFAC least-squares fit. An advantage of the PARAFAC model is that it 259 

retrieves physically interpretable profiles. Identification of the chemical constituents of a 260 
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sample is easily done with the aid of the estimated profiles, comparing them with those for 261 

a standard solution of each analyte of interest. Fig. 4 displays the spectral profiles retrieved 262 

by PARAFAC for a typical sample containing the analytes, where the corresponding 263 

signals are clearly distinguished.  264 

 265 

Fig. 4 Normalized solid-surface fluorescence (SSF) excitation (A) and emission (B) spectra 266 

for BaP (blue), CRI (black), BaA (red), and DBA (green), and the corresponding 267 

PARAFAC fluorescence excitation (A) and emission (B) loadings when processing a 268 

typical validation sample with the calibration set of samples. Loadings have been 269 

normalized to unit amplitude. Dotted vertical lines serve as guide for the eye. For clarity 270 

background signals have been avoided. 271 

  272 

Fig. 5A shows the prediction results after the application of PARAFAC to the 273 

complete set of validation samples. The elliptical joint confidence region (EJCR) [18] test 274 

for the slope and intercept of the predicted vs. nominal concentrations plot shows that the 275 

ideal point (1,0) lies inside the EJCR surface, suggesting that PARAFAC successfully 276 

resolves the studied system. The corresponding statistical results shown in Table 2 are also 277 

indicative of high-quality predictions. 278 
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 279 

Fig. 5 Plots for the BaP (blue circle), DBA (green square), BaA (red down triangle), and 280 

CHRY (black up triangle) predicted concentrations as a function of the nominal values (the 281 

solid lines are the perfect fits), and elliptical joint regions (at 95% confidence level) for 282 

slope and intercept of the regression of the corresponding data. Black points mark the 283 

theoretical (intercept = 0, slope = 1) point. (A) Validation samples and (B) test samples. 284 

 285 

 286 

In relation to the limits of detection (LODs), it is important to consider the low 287 

concentration levels of PAHs admitted by governmental agencies in environmental 288 

samples, especially water. The United State Environmental Protection Agency (US-EPA) 289 

reports a value of 200 ng L
–1 

as a maximum concentration level for PAHs in safe drinking 290 

water [19]. As can be appreciated in Table 2, the low LODs attained are very favorable, 291 

especially for BaP (ranked first in the carcinogenic list) and BaA, taking into account the 292 

complexity of the evaluated system and the simplicity of the experimental determination. It 293 
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is necessary to point out that these limits have been calculated using the expression 294 

recommended by the International Union of Pure and Applied Chemistry (IUPAC): 295 

LOD = 3.3 22222 SEN/SEN/ XXC shshs        (1) 296 

where h is the sample leverage at zero analyte concentration, 2

Cs  is the variance in 297 

calibration concentrations, 2

Xs  is the variance in the instrumental signal, SEN is the 298 

component sensitivity, and the factor 3.3 is the sum of t-coefficients accounting for Type I 299 

and II errors (false detects and false non-detects, respectively) at 95 % confidence level. 300 

Equation (1) takes into account the error propagation from both the slope and the intercept 301 

of the pseudo-univariate PARAFAC calibration curve [20]. 302 

A method is valuable when satisfactory predictions are obtained in complex systems 303 

where other constituents are also present, and may interfere the analysis. Thus, additional 304 

PAHs which demonstrated to interfere the analyte signals (Fig. 2B) were added to the 305 

samples, and they were evaluated applying the proposed strategy. Figure 3B shows the 306 

three-dimensional plot for a solid-surface excitation-emission fluorescence matrix 307 

corresponding to a nylon membrane treated with a test sample containing analytes and 308 

interferences. Notice in this figure the scale of the intensity axis and compare it with that of 309 

Fig. 3A. The number of responsive components in these samples, selected by following a 310 

similar procedure to that indicated above for the validation samples, was in the range 7-9. It 311 

seems that in some samples, PARAFAC is not able to discern between the profiles of each 312 

individual foreign compound, grouping them into overall interfering components. However, 313 

this fact does not preclude the obtainment of good analytical results (Fig. 5B), 314 

demonstrating the high level of selectivity achieved by this method. 315 

 316 
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Table 2 

PARAFAC statistical results for BaP, DBA, BaA, and CHRY in samples without 

interferences (validation set) and with BbF, BghiP, IcdP, and PYR as interferences (test set)
a
. 

 BaP DBA BaA CHRY 

Validation set     

RMSEP 10 14 8 21 

REP 7 5 5 7 

LOD 30 70 20 100 

     
Test set     

RMSEP 10 16 8 21 

REP 7 5 5 7 

LOD 30 100 30 100 

a
 RMSEP (ng L

–1
), root-mean-square error of prediction; REP (%), relative error of 

prediction; LOD (ng L
–1

), limit of detection calculated according to eq (1). 

 317 

 The statistical results shown in Table 2 for test samples are similar to those obtained 318 

for the validation ones, indicating that neither the accuracy and precision, measured through 319 

the root mean square error of prediction (RMSEP) and relative error of prediction (REP), 320 

nor the sensitivity (LODs remain at the part-per-trillion levels) are significantly affected by 321 

the addition of these new PAHs. 322 

 Several advantages of the proposed methodology in comparison with the 323 

chromatographic ones currently employed for PAHs analysis (see Introduction) can be 324 

concluded, such as lower experimentally required time, no use of organic solvents, reduced 325 

human participation, and considerable more simplicity. In addition, the coupling to 326 

multivariate calibration significantly improves the sensitivity and selectivity of the method. 327 

 When the proposed approach is compared with that carried out in nylon but 328 

following a solid-phase extraction via a syringe procedure [8], we can conclude that 329 

although the latter one provides lower detection limits (the amide groups of nylon would 330 
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enhance the water motion through the sorbent during the extraction, improving the mass 331 

transfer) [8] the main advantage of the present strategy is that the recirculating regime 332 

prevents collapse of the filter in turbid samples. Regarding the time involved in each 333 

experiment, if the extraction is simultaneously performed on several samples, the 334 

experimental time can be drastically reduced. 335 

 336 

4. Conclusions 337 

 338 

 The extraction ability of a rotating disk attached with a nylon membrane towards 339 

PAHs from water samples has been demonstrated. After extraction, excitation-emission 340 

fluorescence matrices were directly measured in the solid-surface, and the analytes were 341 

quantified with the aid of PARAFAC algorithm at part-per-trillion levels in a very 342 

interfering medium. Beyond the outstanding sensitivity and selectivity achieved using the 343 

proposed approach, additional advantages should be mentioned. The coupling with an 344 

appropriate chemometric tool makes it unnecessary the use of clean up steps for the 345 

removal of interfering compounds, avoiding environmentally unsafe organic solvents, and 346 

saving experimental time and operator efforts. The excellent quality of the obtained results 347 

suggests that the developed method favorably competes with more sophisticated ones, 348 

representing a good choice for the rapid quantitation of PAHs in water samples, and 349 

offering routine laboratories the opportunity to work under green chemistry principles. 350 
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