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FORMACIÓN DE SINGULARIDADES PARA EL FLUJO DEL MAPA ARMÓNICO
DESDE UN VOLUMEN HACIA S2

Consideramos un volumen V ⊂ R3 generado al rotar alrededor del eje Z un dominio Ω ⊂ R2

acotado y suave que vive en el plano XZ. En este trabajo se construye una solución del flujo
de mapa armónico del volumen V a la esfera S2 que revienta en tiempo finito, el problema
es

vt = ∆v + |∇v|2v in V × (0, T )

v = v∂V in ∂V × (0, T )

v(·, 0) = v0 in V,

donde v : V × [0, T )→ S2, v0 : V → S2 es suave y v∂V = v0|∂V : ∂V → S2. Dado un punto
q ∈ Ω de define la circunferencia c(q) generada al rotar el punto q alrededor del eje Z. Se
encuentran datos iniciales y de frontera tales que la solución v revienta exactamente en la
curva c(q) en un tiempo finito pequeño. La construcción de la solución se hace reduciendo el
problema a 2 dimensiones y usando el método de Dávila, Del Pino y Wei [7] que transforma
el problema en un sistema de inner-outer gluing que separa el efecto principal de la ecuación
cerca y lejos de la singularidad. Se obtiene una solución cuyo orden principal cerca de la
singularidad tiene el perfil de un mapa armónico 1-corrotacional escalado.

En la introducción se recuerda la ecuación de flujo de mapa armónico y su origen, se
establece el problema y la reducción a 2 dimensiones. En el primer capítulo se enuncian
resultados útiles de topología y análisis funcional, y propiedades probadas en [7] para los
mapas armónicos 1-corrotacionales y el operador linealizado en torno a ellos. En el segundo
capítulo se obtiene un ansatz de la solución y se usa el método de Dávila, Del Pino y Wei
[7] para reducir el problema a resolver un sistema de inner-outer gluing que después se
resuelve usando punto fijo. En el capítulo cuatro se obtienen las hipótesis para el punto fijo
mediante estimaciones a priori obtenidas dividiendo el sistema en tres problemas principales:
el problema interior, el problema exterior y el problema de los parámetros. En la parte final
se concluye con algunas observaciones sobre este trabajo y posibles trabajos futuros en torno
a el.
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SINGULARITY FORMATION FOR THE HARMONIC MAP FLOW FROM A VOLUME
INTO S2

Consider a volume V ⊂ R3 generated by rotating around the Z axis a bounded smooth
domain Ω ⊂ R2 that lives in the XZ plane. We construct a finite time blow-up solution to
the harmonic map flow from volume V into the sphere S2, the problem is

vt = ∆v + |∇v|2v in V × (0, T )

v = v∂V in ∂V × (0, T )

v(·, 0) = v0 in V,

where v : V × [0, T ) → S2, v0 : V → S2 is smooth and v∂V = v0|∂V : ∂V → S2. Given a
point q ∈ Ω we define the circumference c(q) generated by the rotation of q around Z axis.
We find initial and boundary data so that the solution v blows up at exactly the curve c(q)
at a finite small time. The construction of the solution is done by reducing the problem
to 2 dimensions and using the method of Dávila, Del Pino and Wei [7] that transforms the
problem into an inner-outer gluing system which separates the main effect of the equation
near and far away from the singularity. We obtain a solution that at main order has the
profile of a scaled 1-corrotational harmonic map near the singularity.

In the introduction we recall the harmonic map flow equation and its origin, we set the
problem and the reduction to 2 dimensions. In the first chapter we recall useful results of
topology, functional analysis and properties proved in [7] for 1-corrotational harmonic maps
and the linearized operator around them. In the second chapter we obtain an ansatz of the
solution and use the method of Dávila, Del Pino and Wei [7] to reduce the problem to solving
an inner-outer gluing system, which we solve with a fixed point argument. In chapter four
obtain the hypothesis for the fixed point through a priori estimates obtained by dividing the
system into three main problems, the inner problem, the exterior problem and the parameter
problem. In the final part we conclude with some remarks about this work and possible
future work related to it.
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-Pero yo no quiero andar entre locos- observó Alicia.
-¡Ah!, no podrás evitarlo- dijo el Gato -:

aquí estamos todos locos. Yo estoy loco. Tu estás loca.
-¿Cómo sabes que estoy loca?- dijo Alicia.

-Tienes que estarlo- dijo el Gato, -o no habrías acudido aquí.
- Lewis Carroll, Alicia en el país de las Maravillas
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Introduction

We start by mentioning the original harmonic map flow equation and part of its history, this
will set a relevant context for our work. We define harmonic maps in the same way as Lin,
Wang in their book [18]. Let (M, g) be a Rimannian manifold of dimension m with metric g
and (N, h) a Rimannian manifold of dimension n with metric h. For any map u ∈ C2(M,N)
we can define its Dirichlet energy as follows. For any fixed p ∈ M , there exist two normal
coordinate charts Up ⊂M of p and Vq ⊂ N of q = u(p) such that u(Up) ⊂ Vq. The Dirichlet
energy density function e(u) is defined by

e(u)(x) =
1

2

∑
α,β

∑
i,j

gαβ(x)hij(u(x))
∂ui

∂xα

∂uj

∂xβ
,

where (xα) and (ui) are the coordinate system on Up and Vq respectively. The Dirichlet
energy functional is defined by

E(u) =

∫
M

e(u)dvg.

A map u ∈ C2(M,N) is a harmonic map if it is a critical point of the Dirichlet energy
functional E, which is decreasing along smooth solutions.

(M, g) (N, h)

Rm Rn

xα ui

Up Vq
p

q

u

Figure 1: Diagram of (M, g), (N, h) with coordinate system and function u : M → N .

Another characterization of harmonic maps is that u ∈ C2(M,N) is a harmonic map if it
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is a solution of the following partial differential equation:

∆gu+ A(u)(∇u,∇u) = 0 in M,

where
A(u)(∇u,∇u) =

∑
i

gαβAi(u)(uα, uβ)νi(u),

and Ai = ∇νi is the second fundamental form of N in the normal direction νi.

In 1964 Eells and Sampson [14] proposed to study the evolution equation associated to
harmonic maps. The evolution problem, also called harmonic map flow or harmonic map
heat flow, can be formulated as follows: for any u0 ∈ C∞(M,N), find u : M ×R+ → N that
solves

∂tu−∆gu = A(u)(∇u,∇u) in M × (0,+∞), (1)
u|t=0 = u0. (2)

Notice that (1) is the negative L2-gradient flow of the Dirichlet energy E.

This harmonic map flow equation has several applications in physics and in mathematics.
We outline briefly a few of them. In differential geometry the equation is used to study
deformation of Riemannian surfaces in Teichmüller theory, it is also involved in the study of
isometric embeddings and has to do with the analysis of many particular surfaces. For more
see Lin and Wang [18]. In physics some of the more theoretical uses are mentioned by Misner
[19], which are in Gauge field theory, particle theory and Einstein’s equations. On the more
applied end of things we have that the harmonic map flow is part of a coupled equation with
Navier-Stokes equation that arises in the Ericksen–Leslie model for the hydrodynamics of
nematic liquid crystals, which are used in the screens of most modern electronic devices. See
Lin, Lin and Wang [16]. In addition, the harmonic map flow equation is also related to the
Ginzburg-Landau model for superconductivity.

Let us now focus on some known properties of the equation. From now on, consider the
target manifold N = S2, where S2 is the standard unit sphere in R3 with euclidean metric.
And consider a bounded open domain M ⊂ Rm with euclidean metric, we are especially
interested in dimension m = 2, where M is a flat domain, and m = 3, where M is a volume.
In this case the harmonic map flow equation until a time T > 0 can be written as

ut = ∆u+ |∇u|2u in M × (0, T ), (3)
u = u∂M in ∂M × (0, T ), (4)

u(·, 0) = u0 in M, (5)

where u : M → S2.

Eells and Sampson [14] established the existence of short time smooth solutions of (1)-(2)
until a time Tmax > 0, where loss of smoothness occurs. the authors characterized time Tmax
as

lim
t↑Tmax

‖∇u(·, t)‖∞ = +∞.
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This phenomenon of regularity loss and explosion is called blow-up and Tmax is denominated
blow-up time. It has been shown that this characterization of the blow-up time is optimal
in domain dimension m = 2 but is not optimal for m ≥ 3, Wang [33] has proved that the
optimal characterization for higher dimensions is

lim
t↑Tmax

‖∇u(·, t)‖Lm(M) = +∞.

Struwe [25] proved for m = 2 the existence of H1-weak solutions, where just for a finite
number of points in space-time loss of regularity occurs. More precisely, the following fact
follows from results by Ding-Tian [6], Lin-Wang [17], Qing [22], Qing-Tian [23], Struwe [25],
Topping [28], and Wang [32]: Along a sequence tn → T and points q1, . . . , qk ∈ M , not
necessarily distinct, u(x, tn) blow-up occurs at exactly those k points in the form of bubbling.
Precisely, we have

u(x, tn)− u∗(x)−
k∑
i=1

[
Ui

(
x− qi
λni

)
− Ui(∞)

]
→ 0 in H1(M),

where u∗ ∈ H1(M), qni → qi, λ
n
i → 0, satisfy for i 6= j,

λni
λnj

+
λnj
λni

+
|qni − qnj |2

λni λ
n
j

→ +∞.

Here Ui are solutions U : R2 → S2 of the stationary harmonic map equation

∆U + |∇U |2U = 0 in R2,

∫
R2

|∇U |2 < +∞.

From Topping [28] we have that the energy of these harmonic maps corresponds to the
absolute value of their degree l ∈ N, times the area of the unit sphere,∫

R2

|∇U |2 = 4πl.

In particular, u(·, tn) ⇀ u∗ in H1(M) and for some positive integers li we have

|∇u(·, tn)|2 ⇀ |∇u∗|2 +
k∑
i=1

4πliδqi ,

in the measure sense, where δq denotes the unit Dirac mass at q.

Struwe [26], [27] also showed that something similar happens for m ≥ 3, moreover, he
proved that the set where the solution loses regularity has locally finite (m− 2)-dimensional
Hausdorff measure with respect to the euclidean metric in Rm under some assumptions on
the initial time. Notice that in R3 smooth curves of finite length have finite 1-dimensional
Hausdorff measure. There are more specific results about the dimension of the set of sin-
gularities when N does not support S2, which is not the case that concerns us. We refer
interested readers to chapter 8 of Lin and Wang [18].

In the present work we will construct an example of a blow-up solution of the equation for
m = 3 that has a 2-dimensional flavour. With this in mind, we refer now to some previously

3



known examples of solutions. For m = 2 the few examples of blow-up solutions that exist
are concerned with single-point blow-up in radially symmetric corrotational classes. When
M is a disk or the entire space, a 1-corrotational solution of (3) is of the form

u(x, t) =

(
eiθ sin v(ρ, t)

cos v(ρ, t)

)
, x = ρeiθ.

Within this class, (3) reduces to

vt = vρρ +
vρ
ρ
− sin v cos v

ρ2
. (6)

It is known that the function
w(ρ) = π − 2 arctan(ρ)

is a steady state of (6).

Observation 1 Notice that the following function

W (x) =
1

1 + |x|2

(
2x

|x|2 − 1

)
, x ∈ R2 (7)

is a least energy entire non-trivial harmonic map, which has finite energy,

∫
R2

|∇W |2 = 4π, W (∞) =

0
0
1

 .

Note that

W (x) =

(
eiθ sinw(ρ, t)

cosw(ρ, t)

)
is a 1-corrotational solution of (3). We will refer to this solution as bubble for its form.

The first example of blow-up found for m = 2 was done by Chang, Ding and Ye [3] and
has the following profile

u(x, t) = W

(
x

λ(t)

)
+O(1),

with O(1) bounded in H1 norm and 0 < λ(t) → 0 as t → T . Van den Berg, Hulshof and
King [29] found that the blow-up rate λ(t) for 1-corrotational maps can be generically given
by

λ(t) ≈ κ
T − t

| log(T − t)|2
, (8)

for some κ > 0. Raphael and Schweyer [20] constructed rigurously an entire 1-corrotational
solution with this blow-up rate using methods from dispersive equations. Their method
relies heavily on domain symmetry. Recently Dávila, Del Pino and Wei [7] were able to
also construct rigorously a 1-corrotational solution with the same blow-up rate, this solution
blows up in finite time on any finite set of given points in M . This result is valid for any
bounded open smooth domain M ⊂ R2, without any symmetry required.
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On the counterpart, for m = 3 Grotowski [13] constructed weak solutions with finite time
blow-up whenM = B3 is the unit ball in R3. This example relies on the symmetry of B3 and
does not give information on the blow-up rate and set. In higher dimensions m ≥ 7 Biernat
[2] constructs solutions with blow-up rates

λ(t) ≈ −C
√
T − t

log(T − t) + κ
for m = 7,

λ(t) ≈ κ(T − t)
1
2

+β, for m > 7, κ ∈ R, β > 0.

We notice that there seems to be a transition on the blow-up rates between dimensions.

From this review, we see that there are not many examples of solutions of (1)-(2) for
higher dimensions, particularly for m ≥ 3. We hope this work contributes with an interesting
example of blow-up on a domain of dimension m = 3.

To state our result we first observe the following:

Observation 2 Consider the α-rotation matrix around the z-axis

eJα :=

cosα − sinα 0
sinα cosα 0

0 0 1

 , J =

0 −1 0
1 0 0
0 0 0

 .

We define
Uλ,q,α(x) = eJαW

(
x− q
λ

)
,

where W is defined in (7) and λ > 0, q ∈ R2, α ∈ [0, 2π]. These functions solve problem
(3)-(5) and satisfy the least energy property∫

R2

|∇Uλ,q,α|2 = 4π.

Now, consider the domain M = V a volume in R3 with euclidean metric, where V is
defined as follows: let Ω ⊂ R2 be a bounded domain as a subset of the XZ plane on the three
dimensional space and define V ⊂ R3 the volume generated by rotating Ω around the Z axis.

Then equation (1)-(2) corresponds to the following problem

vt = ∆v + |∇v|2v in V × (0, T ), (9)
v = v∂V in ∂V × (0, T ), (10)

v(·, 0) = v0 in V, (11)

for a function v : V × [0, T )→ S2. Here v0 : V → S2 and v∂V : ∂V → S2 are given functions.

The main result of this thesis is the following:

Theorem 0.1 Given a point q = (q1, q2) ∈ Ω, q � 0, define

c(q) = {(q1 cos θ, q1 sin θ, q2) ∈ R3 : θ ∈ [0, 2π)}

5



the circumference generated by rotating q around the Z axis. Given T > 0 sufficiently small,
there exist v0 such that the solution vc(q)(x, t) of problem (9)-(11), for v∂Ω = (0, 0, 1), blows-up
at the circumference c(q) as t ↑ T . This solution is symmetric with respect to the z axis and
can be written as vc(q)(x, t) = uq(r, z, t), where r =

√
x2 + y2 and (r, z) ∈ Ω. More precisely,

there exist numbers κ∗ > 0, α∗ and a function u∗ ∈ H1(Ω) ∩ C(Ω) such that

uq(r, z, t)− u∗(r, z)− eJα∗
[
W

(
(r, z)− q
λ(t)

)
−W∞

]
→ 0 as t ↑ T,

in the H1 and uniform senses in Ω, where the blow-up rate is given by

λ(t) = κ∗
T − t

| log(T − t)|2
(1 + o(1)) as t ↑ T.

In particular, we have
|∇u(·, t)|2 ⇀ |∇u∗|2 + 4πδq.

Observation 3 Notice that the value v∂Ω = (0, 0, 1) corresponds to W (∞).

Observation 4 Notice that the result is stated for m = 3 but the symmetry of the domain
V makes the constructed solution exhibit two dimensional phenomena, we can see this in the
way the blow-up occurs, matching the reviewed results for dimension 2.

Let us materialize, for didactic purposes, volume V in a simple case when Ω is a circle,
here V would be a solid torus as shown in Figure 2.

X

Y

Z

c(q)

V
X

Y
Z

c(q)

V

Figure 2: Left: Revolution volume V with cut and points of circumference c(q). Right:
Volume V with circumference c(q) inside

The way in which we proceed is the following. We use the axial symmetry of V to
transform the three dimensional problem into a two dimensional one. Let (x, y, z) ∈ V , we
parametrize the volume V with θ ∈ [0, 2π), z ∈ (z0, z1), r ∈ (z1 −

√
z2

1 − z2, z1 +
√
z2

0 − z2),
t ∈ [0, T ), the we use a cylindrical change of variables:

(x, y, z, t) = (r cos(θ), r sin(θ), z, t).

6



where z0 = inf(x,z)∈Ω z and z1 = sup(x,z)∈Ω z. Since V has axial symmetry with respect to the
Z axis then function v does not depend on θ and therefore we can redefine it as a function
u : Ω× [0, T )→ S2 that satisfies

v(x, y, z, t) = u(r, z, t).

Then we have that

vt = ut, ∆v = urr +
1

r
ur + uzz, ∇v = urr̂ + uz ẑ.

Replacing this in equation (9) we arrive at

ut = urr + uzz + |∇u|2u+
1

r
ur.

Let us change the names of the variables x := (x1, x2) := (r, z), then the problem we have to
consider is in two dimensions in the cross section Ω of V . Summarizing, the problem of finding
v solution of (9)-(11) that blows up at T at curve c(q) reduces to finding u : Ω× [0, T )→ S2

that satisfies

ut = ∆u+ |∇u|2u+
1

x1

ux1 in Ω× (0, T ), (12)

u = u∂Ω in ∂Ω× (0, T ), (13)
u(·, 0) = u0, in Ω (14)

and blows up at time T at point q. Here u0 : Ω→ S2 and u∂Ω : ∂Ω→ S2 are given functions
that correspond to the restrictions on Ω and ∂Ω of functions v0 and v∂Ω, repectively.

0
X

Z

(q1, q2)

(x1, x2)

Ω

Figure 3: Cross section Ω with point q and variable x. Keep in mind the relationship with
the original variables x1 = r and x2 = z.

Now our problem is similar to the one treated by Dávila, Del Pino and Wei on [7], the
only difference is the extra derivative on x1. We explain the outline of their method. the
authors start with a 1-corrotational solution of the form u = Uλ,ξ,α for λ, ξ, α time dependant
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parameters to be chosen, and then the authors linearize around this 1-corrotational map by
adding a small function ϕ to get u = Uλ,ξ,α +ϕ. the authors compute the linearized operator
and separate ϕ = ϕi + ϕo into two functions that will have a role near and far away the
blow-up point, respectively. Replacing this in the equation the authors obtain an inner-outer
gluing system of equations. At the same time the authors find approximate equations for
the parameters, that will be part of a fixed point scheme along with ϕi and ϕo. the authors
obtain a priori estimates for the inner and outer parts of ϕi, ϕo and use this in a fixed point
argument to obtain the solution in the wanted spaces with the expected blow-up rate. We
will see that their method can be applied to problem (12)-(14).

Before we describe the parts of this work we would like to state the importance of the
example obtained in Theorem 0.1. As it was mentioned before, there are few examples of
blow-up solutions of the harmonic map flow on dimension m = 3, but most importantly,
there are few examples of blow-up on curves in parabolic equations in general. This has
to do with the set where blow-up occurs, which is one of the most important questions in
blow-up analysis. When the set where this happens is a single point or a finite union of
points the phenomenon is called single-point blow-up or LS-regime, when the set has positive
measure and it is not the whole domain we call it regional blow-up or S-regime and when the
set is the whole domain we call it global blow-up or HS-regime. More on this in the survey
on parabolic blow-up analysis of Galaktionov and Vazquez [11] and the book of Samarskii,
Elenin, Zmitrenko, Kurdyumov and Mikhailov [24]. In our case our blow-up region is a curve
in R3 which has zero Lebesgue measure seen as a subset of R3, but is not a finite union of
points, so we are in between single point and regional blow-up.

There are many results of single point blow-up in parabolic equations, we have already
mentioned some for the harmonic map flow equation. Regional singularity formation is less
common, there are results for some semilinear and nonlinear parabolic equations. Here we
mention a few. For the one dimensional equation

ut = ∆u+ up, p > 0,

there is single point blow-up for β > 2 and regional blow-up when m = p, which in [24]
(p.299) is proven to have Lebesgue measure π. In the same book (p.314) the authors study

ut = ∇ · (|∇u|σ∇u) + uβ, σ, β > 0,

and get single point blow-up for β > σ + 1 and regional blow-up for β = σ + 1, but no
information is given about the measure of the set. In Galaktionov and Vasquez [9], [10] the
authors find that

ut = uxx + (1 + u) logβ(1 + u), β > 0,

has single point blow-up in 0 for β = 2 and there is regional blow-up in a set containing the
ball of radius π. There are more parabolic equations that have been studied in this sense,
but the information given on the set is always divided into single-point, regional (seen as
sets with positive Lebesgue measure in the space) and global. See for example Lacey [15],
Chaves and Galaktionov [4], Galaktionov [8]. Something closer to our problem is the work
of Velazquez [30], [31]. He treats equation

ut = ∆u+ up, x ∈ Rn, n ≥ 1, 1 ≤ p <
n+ 2

n− 2
,

u(x, 0) = u0(x), x ∈ Rn,
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and proves that the blow-up set has zero Lebesgue measure and that for solutions different
from the uniform one the blow-up set has bounded (n − 1)-dimensional Hausdorff measure
on compact sets of Rn. Another wrk that compares to our setting is the one of Del Pino,
Musso and Wei [21], where the authors construct a blow-up solution for Ω ⊂ Rn with n ≥ 7,
for the problem

ut = ∆u+ |u|p−1u, x ∈ Ω, t ∈ (0, T ),

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ),

u(x, t) > 0 x ∈ Ω, t ∈ (0, T ).

The blow-up occurs on a circumference that approaches the border of the domain when
t → T . In addition, the authors give information on the blow-up rate. As we can see these
results are important and help us understand singularity formation, but most of them have a
descriptive nature and their intention is to classify blow-ups, instead of constructing them. It
seems there is a lack of explicit constructions of solutions with finite time blow-up on curves
for parabolic problems in higher dimensions. In this sense, the construction done here has
special value.

Now, let us describe how this thesis is organized. In the first chapter, the first and
second sections are devoted to recalling some useful results of topology, functional analysis
and parabolic regularity, like Arzela-Ascoli theorem, Schauder’s fixed point and Schauder
estimates for parabolic equations. The third section of chapter 1 mentions properties proved
by Dávila, Del Pino and Wei [7] for 1-corrotational harmonic maps and the linearized operator
around them.

In the second chapter we obtain an ansatz of the solution that will look at main order like
a scaled, translated and rotated 1-corrotational map plus a small function. Then we obtain a
first approximation of the scaling, rotation and translation parameters, and use the method
of Dávila, Del Pino and Wei [7] to reduce the problem to a final inner-outer gluing system.
In the last section of this chapter we start by recalling a priori estimates obtained in [7], then
we state the final system of equations as a fixed point problem

u = F(u),

we provide the necessary results on compactness for F , to be proven in the third chapter,
and use Schauder’s fixed point theorem to prove Theorem 0.1.

In chapter three we prove that the operator F meets Schauder’s fixed point theorem
conditions. We do this by first dividing the analysis of the system of equations into three
main problems: the inner problem, the exterior problem and the parameter problem. Then
we join the obtained estimates with the ones from [7] to prove that F goes from a closed ball
into itself and is compact. In the final chapter we conclude with some remarks about this
work, extensions and possible future work.
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Chapter 1

Preliminaries

In this chapter we recall known results that will help us prove Theorem 0.1. In the first
section we state some fundamental definitions and results of topology and nonlinear functional
analysis. In the second section we state a helpful Schauder type regularity result for solutions
of parabolic problems proven in the book by Wu and Yin and Wang [34]. Then, in the third
section, we set the class of 1-corrotational functions in which we choose the main part of the
solution of (12)-(14) and recall some properties of the linearized operator in that class proved
by Dávila, Del Pino and Wei [7].

1.1 General analysis results

Consider a compact metric space X and the space C(X) of real-valued continuous functions
on X.

Definition 1.1 A sequence of functions (fn)n∈N ∈ C(X) is said to be uniformly bounded if
there exists M > 0 such that

|fn(x)| ≤M ∀n ∈ N, ∀x ∈ X.

Definition 1.2 A sequence of functions (fn)n∈N ∈ C(X) is said to be equicontinuous if for
every ε > 0 and x ∈ X there exists δ > 0 such that

|x− y| < δ ⇒ |fn(x)− fn(y)| < ε ∀n ∈ N.

Here δ must not depend on n or y.

Observation 5 Note that if a sequence of functions (fn)n∈N ⊂ C(X) is L-Lipschitz or α-
Hölder continuous with L and α not depending on n, then (fn)n∈N is equicontinuous.

With the last definitions we can state the Arzelà-Ascoli theorem.
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Theorem 1.3 Let (fn)n∈N ∈ C(X) be a sequence of functions that is uniformly bounded and
equicontinuous, then there exists a subsequence (fnk)k∈N that converges uniformly.

Let Y, Z be Banach spaces.

Definition 1.4 An operator F : Y → Z is said to be compact if the image of any bounded
subset of Y has compact closure on Z. In other words, if W ⊆ Y is a bounded subset of Y ,
then F (W ) ⊂ Z is compact.

Observation 6 We introduce a useful characterization of compactness. An operator F :
Y → Z is compact if for any bounded sequence (yn)n∈N in Y , the sequence (F (yn))n∈N has a
convergent subsequence in Z.

We end this section with Schauder’s fixed point theorem.

Theorem 1.5 Let X be a real Banach space and B ⊂ X a nonempty, closed, bounded,
convex set. Let F : B → B be a compact operator. Then F has a fixed point in B, that is,
there exists x ∈ B such that

F (x) = x.

.

1.2 Schauder estimates for a linear parabolic problem

Consider the initial-boundary value problem of a general linear parabolic equation stated as
the following:

ut −
n∑

i,j=1

aij(x, t)∂xixju+
n∑
i=1

bi(x, t)∂xiu+ c(x, t)u = f(x, t) in (x, t) ∈ QT (1.1)

u(x, t) = ϕ(x, t), in (x, t) ∈ ∂pQT , (1.2)

where QT = Ω×(0, T ), Ω ⊂ Rn is a bounded domain, T > 0, and ∂pQT = ∂Ω×{0}. Here the
coefficients aij, bi, c satisfy the uniform parabolicity conditions, that is, for some constants
0 < α ≤ β,

α|ξ|2 ≤ aij(x, t)xiiξj ≤ β|ξ|2, ∀ξ ∈ Rn, (x, t) ∈ QT .

Let us denote, for some γ ∈ (0, 1), the following continuous and Hölder seminorm:

|u|γ, γ
2

;QT := sup
(x,t)∈QT

|u(x, t)|+ sup
(x1,t1),(x2,t2)∈QT

|u(x1, t1)− u(x2, t2)|
|x1 − x2|γ + |t1 − t2|

γ
2

.

We also define
|u|2+γ,1+ γ

2
;QT :=

∑
|s|+2r≤2

|∂sx∂rt u|γ, γ2 ;QT ,
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and associate the corresponding Hölder spaces Cγ,γ/2(QT ) and C2+γ,1+γ/2(QT ).

In the book by Wu and Yin and Wang [34] the authors use interior and near boundary
estimates for the heat equation, and a finite covering technique to establish global Schauder
estimates for the solution of (1.1)-(1.2). We write their result as the following theorem.

Theorem 1.6 Let γ ∈ (0, 1), ∂Ω ∈ C2,α, aij, bi, c ∈ Cγ,γ/2(QT ), f ∈ Cγ,γ/2(QT ), ϕ ∈
C2+γ,1+γ/2(QT ). If u ∈ C2+γ,1+γ/2(QT ) is the solution of the initial-boundary value problem
(1.1)-(1.2), then

|u|2+γ,1+ γ
2

;QT ≤ C(|f |γ, γ
2

;QT + |ϕ|2+γ,1+ γ
2

;QT + ‖u‖L∞(QT )).

This theorem gives us Hölder continuity for the solution of linear parabolic problems when
the right hand side of the equation and the initial-border condition are Hölder continuous.

1.3 1-corrotational harmonic maps and their linearized
operator

Let us recall that the equation to solve is mainly

ut = ∆u+ |∇u|2u+
1

x1

ux1 in Ω× (0, T ).

Along this work we will treat the term 1
x1
ux1 as part of an error, in some sense it will be a

second order term compared to the other ones in the equation. Then it is natural to study
the operator associated with ∆u + |∇u|2u, which we call the harmonic map operator. This
section recalls the analysis and formulas obtained in [7] for this operator.

First, consider the harmonic map equation for functions U : R2 → S2,

∆U + |∇U |2U = 0 in R2, |U | = 1. (1.3)

Consider, for ξ ∈ R2, ω ∈ R, λ > 0, the family of solutions of (1.3) given by the following
1-corrotational harmonic map

Uλ,ξ,ω(x) := QωW

(
x− ξ
λ

)
,

where W is
W (y) =

1

1 + |y|2

(
2y

|y|2 − 1

)
, y ∈ R2, (1.4)

and Qω is the ω-rotation matrix in the z-axis

Qω :=

cosω − sinω 0
sinω cosω 0

0 0 1

 .
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Observe that

∂ωQω = QωJ0, J0 =

0 −1 0
1 0 0
0 0 0

 .

If we rename U = Uλ,ξ,ω, then the linearized operador for (1.3) around U is

LU [ϕ] = ∆xϕ+ |∇xU |2ϕ+ 2(∇xϕ · ∇xU)U.

We will need expressions for the functions that live in the kernel of LU , that means that we
look for functions ϕ that satisfy LU [ϕ] = 0. To find these, first we set y = x−ξ

λ
and using

polar coordinates y = ρeiθ we obtain that

W (y) =

(
eiθ sinw(ρ)

cosw(ρ)

)
, w(ρ) = π − 2 arctan(ρ).

We notice that

wρ = − 2

1 + ρ2
, sinw = −ρwρ =

2ρ

1 + ρ2
, cosw =

ρ2 − 1

1 + ρ2
.

Differentiating U with respect to the parameters λ, ξ, ω allows us to obtain expressions that
annihilate the operator LU , which can be written as

∂λUλ,ξ,ω(x) =
1

λ
ρwρ(ρ)QωE1(y),

∂ωUλ,ξ,ω(x) = ρwρ(ρ)QωE2(y),

∂ξ1Uλ,ξ,ω(x) =
1

λ
wρ(ρ)[cos θQωE1(y) + sin θQωE2(y)],

∂ξ2Uλ,ξ,ω(x) =
1

λ
wρ(ρ)[sin θQωE1(y)− cos θQωE2(y)], (1.5)

where
E1(y) =

(
eiθ cosw(ρ)
− sinw(ρ)

)
, E2(y) =

(
ieiθ

0

)
.

Observation 7 {E1(y), E2(y)} constitutes an orthonormal basis of the tangent space to S2

at point W (y). Also notice that combining this with the fact that U lives in S2 we obtain
that E1(y), E2(y) are pointwise orthonormal to U(x).

It is useful to define

Z01(y) = ρwρE1,

Z02(y) = ρwρE2,

Z11(y) = wρ[cos θE1 + sin θE2],

Z12(y) = wρ[sin θE1 − cos θE2]. (1.6)

We also define, for a function φ(y), the following operator

LW [φ] = ∆yφ+ |∇yW |2φ+ 2(∇yφ · ∇W )W.
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Because the derivatives of U annihilate LU we have that LW [Zij] = 0 for i = 0, 1, j = 1, 2.
In addition to the elements in (1.6) there are two other relevant functions in the kernel of
LW , namely

Z−11(y) = ρ2wρ[cos θE1 − sin θE2],

Z−12(y) = ρ2wρ[sin θE1 + cos θE2]. (1.7)

Observation 8 The operators mentioned before satisfy

LU [ϕ] =
1

λ2
QωLW [φ], ϕ(x) = φ(y), y =

x− ξ
λ

.

It will be important to compute the action of LU on functions with values pointwise or-
thogonal to U , so we will cite without proving various formulas derived in chapter 2 of [7].

For a function Φ(x) with values in R3 we denote

ΠU⊥Φ := Φ− (Φ · U)U.

Then one has the following formula

LU [ΠU⊥Φ] = ΠU⊥∆Φ + L̃U [Φ], (1.8)

where
L̃U [Φ] := |∇U |2ΠU⊥Φ− 2∇(Φ · U)∇U,

and
∇(Φ · U) = ∂xj(Φ · U)∂xjU.

There is another convenient expression of L̃U [Φ] using polar coordinates. Writing in complex
notation

Φ(x) = Φ(r, θ), x = ξ + reiθ.

Then
L̃U [Φ] = −2

λ
wρ(ρ)

[
(Φr · U)QωE1 −

1

r
(Φθ · U)QωE2

]
, ρ =

r

λ
. (1.9)

This last formula has an important consequence. Assuming that Φ : Ω → C × R is a C1

function, which we express in the form

Φ(x) =

(
ϕ1(x) + iϕ2(x)

ϕ3(x)

)
.

We also denote
ϕ = ϕ1 + iϕ2,

and define the operators

div ϕ = ∂x1ϕ1 + ∂x2ϕ2, curl ϕ = ∂x1ϕ2 − ∂x2ϕ1.

Then
L̃U [Φ] = L̃U [Φ]0 + L̃U [Φ]1 + L̃U [Φ]2 (1.10)
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where

L̃U [Φ]0 = λ−1ρw2
ρ[div (e−iωϕ)QωE1 + curl (e−iωϕ)QωE2],

L̃U [Φ]1 = −2λ−1wρ cosw[(∂x1ϕ3) cos θ + (∂x2ϕ3) sin θ]QωE1

− 2λ−1wρ cosw[(∂x1ϕ3) sin θ + (∂x2ϕ3) cos θ]QωE1,

L̃U [Φ]2 = λ−1ρw2
ρ[div (eiωϕ) cos 2θ − curl (eiωϕ) sin 2θ]QωE1

+ λ−1ρw2
ρ[div (eiωϕ) sin 2θ + curl (eiωϕ) cos 2θ]QωE1.

The above identities will be usefull in obtaining estimates for the linear operator LU .
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Chapter 2

Construction of the solution

In the present chapter we use the properties of the linearized harmonic map flow operator
seen in Section 1.3 to arrive to a first system of equations that will separate the effect
of the operator near and far away from the blow-up point. In section 2.2 we find a first
approximation of the parameters through some simplifications. In section 2.3 we transform
the first system of equations into a final coupled system. In section 2.4 we recall results
from [7], then we write the problem as a fixed point one with an operator F and state the
propositions that gives us its compactness, which we will prove in the next chapter. Finally,
at the end of section 2.4 we use all the mentioned results to prove Theorem 0.1 and find the
wanted solution for problem (9)-(11).

2.1 Ansatz for a blowing-up solution

Consider the following parabolic equation for a domain Ω ⊂ R2,

ut = ∆u+ |∇u|2u+
1

x1

ux1 in Ω× (0, T ), (2.1)

u = u∂Ω in ∂Ω× (0, T ), (2.2)
u(·, 0) = u0, in Ω (2.3)

for a function u : Ω× [0, T )→ S2. Here u0 : Ω→ S2 is a given smooth map and

u∂Ω = u0|∂Ω = e3 on ∂Ω, (2.4)

where e3 the following canonical vector in R3,

e3 =

0
0
1

 .

Notice that this vector corresponds to W (∞) where W is the 1-corrotational harmonic map
in (1.4).
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Given a fixed point q ∈ Ω, and any sufficiently small number T > 0 we look for a solution
u(x, t) of problem (2.1)-(2.3) which at main order looks like

U(x, t) := Uλ(t),ξ(t),ω(t)(x) = Qω(t)W

(
x− ξ(t)
λ(t)

)
,

for functions ξ(t), λ(t) and ω(t) of class C1([0, T ]) that we will determine later. We also need
these functions to satisfy

ξ(T ) = q, λ(T ) = 0,

so that u(x, t) blows up at time T at point q. The solution we look for is of the form
u = U + v, where v(x, t) is chosen to be small and so that u is a solution of (2.1)-(2.3) with
initial condition u0(x) = U(x, 0) + v(x, 0).

Let us denote
S(u) := −ut + ∆u+ |∇u|2u+

1

x1

ux1 .

Lemma 2.1 If the constraint |u| = 1 is kept at all times and u = U + v with |v| ≤ 1
2
, then

for u to solve (2.1) it suffices that

S(U + v) = b(x, t)U

for some scalar function b.

Proof. (Of Lemma 2.1) Indeed, if we take S(u) = b(x, t)U , since |u| ≡ 1 then

b(x, t)U · u = S(u) · u = −1

2

∂

∂t
|u|2 +

1

2
∆(|u|2)− 1

2x1

∂

∂x1

|u|2 = 0,

and because U · u = (U · U) + (U · v) = 1 + U · v ≥ 1
2
we get that b ≡ 0.

Notice that we can parametrize all functions v(x, t) such that |U + v| = 1 as

v = ΠU⊥ϕ+ a(ΠU⊥ϕ)U, (2.5)

where ϕ is a function with values in R3 and

ΠU⊥ϕ := ϕ− (ϕ · U)U, a(ζ) :=
√

1− |ζ|2 − 1.

Indeed, one can compute

|U + ΠU⊥ϕ+ a(ΠU⊥ϕ)U |2 = 1 + 2a(ΠU⊥ϕ) + a2(ΠU⊥ϕ) + |ΠU⊥ϕ|2 = 1,

since a2(ΠU⊥ϕ) = 2a(ΠU⊥ϕ) + |ΠU⊥ϕ|2.

Taking v given by (2.5) and using that

∆U + |∇U |2 = 0
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we have the following

S(U + v) = −Ut +
1

x1

Ux1 − ∂t(ΠU⊥ϕ) +
1

x1

∂x1(ΠU⊥ϕ) +LU [ΠU⊥ϕ] +NU(ΠU⊥ϕ) + c(ΠU⊥ϕ)U,

where for ζ = ΠU⊥ϕ, a = a(ΠU⊥ϕ),

LU(ζ) = ∆ζ + |∇U |2ζ + 2(∇U · ∇ζ)U,

NU(ζ) =
[
2∇(aU) · ∇(U + ζ) + 2∇U · ∇ζ + |ζ|2 + |∇(aU)|2

]
ζ − aUt +

1

x1

aUx1 + 2∇a∇U,

c(ζ) = ∆a− at +
1

x1

ax1 +
(
|∇(U + ζ + aU)|2 − |∇U |2

)
(1 + a)− 2∇U · ∇ζ.

We do not consider the partial derivative in x1 to define the linear operator LU because we
want to use all the calculations and theorems proved in [7] for this operator.

Since we have Observation 2.1 we only need ϕ to satisfy

− Ut +
1

x1

Ux1 − ∂t(ΠU⊥ϕ) +
1

x1

∂x1(ΠU⊥ϕ) + LU [ΠU⊥ϕ] +NU(ΠU⊥ϕ) = b(ΠU⊥ϕ)U (2.6)

for some scalar function b. To achieve this we will decompose ϕ into the sum of two functions
ϕ = ϕi + ϕo, which will be called inner and outer solutions because their aim is to solve the
problem near and far away from the blow-up point.

The inner function ϕi(x, t) will be supported near the concentration point x = ξ(t), so it
is more convenient to understand ϕi as a function of the scaled space variable

y =
x− ξ(t)
λ(t)

,

and pointwise orthogonal to U , so that ΠU⊥ϕ
i = ϕi. On the other hand, the outer function

ϕo(x, t) will be constructed to satisfy (2.6) far away from x = ξ(t) and is well defined on the
variable x.

Observation 9 Notice that because of Lemma 2.1 when we come across a partial derivative
of ΠU⊥ϕ, for a function ϕ that is not orthogonal to U , we only need to consider for the
equation the part that is orthogonal to U . For example, when we have the following in the
equation

∂tΠU⊥ϕ = ∂tϕ− (∂tϕ · U)U − (ϕ · Ut)U − (ϕ · U)Ut,

the only relevant part of this is
∂tϕ− (ϕ · U)Ut,

and we can think of the rest of the derivative as part of the function b on Observation 2.1. In
some cases it will be more helpful to consider for the equation the term ΠU⊥∂tϕ− (ϕ · U)Ut
and leave only −(ϕ · Ut)U as part of b.

To understand the construction of the outer solution we write (2.6) in the following form:

0 = − ∂tϕ
i + LU [ϕi] + L̃U [ϕo]− ΠU⊥ [∂tϕ

o −∆ϕo + Ut −
1

x1

Ux1 ] +
1

x1

∂x1ϕ
i

+
1

x1

ΠU⊥∂x1ϕ
o − 1

x1

(ϕo · U)Ux1 + (ϕo · U)Ut +NU(ϕi + ΠU⊥ϕ
o)− bU, (2.7)
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where we have used the second decomposition in Observation 9, (1.8) and the fact that
Ut · U = 0.

We will find a function Φ0 depending only on the parameters, chosen in such a way that
ΠU⊥ [∂tϕ

o −∆ϕo + Ut − 1
x1
Ux1 ] concentrates near ξ(t) by eliminating the slower space decay

terms in the error Ut − 1
x1
Ux1 , which are the ones associated to the time derivatives of the

dilation and rotation parameters. For this reason we write the outer solution as

ϕo(x, t) = Φ0(x, t) + Ψ∗(x, t),

where Ψ∗ will solve the rest of the outer problem.

For the inner solution, we consider a smooth cut-off function η0(s) with η0(s) = 1 for s < 1
and η0(s) = 0 for s > 3

2
. We also consider a positive, large smooth function R(t) → +∞ as

t → T that will be specified later as a power of the main order term of the parameter λ(t).
We define

η(x, t) := η0

(∣∣∣∣ x− ξ(t)λ(t)R(t)

∣∣∣∣) ,
and we can write the inner solution as the following:

ϕi(x, t) = η(x, t)Qωφ(y, t),

for a function φ with initial condition φ(·, 0) = 0 that satisfies φ(·, t) ·W ≡ 0 for |y| ≤ 2R(t)
and that vanishes as t→ T . Then we have

∂tϕ
i = ηtQωφ+ ηω̇QωJ0φ+ ηQωφt −

1

λ
ηQω ξ̇ · ∇yφ−

1

λ
ηQωy · ∇yφ,

∂x1ϕ
i = ∂x1ηQωφ+

1

λ
ηQω∂y1φ,

LU [ϕi] =
1

λ2
ηQωLW [φ] +Qω∆ηφ+ 2Qω∇η∇φ. (2.8)

Using (2.8) and the first part of Observation 9 on Ψ∗, equation (2.7) becomes

0 =
1

λ2
Qω

[
−λ2φt + LW [φ] + λ2Q−ωL̃U [Ψ∗]

]
+ ηQω

(
1

λ
ξ̇ · ∇yφ+

1

λ
y · ∇yφ− ω̇J0φ

)
+ L̃U [Φ0] + ΠU⊥

[
∂tΦ

0 −∆Φ0 + Ut −
1

x1

Ux1

]
− Ψ∗t + ∆Ψ∗ + (1− η)L̃U [Ψ∗] +

1

x1

∂x1Ψ
∗ +Qω

[
∆ηφ+ 2∇η∇φ+

1

x1

φ∂x1η +
1

λx1

η∂y1φ

]
+

1

x1

ΠU⊥∂x1Φ
0 − 1

x1

((Φ0 + Ψ∗) · U)Ux1 + ((Φ0 + Ψ∗) · U)Ut

+ N(ηQωφ+ ΠU⊥(Φ0 + Ψ∗)) + bU. (2.9)

Now we will define Φ0 to satisfy

∂tΦ
0 −∆Φ0 + Ut −

1

x1

Ux1 ≈ 0,

19



when |y| � 1.

Invoking formula (1.5) to compute Ut and noticing that Ux1 = Uξ1 we get

Ut = λ̇∂λU + ω̇∂ωU + ∂ξU · ξ = E0 + E1,

1

x1

Ux1 = E2,

where, using polar coordinates y = x−ξ
λ

= ρeiθ, we obtain

E0(x, t) = −Qωρwρ(ρ)

[
λ̇

λ
E1(y) + ω̇E2(y)

]
,

E1(x, t) = − ξ̇1

λ
wρ(ρ)Qω [cos(θ)E1(y) + sin(θ)E2(y)]

− ξ̇2

λ
wρ(ρ)Qω [sin(θ)E1(y)− cos(θ)E2(y)] ,

E2(x, t) =
wρ

λ(ξ1 + λρ cos(θ))
[cos(θ)QαE1 + sin(θ)QαE2] .

Since E1 and E2 have faster space decay in ρ than E0 we will choose Φ0 to be an approximate
solution of

Φ0
t −∆xΦ

0 + E0 = 0. (2.10)
Then we can use the same construction of Φ0 as in [7]. For x = ξ + reiθ and

p(t) := λ(t)eiω(t),

we define

Φ0[ω, λ, ξ] : =

(
ϕ0(r, t)eiθ

0

)
,

ϕ0(r, t) = −
∫ t

−T
ṗ(s)rk(z(r), t− s)ds, (2.11)

z(r) =
√
r2 + λ2, k(z, t) = 2

1− e− z
2

4t

z2
.

Now we can compute the error produced by Φ0 on equation (2.10) in the following way:

Φ0
t −∆Φ0 = M̃0 + M̃1 − Ẽ0, R̃0 =

(
M0

0

)
, M̃1 =

(
M1

0

)
,

where
Ẽ0(x, t) = − 2r

r2 + λ2

(
ṗ(t)eiθ

0

)
is an approximation of E0 when r � λ, and

M0 = −reiθλ
2

z4

∫ t

−T
ṗ(s)(zkz − z2kzz)(z(r), t− s)ds,

M1 = −eiθRe (e−iθξ̇(t))

∫ t

−T
ṗ(s)k(z(r), t− s)ds

+
r

z2
eiθ(λλ̇(t)− Re (reiθξ̇(t)))

∫ t

−T
ṗ(s)zkz(z(r), t− s)ds.
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Observe thatM1 is of smaller order thanM0. We write the following expression, derived in
[7],

L̃U [Φ0] + ΠU⊥

[
∂tΦ

0 −∆Φ0 + Ut −
1

x1

Ux1

]
= L̃U [Φ0]− E1 + ΠU⊥ [Ẽ0]− E0 + ΠU⊥ [M̃0]

+E2 + ΠU⊥ [M̃1],

= K0[p, ξ,Ψ∗] +K1[x, ξ] + ΠU⊥ [M̃1],

where

K0[p, ξ,Ψ∗] = K01[p, ξ,Ψ∗] +K02[p, ξ,Ψ∗], K1[p, ξ,Ψ∗] = K11[p, ξ,Ψ∗] +K12[p, ξ,Ψ∗],

with

K01[p, ξ,Ψ∗] = −2

λ
ρw2

ρ

∫ t

−T

[
Re (ṗ(s)e−iω(t))QωE1 + Im (ṗ(s)e−iω(t))QωE2

]
k(z, t− s)ds,

K02[p, ξ,Ψ∗] =
2

λ
ρw2

ρ

[
λ̇−

∫ t

−T
Re (ṗ(s)e−iω(t))rkz(z, t− s)zrds

]
QωE1

− 1

4λ
ρw2

ρ cosw

[∫ t

−T
Re (ṗ(s)e−iω(t))(zkz − z2kzz)(z, t− s)ds

]
QωE1

− 1

4λ
ρw2

ρ

[∫ t

−T
Re (ṗ(s)e−iω(t))(zkz − z2kzz)(z, t− s)ds

]
QωE2,

K11[p, ξ,Ψ∗] =
1

λ
wρ

[
Re ((ξ̇1 − iξ̇2)eiθ)QωE1 + Im ((ξ̇1 − iξ̇2)eiθ)QωE2

]
,

K12[p, ξ,Ψ∗] =
wρ

λ(ξ1 + λρ cos(θ))
[cos(θ)QωE1 + sin(θ)QωE2] . (2.12)

Using this in equation (2.9) we see that

u(x, t) = U + ΠU⊥ [Φ0 + Ψ∗ + ηQωφ] + a(ΠU⊥ [Φ0 + Ψ∗ + ηQωφ])U

is a solution of equation (2.1) if the pair (φ,Ψ∗) solves the following system:

λ2φt = LW [φ] + λ2Q−ω

[
L̃U [Ψ∗] +K0[p, ξ,Ψ∗] +K1[p, ξ,Ψ∗]

]
in D2R,

φ ·W = 0 in D2R,

φ(·, 0) = 0 = φ(·, T ), (2.13)

and
Ψ∗t = ∆xΨ

∗ + g[p, ξ,Ψ∗, φ] in Ω× (0, T ), (2.14)
where

g[p, ξ,Ψ∗, φ] : = (1− η)L̃U [Ψ∗] +
1

x1

∂x1Ψ
∗ − 1

x1

(Ψ∗ · U)Ux1 + (Ψ∗ · U)Ut

+Qω

[
∆ηφ+ 2λ−1∇η∇yφ+

1

x1

φ∂x1η +
1

λx1

η∂y1φ− ηtφ
]

+ηQω

(
λ−1ξ̇ · ∇yφ+ λ−1y · ∇yφ− ω̇J0φ

)
+(1− η)[K0[p, ξ,Ψ∗] +K1[p, ξ,Ψ∗]] + ΠU⊥ [M̃1] +

1

x1

ΠU⊥∂x1Φ
0

− 1

x1

(Φ0 · U)Ux1 + (Φ0 · U)Ut +N(ηQωφ+ ΠU⊥(Φ0 + Ψ∗)). (2.15)
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This system of coupled equations is called inner-outer gluing system in [7] and we will use
that name from now on. Here we denote

DγR = {(y, t) ∈ R2 × (0, T ) : |y| < γR(t)}.

And the boundary condition (2.4) can be expressed as

ΠU⊥ [Φ0 + Ψ∗] + a(ΠU⊥ [Φ0 + Ψ∗])U = (e3 − U),

for which it suffices to have
Ψ∗|∂Ω = e3 − U − Φ0. (2.16)

We will also ask that
Ψ∗(q, T ) = 0,

because we need the perturbation ϕ to be small compared to U near the blow-up point when
t is near T . To fulfill this condition we will require the following initial condition:

Ψ∗(x, 0) = Z∗0(x) + c1e1 + c2e2 + c3e3,

where c1, c2, c3 are constants and Z∗0 is a small function, which will be determined later on.

2.2 Approximate equations for the parameters

In this section we will derive the order of vanishing of the scaling parameter λ(t) as t → T
and will obtain a formula for the translation parameter ξ(t).

Consider the first equation of problem (2.13) written in the following form:

λ2φt = LW [φ] + h[p, ξ,Ψ∗] in D2R, (2.17)

where h(y, t) is defined for all y ∈ R2, extending the original function. Some terms are
extended as 0 outside the disc using χD2R

, the characteristic function of D2R, and others are
not changed. In this way we define

h[p, ξ,Ψ∗] := λ2Q−ω

[
L̃U [Ψ∗] +K12[p, ξ,Ψ∗]

]
χD2R

+ λ2Q−ω [K0[p, ξ,Ψ∗] +K11[p, ξ,Ψ∗]] .

(2.18)
If λ(t) vanishes relatively smoothly as t→ T , which is what we want, then the term λ2φt in
equation (2.17) should be of smaller order than the ones on the right hand side. Hence we
can approximate equation (2.13) by the elliptic problem

LW [φ] + h[p, ξ,Ψ∗] = 0, φ ·W = 0 in R2. (2.19)

Applying the L2(R2) product between (2.19) and functions Zlj(y) defined on (1.6) we get∫
R2

LW [φ](y, t) · Zlj(y)dy +

∫
R2

h[p, ξ,Ψ∗](y, t) · Zlj(y)dy = 0 for all t ∈ (0, T ),
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using integration by parts and recalling that LW [Zlj] = 0 we obtain∫
R2

h[p, ξ,Ψ∗](y, t) · Zlj(y)dy = 0 for all t ∈ (0, T ), (2.20)

for l = 0, 1, j = 1, 2. This orthogonality condition between h and the kernel of LW can be
expressed as a system of integro-differential equations. Solving this system will give us the
appropiate order of the parameters so that the solution (φ,Ψ∗) has the right estimates to
obtain a fixed point argument.

We want more useful expressions for both sides of the following equation

λ2

∫
R2

Q−ω [K0[p, ξ,Ψ∗] +K11[p, ξ,Ψ∗]] · Zlj(y)dy

+ λ2

∫
R2

Q−ωK12[p, ξ,Ψ∗]χD2R
· Zlj(y)dy = −λ2

∫
B2R

Q−ωL̃U [Ψ∗] · Zlj(y)dy.

We will define, analogously as in [7], the following terms:

Blj[p, ξ,Ψ∗](t) :=
λ

2π

∫
R2

Q−ω [K0[p, ξ,Ψ∗] +K11[p, ξ,Ψ∗]] · Zlj(y)dy,

B̃lj[p, ξ,Ψ∗](t) :=
λ

2π

∫
R2

Q−ωK12[p, ξ,Ψ∗]χD2R
· Zlj(y)dy,

alj[p, ξ,Ψ
∗](t) :=

λ

2π

∫
R2

Q−ωL̃U [Ψ∗] · Zlj(y)dy,

a0[p, ξ,Ψ∗] :=
1

2
eiω(t)(a01[p, ξ,Ψ∗] + ia02[p, ξ,Ψ∗]), (2.21)

a1[p, ξ,Ψ∗] := −eiω(t)(a11[p, ξ,Ψ∗] + ia12[p, ξ,Ψ∗]).

Here the expressions differ from the ones we want to compute by a 2πλ factor. This is due
to the fact that this factor naturally arises in the calculations and it has been simplified.

In [7] the authors compute the following:

B01[p](t) = 2

∫ t

−T
Re (ṗ(s)e−iω(t))Γ1

(
λ(t)2

t− s
ds

t− s

)
− 2λ̇(t),

B02[p](t) = 2

∫ t

−T
Im (ṗ(s)e−iω(t))Γ2

(
λ(t)2

t− s
ds

t− s

)
,

B11[ξ](t) = 2ξ̇1(t),

B12[ξ](t) = 2ξ̇2(t),

a0[p, ξ,Ψ∗] = [div (ψ∗) + icurl (ψ∗)](ξ, t) + o(1),

a1[p, ξ,Ψ∗] = o(1),

where o(1)→ 0 when t→ T and ψ∗ comes from the following decomposition of Ψ∗

Ψ∗ =

(
ψ∗

ψ∗3

)
, ψ∗ = ψ∗1 + iψ∗2,
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and

Γ1(τ) = −
∫ ∞

0

ρ3w3
ρ

[
K(ζ) + 2ζKζ(ζ)

ρ2

1 + ρ2
− 4 cos(w)ζ2Kζζ(ζ)

]
ζ=τ(1+ρ2)

dρ,

Γ2(τ) = −
∫ ∞

0

ρ3w3
ρ

[
K(ζ)− ζ2Kζζ(ζ)

]
ζ=τ(1+ρ2)

dρ,

where

K(ζ) = 2
1− e− ζ4

ζ
.

Notice that some terms only depend on p and others only on ξ, so we simplify the notation
accordingly.

Given the above, we only need to compute the terms associated with K12. We use formula
(2.12) and (1.6) to get

B̃01[p, ξ,Ψ∗](t) =
1

2π

∫ 2R

0

∫ 2π

0

cos(θ)ρ2w2
ρ

(ξ1 + λρcos(θ))
dθdρ,

=
1

2π

∫ 2R

0

ρ2w2
ρ

(
−2πλρ

ξ2
1 − λ2ρ2 + ξ1

√
ξ2

1 − λ2ρ2

)
dρ,

= −λ
∫ 2R

0

ρ3w2
ρ

ξ2
1 − λ2ρ2 + ξ1

√
ξ2

1 − λ2ρ2
dρ,

= λ1−τ`(λ, ξ),

for τ ∈ (0, 1), where we define

`(λ, ξ) := −
∫ 2R

0

λτρ3w2
ρ

ξ2
1 − λ2ρ2 + ξ1

√
ξ2

1 − λ2ρ2
dρ.

Let us consider for the moment R(λ) = λ−β with β ∈ (0, 1). Then we have

λ(t)ρ ≤ 2λ(t)R(t) ≤ 2λ1−β(t) ≤ 2λ1−β(0),

assuming λ to be decreasing. Choosing λ(0) so that 2λ1−β(0) ≤ ξ1(t)∀t ∈ [0, T ] we get that
ξ2

1(t)− λ2(t)ρ2 > 0 for all t ∈ [0, T ], hence the denominator of ` is never undefined. Here we
are assuming that R(λ) = λ−β, that λ is decreasing and that ξ1 has some regularity, we will
elaborate on this assumptions on section 2.3.

With all of the above we notice that

|`(λ, ξ)| ≤ 4λτ

ξ2
1 − λ2(2R)2 + ξ1

√
ξ2

1 − λ2(2R)2

∫ 2R

0

ρ3

(1 + ρ2)2
dρ,

=
2λτ

ξ2
1 − λ2(2R)2 + ξ1

√
ξ2

1 − λ2(2R)2

[
1

(2R)2 + 1
+ log((2R)2 + 1)− 1

]
.

To see that ` exists it is enough to analyze the higher order term in R, which is λτ log((2R)2 +
1). Notice that

λτ log(4R2 + 1) ≤ Cλτ log(λ−β + 1),
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where C > 0 is a constant. Let n > 0 arbitrary, then

λτ log(λ−β + 1) ≤ nλτ ((λ−β + 1)1/n − 1),

≤ n((λnτ−β + λnτ )1/n − 1).

For this to be finite when t → T we only need to ask τ ≥ β
n
, so fixing τ ∈ (0, β

2
) gives us

|`(λ, ξ)| < +∞. Moreover λ1−τ`(λ, ξ) = O(‖p‖1−τ
∞ ).

Next we compute the term

B̃11[p, ξ,Ψ∗](t) =
1

2π

∫ 2R

0

∫ 2π

0

ρw2
ρ

(ξ1 + λρcos(θ))
dθdρ,

=

∫ 2R

0

ρw2
ρ√

ξ2
1 − λ2ρ2

dρ.

If we study the last integral when λ → 0, noticing that λρ ≤ λR ≤ λ1−β → 0 and using
Taylor expansion around 0, like

√
ξ2

1 − x2 = ξ1 + 1
2ξ1
x2 + o(x3), then we can approximate B̃11

by

B̃11[p, ξ,Ψ∗] ≈ 1

ξ1

∫ 2R

0

ρw2
ρdρ =

1

2ξ1(1 + (2R)−2)
≈ 1

2ξ1

.

We also obtain

B̃02[p, ξ,Ψ∗](t) =
1

2π

∫ ∞
0

∫ 2π

0

sin(θ)ρ2w2
ρ

(ξ1 + λρcos(θ))
dθdρ = 0,

B̃12[p, ξ,Ψ∗](t) =
1

2π

∫ ∞
0

∫ 2π

0

(sin(θ) cos(θ)− cos(θ) sin(θ))ρ2w2
ρ

(ξ1 + λρcos(θ))
dθdρ = 0,

where the first one is 0 due to parity arguments.

Observation 10 To compute some of these integrals we used two facts:

• We have that ∫ 2π

0

cos(θ)

a+ b cos(θ)
dθdρ =

−2πb

a2 − b2 + a
√
a2 − b2

,

which comes from applying the Residue Theorem to the complex function

f(z) =
z2 + 1

bz
(
z2 + 2a

b
z + 1

) ,
in the contour {z ∈ C : |z| = 1} clockwise oriented.
• We have that ∫ 2π

0

1

a+ b cos(θ)
dθdρ =

2π√
a2 − b2

,

which comes from applying the Residue Theorem to the complex function

f(z) =
2

b
(
z2 + 2a

b
z + 1

) ,
in the contour {z ∈ C : |z| = 1} clockwise oriented.
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As in [7] we define

B1[ξ] := B11[ξ] + iB12[ξ], B0[p] :=
1

2
eiω(t)(B01[p] + iB02[p]),

and therefore reduce our four orthogonality conditions to a system of two complex equations

B0[p] + B̃01[p, ξ,Ψ∗] = a0[p, ξ,Ψ∗], (2.22)
B1[ξ] + B̃11[p, ξ,Ψ∗] = a1[p, ξ,Ψ∗]. (2.23)

In [7] the authors get, using the decay of the functions Γj, j = 1, 2, that

B0[p](t) =

∫ t−λ2

−T

ṗ(s)

t− s
ds+O(‖ṗ‖∞), B1[p](t) = 2

(
ξ̇1(t) + iξ̇2(t)

)
.

And from our analysis of the new terms we have that

B̃01[p, ξ,Ψ∗](t) = O(‖p‖1−τ
∞ ), B̃11[p, ξ,Ψ∗](t) =

−1

2ξ1(t)
.

Then we can write (2.22)-(2.23) in the form∫ t−λ2

−T

ṗ(s)

t− s
ds = [div (ψ∗) + icurl (ψ∗)](ξ, t) + o(1) +O(‖p‖1−τ

∞ + ‖ṗ‖∞), (2.24)

ξ̇1(t) = − 1

4ξ1(t)
+ o(1), (2.25)

ξ̇2(t) = o(1). (2.26)

We make an informal analysis of these equations to derive the main order of the parameters.
Notice that

ξ1(t) =
√
q2

1 + 2(T − t),

is a solution of the ordinary differential equation

ξ̇1(t) = − 1

ξ1(t)
, ξ1(T ) = q1,

where q1 is the first coordinate of the given point q = (q1, q2). Hence, if T is small, ξ1(t) = q1

is a good approximation of the solution of (2.25). The same can be said of ξ2(t) = q2 as
an approximation of the solution of (2.26). We also assume that Ψ∗ is sufficiently regular.
Taking into account only the higher order terms of equation (2.24) we arrive to∫ t−λ2

−T

ṗ(s)

t− s
ds = div ψ∗(q, 0) + icurl ψ∗(q, 0).

We impose the following condition

div ψ∗(q, 0) < 0,

that will allow λ to decrease. In [7] the authors arrive to the same equation and obtain the
following approximate solution:

λ̇(t) = −|div ψ∗(q, 0) + icurl ψ∗(q, 0)|λ̇∗(t),
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where
λ̇∗(t) = − | log T |

log2(T − t)
. (2.27)

And imposing λ∗(T ) = 0 we obtain

λ∗(t) =
| log T |

log2(T − t)
(T − t)(1 + o(1)), as t→ T.

2.3 The final inner-outer gluing system

Summarizing, for a given point in space q ∈ Ω and T > 0 a sufficiently small final time, we
want to find a solution (φ,Ψ∗) of the inner and outer problems (2.13)-(2.14) with boundary
condition of the form (2.16) such that the function

u(x, t) = U + ΠU⊥ [Φ0 + Ψ∗ + ηQωφ] + a(ΠU⊥ [Φ0 + Ψ∗ + ηQωφ])U (2.28)

blows up at time T at point q with U(x, t) as main order of blow-up.

The purpose of this section and the next one is to set up all the ingredients to find (φ,Ψ∗)
and the parameters λ, ω, ξ as solution of a fixed point scheme. In this section we will split
the inner and outer problems into a final system of equations, this will allow us to obtain in
section 2.4 good estimates on the solutions in relation to the right hand side of the equations.
These estimates will allow us to apply Schauder’s fixed point theorem.

First, we need to make some assumptions about the parameters ξ(t) and p(t) = λeiω(t).
We assume there exist constants µ1, µ2, µ3, µ4 > 0 independent of T such that

|ξ̇(t)| ≤ µ1, µ2 ≤ |ξ1(t)| for all t ∈ (0, T ), (2.29)
µ3|λ̇∗(t)| ≤ |ṗ(t)| ≤ µ4|λ̇∗(t)| for all t ∈ (0, T ). (2.30)

Here λ∗ is the one defined in (2.27) and µ1 = 1
q1
. We also assume that

R(t) = λ∗(t)
−β,

where β ∈ (0, 1
2
).

As we saw in section 2.2 we can formulate the inner problem as

λ2φt = LW [φ] + h[p, ξ,Ψ∗] in D2R,

φ ·W = 0 in D2R,

φ(·, 0) = 0 in B2R(0),

where h[p, ξ,Ψ∗] is given by (2.18). To find a nice solution of this problem h[p, ξ,Ψ∗] should
satisfy the orthogonality condition (2.20). To use this approach of orthogonality we define,
as done in [7], the following weighted projection for any function h(y, t) with sufficient decay,

clj[h](t) :=
1∫

R2 w2
ρ|Zlj|2

∫
R2

h(y, t) · Zlj(y)dy. (2.31)
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Observation 11 Notice that if we define

I := 〈h(y, t)−
1∑

l=−1

2∑
j=1

clj[h](t)w2
ρZlj, Zkm〉L2(R2),

for k = −1, 0, 1, m = 1, 2, then by the definition of cij we have

I =

∫
R2

h(y, t) · Zkm(y)dy −
1∑

l=−1

2∑
j=1

clj[h](t)

∫
R2

w2
ρZlj(y) · Zkm(y)dy,

=

∫
R2

h(y, t) · Zkm(y)dy − ckm[h](t)

∫
R2

w2
ρ|Zkm|2dy = 0.

We split the inner solution φ into three functions φ = φ1 + φ2 + φ3, where we will require
that φ1 solves

λ2∂tφ1 = LW [φ1] + h[p, ξ,Ψ∗]−
1∑

l=−1

2∑
j=1

clj[h[p, ξ,Ψ∗]]w2
ρZlj in D2R.

To have all orthogonality conditions met we should aim to solve clj[h[p, ξ,Ψ∗]] = 0, but this
is very difficult to achieve since there are no parameters that can guarantee c−1j[h[p, ξ,Ψ∗]] =
0 and c0j[h[p, ξ,Ψ∗]] = 0 involves solving exactly an integro-differential equation. Therefore
we will have to handle modes −1 and 0 with a different approach.

We will require that φ3 solves

λ2∂tφ3 = LW [φ3] +
2∑
j=1

c−1j[h[p, ξ,Ψ∗]]w2
ρZ−1j in D2R,

where c−1j[h[p, ξ,Ψ∗]] will be kept under control using that it is small compared to h[p, ξ,Ψ∗].

We also need that φ2 solves a similar equation to the one of φ3 for mode 0, but we will
include some changes. To better understand c0j notice that

c0j[h[p, ξ,Ψ∗]] =
2πλ∫

R2 w2
ρ|Z0j|2

(B0j[p] + B̃0j[p]− a0j[p, ξ,Ψ
∗]).

Then to get the orthogonality we should solve

B0[p] + B̃01[p] = a0[p, ξ,Ψ∗]. (2.32)

But since this equation is very difficult to solve exactly we will follow the method in [7] and
modify it, so we get a modified equation easier to solve with a the rest, that will turn up to
be of smaller order. We will not actually solve this modified equation but instead we will
prove that the solution obtained by Dávila, Del Pino and Wei [7] also holds in our setting.

To modify the operator on the left hand side of (2.32) we notice that

B0[p] + B̃01[p] = B∗0[p] + Sα[ṗ] +Rα[ṗ] + B̃01[p],
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where

B∗0[p] = B0[p]−
∫ t−λ2∗

−T

ṗ(s)

t− s
ds,

Sα[ṗ] =

∫ t−(T−t)1+α

−T

ṗ(s)

t− s
ds+ ṗ(t)[2 log λ∗(t)− (1− α) log(T − t)],

Rα[ṗ] =

∫ t−λ2∗

t−(T−t)1+α

ṗ(s)− ṗ(t)
t− s

ds.

Then the modified equation is

B∗0[p] + Sα[ṗ] = A in [0, T ],

and Rα[ṗ] + B̃01[p] will be a remainder of smaller order called R0.

To state the result proved in [7], we define the following norms. Let I denote either the
interval [0, T ] or [−T, T ]. For Θ ∈ (0, 1), l ∈ R and a continuous function g : I → C we let

‖g‖Θ,l = sup
t∈I

(T − t)−Θ| log(T − t)|l|g(t)|, (2.33)

and for γ ∈ (0, 1), m ∈ (0,∞), and l ∈ R we let

[g]γ,m,l = sup (T − t)−m| log(T − t)|l |g(t)− g(s)|
(t− s)γ

,

where the supremum is taken over s ≤ t in I such that t− s ≤ 1
10

(T − t).

Dávila, Del Pino and Wei [7] proved the following proposition:

Proposition 2.2 Let α,Θ, γ ∈ (0, 1
2
), m ≤ Θ− γ and l ∈ R. Let C1 > 1 be a fixed constant

and assume that Re (a(T )) < 0 with 1
C1
≤ Re (a(T )) ≤ C1 and

TΘ| log T |1+σ−l‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1 ≤ C1, (2.34)

for some σ > 0. Then, for T > 0 small enough there are two operators P and R0 so that
p = P [a] : [−T, T ]→ C satisfies

B0[p](t) = a(t) +R0[a](t)

with

|R0[a](t)|

≤ C
(
T

1
2

+σ + TΘ log | log T |
| log T |

‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1

)(T − t)m+(1+α)γ

| log(T − t)|l
, (2.35)

for some σ > 0.
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Observation 12 We select
m := Θ− 2γ(1− β),

and l < 1 + 2m, α > 1− 2β. With this choice of parameters in [7] the authors obtain

|R0[a](t)| ≤ C
(
T

1
2

+σ + TΘ log | log T |
| log T |

‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1

)(T − t)Θ+γ(α−1+2β)

| log(T − t)|l
,

≤ Cλ∗(t)
Θ+σ1

. for some σ > 0, σ1 > 0. the authors also notice that with these choices one has

‖a(·)− a(T )‖Θ,l−1 ≤ C| log T |l−1−Θ,

[a]γ,m,l−1 ≤ C| log T |l−1−m.

Observation 13 Proposition 2.2 applies to our setting for two reasons. First, our function
a is the same as the one in [7]. Second, in [7] the authors prove that with R0 = Rα this
works. We can prove that adding B̃01 to R0 does not change this scheme. Indeed, note that
asking for τ ≤ 1−Θ− σ1 we have

|B̃01[p, ξ]| ≤ λ1−τ
∗ |`(λ, ξ)| ≤ CλΘ+σ1

∗ .

As in [7] we write the equation for φ2 leaving out R0, but then we have to add a new
equation that will take care of this term. To obtain these equations we need dome definitions.
Using the decomposition of L̃U in (1.10) and the definition of a0 in (2.21) we can decompose
a0 as follows:

a0[p, ξ,Ψ∗] = a
(0)
0 [p, ξ,Ψ∗] + a

(1)
0 [p, ξ,Ψ∗] + a

(2)
0 [p, ξ,Ψ∗],

where
a

(l)
0 [p, ξ,Ψ∗] = − λ

4π
eiω
∫
B2R

(
Q−ωL̃U [Ψ∗]l · Z01 + iQ−ωL̃U [Ψ∗]l · Z02

)
dy.

Then we define

c∗0[p, ξ,Ψ∗](t) :=
4πλ∫

R2 w2
ρ|Z01|2

e−iω
(
R0

[
a

(0)
0 [p, ξ,Ψ∗](T )

]
(t) + a

(1)
0 [p, ξ,Ψ∗](t)

+ a
(2)
0 [p, ξ,Ψ∗](t)

)
, (2.36)

and

c∗01[p, ξ,Ψ∗] := Re (c∗0[p, ξ,Ψ∗]),

c∗02[p, ξ,Ψ∗] := Im (c∗0[p, ξ,Ψ∗]).

We leave c∗0j in the system of equations, instead of c0j, and add the reduced equation

c0j[h[p, ξ,Ψ∗]] = c∗0j[p, ξ,Ψ
∗], j = 1, 2,

instead of c0j[h[p, ξ,Ψ∗]] = 0. Note that this equation is equivalent to

B0[p] = a
(0)
0 [p, ξ,Ψ∗](t) +R0

[
a

(0)
0 [p, ξ,Ψ∗](T )

]
. (2.37)
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For more on the description of c∗0 and the reduced equation see [7].

Now, to solve the outer equation (2.14) we decompose

Ψ∗ = Z∗ + ψ,

where we choose Z∗ : Ω× (0,∞)→ R3 to satisfy the 2-dimensional heat equation
Z∗t = ∆Z∗ in Ω× (0,∞),

Z∗(·, t) = 0 in ∂Ω× (0,∞),
Z∗(·, 0) = Z∗0 in Ω,

(2.38)

where Z∗0(x) is a C∞(Ω) function defined as follows:

Z∗0(x) =

(
z01(x) + iz02(x)

z03(x)

)
=

(
z0(x)
z03(x)

)
,

and z0 satisfies
div (z0)(q) < 0.

We also require ‖Z∗0‖L∞(Ω) to be sufficiently small. Notice that gives us some control over
Z∗, since

‖Z∗‖C∞(Ω×(0,T )) + ‖∇xZ
∗‖C∞(Ω×(0,T )) ≤ C‖Z∗0‖L∞(Ω)

because Ω is bounded. We also require that

Ψ∗(q, T ) = 0,

so that the main order of blow-up of u(x, t), defined by (2.28), is given by U(x, t). This
constraint will be achieved by three coefficients in the initial datum.

Summarizing all of the above the inner-outer gluing system becomes a new and final system
of equations, where we are looking for functions φ1, φ2, φ3, ψ, p, ξ and constants c1, c2, c3

such that:
ψt = ∆xψ + g[p, ξ, Z∗ + ψ, φ1 + φ2 + φ3] in Ω× (0, T ),
ψ = e3 − U − Φ0 on ∂Ω,

ψ(·, 0) = (c1e1 + c2e2 + c3e3)χ+ (e3 − U − Φ0)(1− χ) in Ω,
ψ(q, T ) = −Z∗(q, T ).

(2.39)


λ2∂tφ1 = LW [φ1] + h[p, ξ,Ψ∗]−

1∑
l=−1

2∑
j=1

clj[h[p, ξ,Ψ∗]]w2
ρZlj in D2R,

φ1 ·W = 0 in D2R,
φ1(·, 0) = 0 in B2R(0).

(2.40)


λ2∂tφ2 = LW [φ2] +

2∑
j=1

c∗0j[p, ξ,Ψ
∗]w2

ρZ0j in D2R,

φ2 ·W = 0 in D2R,
φ2(·, t) = 0 on ∂B2R,
φ2(·, 0) = 0 in B2R(0).

(2.41)
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λ2∂tφ3 = LW [φ3] +

2∑
j=1

c−1j[h[p, ξ,Ψ∗]]w2
ρZ−1j in D2R,

φ3 ·W = 0 in D2R,
φ3(·, t) = 0 on ∂B2R,
φ3(·, 0) = 0 in B2R(0).

(2.42)

c0j[h[p, ξ,Ψ∗]](t)− c∗0j[p, ξ,Ψ∗](t) = 0 for all t ∈ (0, T ), j = 1, 2, (2.43)
c1j[h[p, ξ,Ψ∗]](t) = 0 for all t ∈ (0, T ), j = 1, 2. (2.44)

Here χ is a smooth cut-off function with compact support in Ω that is identically 1 on a fixed
neighborhood of q independent of T . In addition, g and h are given by (2.15) and (2.18),
respectively.

2.4 Solving the inner-outer gluing system

The main idea for solving the final inner-outer gluing system (2.39)-(2.44) is to fix φ1, φ2, φ3, p, ξ
and find an operator that given g[p, ξ, Z∗+ψ, φ1 +φ2 +φ3] returns the solution ψ of problem
(2.39), which we will call exterior problem. Then we find operators that given h[p, ξ, ψ+Z∗]
return solutions φ1, φ2, φ3 of the interior problem. Finally, we find operators that return p
and ξ as solutions of the parameter problem. Next, we define the product of these operators
and set the problem as a fixed point in a suitable space.

The objective of this section is to set the basis for the fixed point argument and use it
to prove Theorem 0.1. For this we need to use propositions proved by Dávila, Del Pino
and Wei [7] that will allow us to construct the operators mentioned before with sufficiently
good estimates so we can obtain the necessary compactness to apply Schauder’s fixed point
theorem. First, we recall the results proved in [7] for the linear equations related to the ones
we want to solve. With these propositions we also define the norms and spaces where we will
look for the functions φ1, φ2, φ3, ψ, p, ξ.

We formulate the linear problem associated to (2.40) as:
λ2∂tφ = LW [φ] + h−

1∑
l=−1

2∑
j=1

clj[h]w2
ρZlj in D2R,

φ ·W = 0 in D2R,
φ(·, 0) = 0 in B2R(0).

(2.45)

For a function h(y, t) on the right hand side of (2.45) and ν < 1, a > 2 we define the following
norm:

‖h‖a,ν := sup
R2

(1 + |y|a)λ∗(t)−ν |h(y, t)|, (2.46)

and for φ(y, t) we define

‖φ‖∗,a,ν = sup
(y,τ)∈D2R

(1 + |y|)|∇yφ(y, t)|+ |φ(y, t)|
λν∗R

5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}
. (2.47)

Then from [7] we have:
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Proposition 2.3 Let 2 < a < 3, ν > 0. If ‖h‖a,ν < +∞ there exists a solution of problem
(2.45) which defines a linear operator φ = Tλ,1[h] and satisfies the estimate

‖φ‖∗,a,ν ≤ C‖h‖a,ν .

To do the same with equations (2.41) and (2.42) consider
λ2∂tφ = LW [φ] + h(y, t) in D2R,
φ ·W = 0 in D2R,
φ(·, t) = 0 on ∂B2R,
φ(·, 0) = 0 in B2R(0),

(2.48)

and define
‖φ‖∗∗,ν2 = sup

(y,t)∈D2R

(1 + |y|)|∇yφ(y, t)|+ |φ(y, t)|
λν2∗ R2(1 + |y|)−1

, (2.49)

for ν2 > 0. Then from [7] we have:

Proposition 2.4 Let 2 < a < 3, ν2 > 0. There exists C > 0 such that for h with ‖h‖a,ν2 <
+∞, the unique solution φ = Tλ,2[h] of problem (2.48) satisfies the estimate

‖φ‖∗∗,ν2 ≤ C‖h‖a,ν2 .

The next proposition applies to h of the form

h(y, t) = h−1,1(y, t)Z−1,1 + h−1,2(y, t)Z−1,2.

We introduce the norm

‖φ‖∗∗∗,ν = sup
(y,t)∈D2R

(1 + |y|)|∇yφ(y, t)|+ |φ(y, t)|
λν∗ log(R)

. (2.50)

Then from [7] we have:

Proposition 2.5 Let 2 < a < 3, ν > 0. There exists C > 0 such that for h of the form
(2.50) with ‖h‖a,ν < +∞, the unique solution φ = Tλ,3[h] of problem (2.48) satisfies the
estimate

‖φ‖∗∗∗,ν ≤ C‖h‖a,ν .

Let Θ′ and γ′ be such that Proposition 2.6 holds. Define Θ, γ > 0 such that γ < γ′, Θ <
Θ′. Define a, a′ ∈ (2, 3), ν, ν ′, ν2, ν

′
2 > 0 such that Propositions 2.3, 2.4 and 2.5 hold for the

triplets a′, ν ′, ν ′2 and a, ν, ν2. In addition we need that a′ > a, ν ′ > ν, ν ′2 > ν2, where the
coefficients and their respective primas are close to each other. We also define spaces

E1 = {φ ∈ C(D2R) : ∇yφ ∈ C(D2R), ‖φ‖∗,a,ν < +∞},
E2 = {φ ∈ C(D2R) : ∇yφ ∈ C(D2R), ‖φ‖∗∗,ν2 < +∞},
E3 = {φ ∈ C(D2R) : ∇yφ ∈ C(D2R), ‖φ‖∗∗∗,ν < +∞}.
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Now, we refer to the linear problem associated with (2.39), which can be written in the
following way: 

ψt = ∆xψ + f(x, t) in Ω× (0, T ),
ψ = 0 on ∂Ω,

ψ(·, 0) = (c1e1 + c2e2 + c3e3)χ in Ω,
ψ(q, T ) = 0.

(2.51)

Observation 14 Notice that problem (2.51) differs from (2.39) not only in function f , but
also that has different border conditions, it is missing −Z∗ and e3 − U −Φ0. We omit them
for simplicity. This is possible because Z∗ and e3 − U − Φ0 behave well enough, and can be
added to the solution of (2.51) without changing the results we will mention later.

Let Θ > 0, γ ∈ (0, 1/2) and σ0 > 0 small. We define the following weights:

%1 := λΘ
∗ (λ∗R)−1χr<(2+µ1)Rλ∗ ,

%2 := T−σ0
λ1−σ0
∗
r2

χr≥Rλ∗ ,

%3 := T−σ0 . (2.52)

For a function f(x, t) on the right hand side of (2.51) we use the weights to define

‖f‖∗∗ := sup
Ω×(0,T )

|f(x, t)|(
1 +

∑4
i=1 %i(x, t)

) . (2.53)

and for ψ(x, t) we define

‖ψ‖#,Θ,γ =
λ∗(0)−Θ

| log(T )|λ∗(0)R(0)
sup

Ω×(0,T )

|ψ(x, t)|+ λ∗(0)−Θ sup
Ω×(0,T )

|∇ψ(x, t)|

+ sup
Ω×(0,T )

λ−Θ−1
∗ R(0)−1 1

| log(T − t)|
|ψ(x, t)− ψ(x, T )|

+ sup
Ω×(0,T )

λ∗(t)
−Θ|∇ψ(x, t)−∇ψ(x, T )|

+ supλ∗(t)
Θ(λ∗(t)R(t))2γ |∇ψ(x, t)−∇ψ(x′, t′)|

(|x− x′|2 + |t− t′|)γ
, (2.54)

where the last supremum is taken in the region

x, x′ ∈ Ω, t, t′ ∈ (0, T ), |x− x′| ≤ 2λ∗(t)R(t), |t− t′| < 1

4
(T − t).

Then from [7] we have:

Proposition 2.6 Let β ∈
(
0, 1

2

)
, Θ ∈ (0, β). For T > 0 small there is a linear operator H

that maps a function f : Ω × (0, T ) → R3 with ‖f‖∗∗ < ∞ into ψ, c1, c2, c3 so that (2.51) is
satisfied. Moreover the following holds

‖ψ‖#,Θ,γ +
λ∗(0)−Θ(λ∗(0)R(0))−1

| log T |
(|c1|+ |c2|+ |c3|) ≤ C‖f‖∗∗,

where γ ∈
(
0, 1

2

)
.
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Let Θ′ and γ′ be such that Proposition 2.6 holds. Define Θ, γ > 0 such that γ < γ′, Θ <
Θ′. And define the space

F = {ψ ∈ C(Ω× [0, T )) : ∇xψ ∈ C(Ω× [0, T )), ‖ψ‖#,Θ,γ < +∞}.

Next, we focus on the parameters p, ξ to define spaces and norms for them. In [7] the
authors work with a decomposition for p of the form:

p = p0,κ + p1 + p2,

for κ ∈ C, p1 and p2 are functions smaller than p0,κ and

p0,κ(t) = κ| log T |
∫ T

t

1

| log(T − t)|2
ds, t ≤ T. (2.55)

Then it is more natural to define

G1 = C× {p1 ∈ C1([−T, T ];C) :

p1(T ) = 0, p2(T ) = 0, ‖p1‖∗,3−σ + ‖ṗ2‖Θ,l <∞},

where σ ∈ (0, 1) and the norms are

‖g‖∗,3−σ = sup
t∈[−T,T ]

| log(T − t)|3−σ|ġ(t)|,

‖g‖Θ,l = sup
t∈I

(T − t)−Θ| log(T − t)|l|g(t)|.

We use that from [7] one can identify p with an element (κ, p1, p2) ∈ G1 and write the norm

‖p‖G1 = |κ|+ ‖p1‖∗,3−σ + ‖ṗ2‖Θ,l.

Recall from Section 2.3 that equation (2.43) is equivalent to (2.37),

B0[p] = a
(0)
0 [p, ξ,Ψ∗](t) +R0

[
a

(0)
0 [p, ξ,Ψ∗](T )

]
,

which is solvable through the operator P defined in Proposition 2.2. In [7] the authors prove
estimates for P , that we express in the following proposition.

Proposition 2.7 Let us make the same assumptions as in Proposition 2.2. Then

P [a] = p0,κ[a] + P1[a] + P2[a],

where p0,κ is defined in (2.55) and each term

κ = κ[a], p1 = P1[a], p2 = P2[a],
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has the following bounds:

κ = |a(T )|
(

1 +O

(
1

| log T |

))
,

|ṗ1(t)| ≤ C
| log T |1−σ log(| log T |)2

| log(T − t)|3−σ
,

|p̈1(t)| ≤ C
| log T |

| log(T − t)|3(T − t)
,

‖ṗ2‖Θ,l ≤ C
(
T

1
2

+σ−Θ + ‖a(·)− a(T )‖Θ,l−1),

[ṗ2]γ,m,l ≤ C(| log T |l−3Tα0−m−γ + TΘ log | log T |
| log T |

‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1),

where α0 > 0 is some fixed some constant and σ > 0 is arbitrary (with C depending on σ).

Observation 15 Notice that due to the selection of parameters done in Observation 12 we
can denote

C0(T ) := C
(
T

1
2

+σ−Θ + ‖a(·)− a(T )‖Θ,l−1),

C1(T ) := C(| log T |l−3Tα0−m−γ + TΘ log | log T |
| log T |

‖a(·)− a(T )‖Θ,l−1 + [a]γ,m,l−1),

which are constants that only depend on T and have order O(T ).

Let us fix σ′ > 0 small, Θ′ > 0 , l′ > 0 that satisfy Proposition 2.7 and choose the
parameters σ,Θ, l associated with the norm of G1 such that σ′ < σ, Θ′ < Θ, l′ < l.

Now, we define

G2 = {ξ ∈ C1([0, T ];R2) : ξ̇1(T ) =
1

q1

, ξ̇2(T ) = 0},

and
‖ξ‖G2 = sup

t∈(0,T )

|ξ(t)|+ sup
t∈(0,T )

|ξ̇(t)|.

The problem of parameter ξ, which corresponds to equation (2.44), is equivalent to∫
R2

h[p, ξ,Ψ∗](y, t) · Zlj(y)dy = 0 for all t ∈ (0, T ),

this is

λ

∫
B2R

Q−ωL̃U [Ψ∗] · Z1j(y)dy + λ

∫
B2R

Q−ωK12 · Z1j(y)dy = λ

∫
B2R

Q−ω[K0 +K11] · Z1j(y)dy.

And using the calculated integrals on Section 2.2 we can formulate equation (2.44) as:

ξ̇1 = − 1

ξ1

− b1[p, ξ,Ψ∗], (2.56)

ξ̇2 = −b2[p, ξ,Ψ∗], (2.57)
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where

bj[p, ξ,Ψ
∗](t) =

1

4π
(1 + (2R)−2)λ

∫
B2R

Q−ωL̃U [Ψ∗] · Z1j(y)dy.

We need to solve these ordinary differential equations to obtain operators for our fixed point
argument.

Proposition 2.8 Define operators A1[p, ξ,Ψ∗], A2[p, ξ,Ψ∗] that return the solution of equa-
tions (2.56) and (2.57) respectively. Then,

‖A1[p, ξ,Ψ∗]‖C1(0,T ) ≤
(
q1 +

1 + T

µ2

)
+ (1 + T )(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)),

‖A2[p, ξ,Ψ∗]‖C1(0,T ) ≤ q2 + (1 + T )(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)),

where q1 is the first coordenate of the given point q ∈ Ω and µ2 is the below bound of ξ in
(2.29).

This proposition is proved in Section 3.3.

We have introduced a few parameters until now, let us summarize their names and uses:

• β ∈
(
1, 1

2

)
participates in the definition of R(t) = λ∗(t)

−β.
• ν ∈ (0, 1), a ∈ (2, 3) are used to estimate ‖h[p, ξ,Ψ∗]‖a,ν for equation (2.40). We can

add that the norm ‖ · ‖a,ν is also used to estimate the right hand side of equation (2.42)
and the norm ‖ · ‖a,ν2 is used to estimate the right hand side of equation (2.41).
• α0 > 0 is the power of the error term in Proposition 2.2.
• Θ > 0 and γ ∈

(
0, 1

2

)
are used to estimate the norm ‖·‖#,Θ,γ of the solution of equation

(2.39).
• σ0 > 0 is small and will allow us to make parts of the error small in the outer problem.
• m = Θ−2γ(1−β), l < 1+2m, α > 1−2β allows us to obtain estimates in Proposition

2.2.
• σ ∈ (0, 1), l and Θ allow us to control the norm of parameter p and σ′,Θ′, l′ ∈ (2, 3)

comes from Proposition 2.7 and helps us achieve compactness.
• τ ∈ (0,min{β

2
, 1−Θ− σ1}) makes integrals involving K12 well defined and allows us to

use Proposition 2.2.

From now on we assume that parameters a, β, ν,Θ, ν2 satisfy the following additional
restrictions:

• a ∈ (2, 3)

• β ∈ (0, 1
a+2

)

• ν ∈ (max{1− β, 4β},min{1− β(a− 2), β
2
})

• Θ ∈ (0,min{β, ν − 1 + β, ν − β (7−a)
2
, ν2 − 1, ν2 − 3β})

• ν2 ∈ (1, 1 + Θ + σ1)
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Observation 16 Notice that since 2 ≤ 7−a
2
≤ 5

2
this assumptions imply that:

Θ < ν + (a− 2)β

Θ < ν − (4− a)β

Θ < ν − 2β

Θ < ν2 − β
Θ < ν2 − 3β.

ν < 1− β(a− 2)

0 < Θ + 1− ν − β(a− 2)

ν < 1− β

2
.

We will use this in sections 3.1 and 3.2.

Recall that we want to find (φ1, φ2, φ3, ψ, p, ξ) solutions of system (2.39)-(2.44). To make
notation smoother we define E = E1 × E2 × E3 × F × G1 × G2. The fixed point scheme
consists in fixing a suitable M > 0 and taking functions v ∈ BM , where

BM = {v = (φ1, φ2, φ3, ψ, p, ξ) ∈ E such that
‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ + ‖p‖G1 + ‖ξ‖G2 ≤M}

Then we write equations (2.39)-(2.44) as a fixed point problem

v = F(v),

where we define the following operator

F : BM ⊂ E → E

v → F(v) = (F1(v),F2(v),F3(v),F4(v),F5(v),F6(v)),

where every component is defined as

F1(φ1, φ2, φ3, ψ, p, ξ) = Tλ,1(h[p, ξ,Ψ∗]),

F2(φ1, φ2, φ3, ψ, p, ξ) = Tλ,2

(
2∑
j=1

c∗0j[p, ξ,Ψ
∗]w2

ρZ0j

)
,

F3(φ1, φ2, φ3, ψ, p, ξ) = Tλ,3

(
2∑
j=1

c−1j[h[p, ξ,Ψ∗]]w2
ρZ−1j

)
,

F4(φ1, φ2, φ3, ψ, p, ξ) = H(g[p, ξ, ψ + Z∗, φ1, φ2, φ3]),

F5(φ1, φ2, φ3, ψ, p, ξ) = P
[
a

(0)
0 [p, ξ,Ψ∗](T )

]
,

F6(φ1, φ2, φ3, ψ, p, ξ) = A(p, ξ,Ψ∗, φ1, φ2, φ3),

where Tλ,1, Tλ,2, Tλ,3,H,P are the operators from Propositions 2.3, 2.4, 2.5, 2.6 and 2.2, and
A is defined as A := (A1,A2) where A1 and A2 are the ones from Proposition 2.8.

To solve the fixed point problem we will need to prove the following:
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Proposition 2.9 Assume that p, ξ satisfy (2.30) and (2.29). Let M > 0, such that

M

6
> max

{
|κ|, 2

(
q1 + q2 +

1

µ2

)}
.

Then F(BM) ⊂ BM .

Proposition 2.10 Assume that p, ξ satisfy (2.30) and (2.29). Then F : BM → BM is a
compact operator.

The proof of these last results is in section 3.4. Now that we have all the ingredients we
proceed with the proof of Theorem 0.1.

Proof. Of Theorem 0.1. We have that F : BM → BM is compact from Propositions 2.9 and
2.10, then by Shauder’s fixed point theorem there exists (φ̃1, φ̃2, φ̃3, ψ̃, p̃, ξ̃) ∈ BM such that

F(φ̃1, φ̃2, φ̃3, ψ̃, p̃, ξ̃) = (φ̃1, φ̃2, φ̃3, ψ̃, p̃, ξ̃).

This gives us functions
U(x, t) = Uλ̃,ξ̃,ω̃(x, t)

and

ϕ̃(x, t) = η(x, t)Qω(φ̃1(y, t) + φ̃2(y, t) + φ̃3(y, t)) + Φ0(x, t) + ψ̃(x, t) + Z∗(x, t).

Recalling the form of the candidate solution we constructed we obtain that

uq(x, t) = U(x, t) + ΠU⊥ϕ̃+ a(ΠU⊥ϕ̃)U

is a solution of problem (12)-(14) in Ω. Remembering the reduction to two dimensions that
we did in the introduction we define function vc(q)(x, y, z, t) := uq(x1, x2, t) in V , which is the
solution of the original 3-dimensional problem (9)-(11). We notice that we have constructed
a solution that has exactly the blow-up rate that we wanted and that converges at main order
like a bubble U .
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Chapter 3

Results on the fixed point operator

In the present chapter we prove Propositions 2.9 and 2.10, which are the base for the proof of
the main theorem, done in the previous chapter. We prove the propositions by first focusing
on each set of equations, this means the exterior problem (2.39), the interior problem (2.40)-
(2.41)-(2.42) and the parameter problem (2.43)-(2.44). In each of the first three sections
we will prove estimates on the right hand side of this problems and use this to get a priori
estimates by means of Propositions 2.3, 2.4, 2.5, 2.6 and 2.8. Finally, in the last section we
gather these a priori estimates to prove that our fixed point operator F goes from BM into
BM (Proposition 2.9) and that it is compact there (Proposition 2.10).

3.1 The exterior problem

In this section we will compute estimates for the exterior problem (2.39) to prove the following
proposition:

Proposition 3.1 Let p(t) = λ(t)eiω(t) and ξ(t) satisfy estimates (2.30), (2.29) and let

(φ1, φ2, φ3, ψ, p, ξ) ∈ BM .

Then there exists a constant C > 0 such that

‖g[p, ξ, Z∗ + ψ, φ1 + φ2 + φ3]‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ

+‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗0‖L∞(Ω)) (3.1)

where g is defined in (2.15).

Notice that this implies that Proposition 2.6 holds for

f = g[p, ξ, Z∗ + ψ, φ1 + φ2 + φ3],

because (φ1, φ2, φ3, ψ, p, ξ) ∈ BM .

We write the following useful lemma that will help us in the proof of Proposition 3.1.
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Lemma 3.2 For Φ0 defined in (2.11) the following holds:

|Φ0| ≤ Cr(|λ̇∗|| log(r2 + λ2
∗)|+ 1),

∣∣∣∣ 1

x1

ΠU⊥∂x1Φ
0

∣∣∣∣ ≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1).

Proof. (Of Proposition 3.1) To get estimate (3.1) we divide g into two parts, called g1 and
g2. Function g1 will coincide with the right hand side function of the problem solved in [7],
so we will recall their estimates for this part. Function g2 will contain the terms associated
to the partial derivatives 1

x1
∂x1 , which we will estimate in detail.

We define

g1 := (1− η)L̃U [Ψ∗] + (Ψ∗ · U)Ut

+Qω

[
∆ηφ+ 2λ−1∇η∇yφ− ηtφ

]
+ηQω

(
λ−1ξ̇ · ∇yφ+ λ−1y · ∇yφ− ω̇J0φ

)
+(1− η)[K0[p, ξ,Ψ∗] +K11[p, ξ,Ψ∗]] + ΠU⊥ [M̃1]

+(Φ0 · U)Ut + Ñ(ηQωφ+ ΠU⊥(Φ0 + Ψ∗))

g2 :=
1

x1

∂x1Ψ
∗ − 1

x1

(Ψ∗ · U)Ux1 +Qω

[
1

x1

φ∂x1η +
1

λx1

η∂y1φ

]
+(1− η)K12[p, ξ,Ψ∗] +

1

x1

ΠU⊥∂x1Φ
0 − 1

x1

(Φ0 · U)Ux1 +
1

x1

aUx1 ,

where

Ñ(ηQωφ+ ΠU⊥(Φ0 + Ψ∗)) := N(ηQωφ+ ΠU⊥(Φ0 + Ψ∗))− 1

x1

aUx1 .

In [7] the authors prove that given the following assumptions:

• a ∈ (2, 3)

• β ∈ (0, 1
a+2

)

• ν ∈ (max{1− β, 4β}, 1− β(a− 2))

• 0 < Θ < min{β, ν − 1 + β, ν − β 7−a
2
, ν2 − 1, ν2 − 3β}

• ν2 ∈ (1, 1 + Θ + σ1)

and

B2λ∗R(ξ) ⊂ B(2+µ1)λ∗R(q), (3.2)
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then

‖Qω

[
∆ηφ+ 2λ−1∇η∇yφ− ηtφ

]
‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν),

‖ηQω

(
λ−1ξ̇ · ∇yφ+ λ−1y · ∇yφ− ω̇J0φ

)
‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν),

‖(1− η)L̃U [Ψ∗]‖∗∗ ≤ T σ0(‖ψ‖#,Θ,γ + ‖∇Z∗‖L∞(Ω×(0,T ))),

‖(1− η)[K0[p, ξ,Ψ∗] +K11[p, ξ,Ψ∗]]‖∗∗ ≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T )),

‖ΠU⊥ [M̃1] + (Φ0 · U)Ut‖∗∗ ≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T )),

‖Ñ(ηQωφ+ ΠU⊥(Φ0 + Ψ∗))‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν
+ ‖ψ‖#,Θ,γ + ‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T )

+ ‖Z∗‖C1).

There is only two terms from g1 left. Since in [7] the authors have weaker restrictions on
Z∗ and a different estimate on ξ̇ we will redo the estimate for (Ψ∗ · U)Ut and (Φ0 · U)Ut so
we can get a simpler expression. Notice that we do not do this for other terms involving Ψ∗

and ξ̇ because those estimates only rely on taking the supremum over Z∗ and ξ̇.

To estimate (Ψ∗ · U)Ut we first note that due to assumptions (2.30) and (2.29) we have
that

|Ut| ≤
|λ̇|
λ
|ρwρ|+ |ω̇||ρwρ|+

|ξ̇|
λ
|wρ| ≤ C

(|λ̇∗|+ ‖ξ̇‖L∞(0,T ))

r + λ∗
,

then, remembering that |U | = 1 and using Cauchy-Schwarz we have

|(Ψ∗ · U)Ut| ≤ C
(|λ̇∗|+ ‖ξ̇‖L∞(0,T ))

r + λ∗
|Ψ∗|.

Since, we only need an estimate for |Ψ∗|. Because Ψ∗(q, T ) = 0 we have for (t, x) ∈ (0, T )×Ω:

|Ψ∗(x, t)| ≤ |Ψ∗(x, t)−Ψ∗(x, T )|+ |Ψ∗(x, T )−Ψ∗(q, T )|.

Then from the definition of the norm ‖ · ‖#,Θ,γ we get

|ψ(x, t)− ψ(x, T )| ≤ λ∗(t)
Θ+1R(t)| log(T − t)|‖ψ‖#,Θ,γ,

|ψ(x, T )− ψ(q, T )| ≤ |x− q|‖ψ‖#,Θ,γ.

Note that
| log(T − t)| = λ∗(t)

− 1
2

√
| log T |

√
T − t,

taking Θ− 1− β > 1
2
we obtain

|ψ(x, t)− ψ(x, T )| ≤
√
| log T |

√
T − t‖ψ‖#,Θ,γ.

Notice that since Z∗ is smooth, in particular it is Lipschitz, then

|Z∗(x, t)− Z∗(x, T )| ≤ C|T − t|,
|Z∗(x, T )− Z∗(q, T )| ≤ C|x− q|.
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Joining these expressions, naming r = |x− ξ| and using (3.2) we obtain

|Ψ∗(x, t)| ≤ C(r +
√
| log T |

√
|T − t|)‖ψ‖#,Θ,γ + (r + (T − t)),

using that T is small,

|Ψ∗(x, t)| ≤ C(r + |T − t|)(‖ψ‖#,Θ,γ + 1). (3.3)

Summarizing,

|(Ψ∗ · U)Ut| ≤ C
(|λ̇∗|+ ‖ξ̇‖L∞(0,T ))

r + λ∗
|Ψ∗| ≤ C

(|λ̇∗|+ ‖ξ̇‖L∞(0,T ))

r + λ∗
(r + |T − t|)(‖ψ‖#,Θ,γ + 1),

and because |T − t| = |λ∗(t)|
|λ̇∗(t)|

we have

|(Ψ∗ · U)Ut| ≤ C

(
(r|λ̇∗|+ λ∗)

r + λ∗
+ ‖ξ̇‖L∞(0,T ) +

T − t
r + λ∗

‖ξ̇‖L∞(0,T )

)
(‖ψ‖#,Θ,γ + 1).

We have that
T − t
r + λ∗

≤ CT σ0(ρ1 + ρ2 + ρ3).

To see this, we estimate it in the regions r ≥ λ∗R and r ≤ λ∗R. In region r ≥ λ∗R we use
that x ≤ 1 + x2 and

χ{r≥λ∗R}
T − t
r + λ∗

≤ χ{r≥λ∗R}

(
1 +

(T − t)2

r + λ∗

)
≤ T σ0ρ3 + χ{r≥λ∗R}

(T − t)2

r + λ∗
.

Notice the following Observation:

Observation 17 The definition of λ∗ gives us:

log(λ∗) = log(T − t) + log(log T )− log(log(T − t)),

so the dominant term of log(λ∗) is log(T − t) and vice versa, therefore there exist positive
constants C1, C2 such that

C1| log(λ∗)| ≤ | log(T − t)| ≤ C1| log(λ∗)|.

Using Observation 17 in our calculations we obtain:

(T − t)2

r + λ∗
≤ λ2

∗ log4(T − t)
r2

,

≤ C
λ2
∗ log4(λ∗)

r2
,

≤ C
λ∗
r2
,

≤ CT σ0ρ2.
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Here we also used the fact that xσ1 log(x)σ2 is bounded for x ∈ [0, 1] and σ1, σ2 > 0. In region
r ≤ λ∗R we have

χ{r≤λ∗R}
T − t
r + λ∗

≤ χ{r≤λ∗R}
(T − t)
λ∗

,

≤ χ{r≤λ∗R}
λ∗ log2(T − t)

λ1+δ
∗

,

≤ χ{r≤λ∗R}λ
−δ
∗ log2(T − t),

≤ Cχ{r≤λ∗R}λ
−δ
∗ ,

≤ T σ0ρ1.

asking Θ < 1 − δ − β. Coming back to the main estimate, since |λ̇∗(t)| ≤ |λ̇∗(0)| and
‖ξ̇‖L∞(0,T ) ≤ C, we obtain

|(Ψ∗ · U)Ut| ≤ CT σ0(ρ1 + ρ2 + ρ3)(‖ψ‖#,Θ,γ + 1).

Finally, this gives us
‖(Ψ∗ · U)Ut‖∗∗ ≤ CT σ0(‖ψ‖#,Θ,γ + 1).

Now, to estimate (Φ0 · U)Ut:

|(Φ0 · U)Ut| ≤ Cr(|λ̇∗|| log(r2 + λ2
∗)|+ 1)

(|λ̇∗|+ ‖ξ̇‖L∞(0,T ))

r + λ∗
,

≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1)(|λ̇∗|+ ‖ξ̇‖L∞(0,T )).

Consider the following observation:

Observation 18 Notice that
|λ̇∗|| log(r2 + λ2

∗)| ≤ C.

Indeed, if r2 +λ2
∗ ≥ 1 then we use that |λ̇∗| ≤ 1

| log T | , that we are in a bounded domain Ω and
that log(r2 + λ2

∗) is continuous, to see that it achieves a maximum in Ω and hence the term
is bounded. If r2 + λ2

∗ < 1, then | log(r2 + λ2
∗)| ≤ | log(λ2

∗)|, so

|λ̇∗|| log(r2 + λ2
∗)| ≤ C|λ̇∗|| log(λ∗)|,

≤ C
| log T |

log2(T − t)
| log(λ∗)|,

≤ C
| log T |
log2(λ∗)

| log(λ∗)|,

≤ C
| log T |
log(λ∗)

,

≤ C
| log T |

log(λ∗(0))
.

Here we have used Observation 17.

44



And since |λ̇∗| is bounded, we obtain:

‖(Φ0 · U)Ut‖∗∗ ≤ CT σ0ρ3(1 + ‖ξ̇‖L∞(0,T )).

Combining this with all the previous estimations and using the estimate on Z∗ we obtain

‖g1‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ

+‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗0‖L∞(Ω)).

Observation 19 Notice that we can use the result from [7] because in section 2.4 we have
the same assumptions on a, β, ν,Θ, ν2, and we can check that (3.2) is also satisfied. In fact,
if |x− ξ| ≤ 2λ∗R

|x− q| ≤ |x− ξ|+ |ξ − q| ≤ 2λ∗R + |ξ − q|,
and because of (2.29) and ξ(T ) = q we have

|ξ − q| = |ξ(t)− ξ(T )| ≤ |ξ̇|(T − t) ≤ ‖ξ̇‖L∞(0,T )(T − t) ≤ µ1(T − t),

and since 1− β < 1:

|ξ − q| ≤ µ1(T − t)1−β | log T |
log2(T − t)

∼ λ1−β
∗ = µ1λ∗R.

Now, we estimate g2.

• We start with 1
x1
∂x1Ψ

∗. Notice that in our setting |x1| is bounded from below, then
there exists a constant C > 0 so that 1

|x1| ≤ C. Therefore,∣∣∣∣ 1

x1

∂x1Ψ
∗
∣∣∣∣ ≤ C(|∇ψ|+ |∇Z∗|),

≤ C(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗‖C1(Ω×(0,T ))),

≤ CT σ0ρ3(‖ψ‖#,Θ,γ + ‖Z∗‖C1(Ω×(0,T ))),

hence ∥∥∥∥ 1

x1

∂x1Ψ
∗
∥∥∥∥
∗∗
≤ CT σ0(‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)).

• For 1
x1

(Ψ∗ · U)Ux1 we will use the same ideas as in the estimate of (Ψ∗ · U)Ut. First,
recalling that r = λρ we note that

wρ =
−2

1 + ρ2
=
−2λ2

λ2 + r2
.

Then

|Ux1| =
∣∣∣wρ
λ

[cos(θ)QαE1 + sin(θ)QαE2]
∣∣∣ ,

≤ C
λ

λ2 + r2
(|QαE1|+ |QαE2|),

≤ C
λ∗

λ2
∗ + r2

,

≤ C
1

λ∗ + r
.
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In the last step we used that QαE1 and QαE2 are unitary vectors and the assumption
that the main order of vanishing of λ is λ∗. With this and (3.3) we obtain:∣∣∣∣ 1

x1

(Ψ∗ · U)Ux1

∣∣∣∣ ≤ C
1

λ∗ + r
(r + |T − t|)(‖ψ‖#,Θ,γ + 1),

≤ CT σ0(ρ1 + ρ2 + ρ3)(‖ψ‖#,Θ,γ + 1).

• For the part involving φ we shall use the following simple implications from the form
of the norms defined in section 2.4:

|φ1| ≤
λν∗

1 + |y|a−2
‖φ1‖∗,a,ν , for R ≤ |y| ≤ 2R,

|φ2| ≤
λν2∗ R

2

1 + |y|
‖φ2‖∗∗,ν2 ,

|φ3| ≤ λν∗| logR|‖φ3‖∗∗∗,ν .

The first term associated with φ in g2 is:

|Qω
1

x1

φ∂x1η| ≤ C(|φ1|+ |φ2|+ |φ3|)|∂x1η|.

Recall that η = η0( |x−ξ|
λR

) and η0(s) is a cut-off function that is constant everywhere
except in the interval (1, 3/2), so

|∂x1η| =
1

Rλ
|∂sη0| ≤ C

1

Rλ
χ{Rλ<r<2Rλ}.

Then

|φ1||∂x1η| ≤ C
1

Rλ

λν∗
1 + |y|a−2

‖φ1‖∗,a,νχ{Rλ<r<2Rλ},

≤ C
λν−1+β
∗

1 +Ra−2
‖φ1‖∗,a,νχ{Rλ<r<2Rλ},

≤ Cλν−1+β(a−1)
∗ ‖φ1‖∗,a,νχ{Rλ<r<2Rλ},

and using that Θ < ν + β(a− 2) we obtain

|φ1||∂x1η| ≤ CT σ0ρ1‖φ1‖∗,a,ν .

Also,

|φ2||∂x1η| ≤ C
1

Rλ

λν∗R
2

1 + |y|
‖φ2‖∗∗,ν2χ{Rλ<r<2Rλ},

≤ Cλν−1
∗ ‖φ1‖∗,a,νχ{Rλ<r<2Rλ},

≤ CT σ0ρ1‖φ2‖∗∗,ν2 .

In the last step we used that Θ < ν2 − β. The third one is similar, we use that for R
large | logR| ≤ R, hence

|φ3||∂x1η| ≤ C
1

Rλ
λν∗| logR|‖φ3‖∗∗∗,νχ{Rλ<r<2Rλ},

≤ Cλν−1
∗ ‖φ3‖∗∗∗,νχ{Rλ<r<2Rλ},

≤ CT σ0ρ1‖φ3‖∗∗∗,ν .
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Joining all of the above we obtain∥∥∥∥Qω
1

x1

φ∂x1η

∥∥∥∥
∗∗
≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν).

The second term associated with φ is 1
λx1
η∂y1φ, we will need the following

|∇yφ1| ≤
λν∗R

3−a

(1 + |y|)2
‖φ1‖∗,a,ν , for |y| ≤ R,

|∇yφ2| ≤
λν2∗ R

2

(1 + |y|)2
‖φ2‖∗∗,ν2 , for y ∈ R2,

|∇yφ3| ≤
λν∗| logR|
(1 + |y|)

‖φ3‖∗∗∗,ν , for y ∈ R2.

Then∣∣∣∣ 1

λx1

η∂y1φ

∣∣∣∣ ≤ C
1

λ
χ{r<λR}(|∇yφ1|+ |∇yφ2|+ |∇yφ3|),

≤ C

(
λν−1
∗ R3−a

(1 + |y|)2
‖φ1‖∗,a,ν +

λν−1
∗ R2

(1 + |y|)2
‖φ2‖∗∗,ν2

+
λν−1
∗ | logR|
(1 + |y|)

‖φ3‖∗∗∗,ν
)
χ{r<λR},

≤ C
(
λν−1−β(3−a)
∗ ‖φ1‖∗,a,ν + λν−1−2β

∗ ‖φ2‖∗∗,ν2 + λν−1−β
∗ ‖φ3‖∗∗∗,ν

)
χ{r<λR},

using that Θ < ν − (4− a)β, Θ < ν − 3β and Θ < ν − 2β we obtain∣∣∣∣ 1

λx1

η∂y1φ

∣∣∣∣ ≤ CT σ0ρ1 (‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν) ,

and therefore ∥∥∥∥ 1

λx1

η∂y1φ

∥∥∥∥
∗∗
≤ CT σ0 (‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν) .

• The term related to the error K12 is a direct estimation:

|(1− η)K12[p, ξ,Ψ∗]| ≤
∣∣∣∣ wρ
λ(ξ1 + λρ cos(θ))

[cos(θ)QαE1 + sin(θ)QαE2]

∣∣∣∣χ{r≥λR},
≤ C

λ∗
r2 + λ2

∗
χ{r>λR},

≤ CT σ0ρ2,

since λ∗ ≤ λ1−σ0
∗ . As a consequence we have,

‖(1− η)K12[p, ξ,Ψ∗]‖∗∗ ≤ CT σ0 .

• For what comes next is important to remember Lemma 3.2. With this lemma we
estimate: ∣∣∣∣ 1

x1

ΠU⊥∂x1Φ
0

∣∣∣∣ ≤ C|∂x1Φ0|,

≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1).
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Using Observation 18 we obtain:∥∥∥∥ 1

x1

ΠU⊥∂x1Φ
0

∥∥∥∥
∗∗
≤ CT σ0 .

Now, we estimate the following:∣∣∣∣ 1

x1

(Φ0 · U)Ux1

∣∣∣∣ ≤ C|Ux1||Φ0|,

≤ C
λ∗

r2 + λ2
∗
r(|λ̇∗|| log(r2 + λ2

∗)|+ 1),

≤ C
(λ∗ + r)

(r + λ∗)2
(r + λ∗)(|λ̇∗|| log(r2 + λ2

∗)|+ 1),

≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1),

≤ CT σ0ρ3.

Then ∥∥∥∥ 1

x1

(Φ0 · U)Ux1

∥∥∥∥
∗∗
≤ CT σ0 .

• For the nonlinear part 1
x1
aUx1 we write∣∣∣∣ 1

x1

aUx1

∣∣∣∣ ≤ C |a(ΠU⊥ϕ)| λ∗
λ2
∗ + r2

,

≤ C|ϕ|2 λ∗
λ2
∗ + r2

,

≤ C
(
|ηQαφ|2 + |Ψ∗|2 + |Φ0|2

) λ∗
λ2
∗ + r2

.

In the second inequality we have used the Taylor expansion of
√

1 + x near 0, where
x = |ϕ|2. Notice that the last right hand side is a multiplication of terms that we have
already calculated with the modulus of the functions ηQαφ, Ψ∗, Φ0, which are already
small. Therefore this term is of smaller order than the ones we have already seen. And
hence∥∥∥∥ 1

x1

aUx1

∥∥∥∥
∗∗
≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)).

Combining all the estimates we get

‖g2‖∗∗ ≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ

+‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗0‖L∞(Ω)).

Finally, with the estimate on g1 and g2 we obtain the result.

Proof. (Of Lema 3.2) First, we will estimate
∣∣∣ 1
x1

ΠU⊥∂x1Φ
0
∣∣∣ and then deduce the one for |Φ0|.
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Recall that in (2.11) we defined

Φ0[ω, λ, ξ] : =

(
ϕ0(r, t)eiθ

0

)
,

ϕ0(r, t) = −
∫ t

−T
ṗ(s)rk(z(r), t− s)ds,

z(r) =
√
r2 + λ2, k(z, t) = 2

1− e− z
2

4t

z2
.

Then

∂x1(ϕ
0eiθ) =

(
∂r(ϕ

0eiθ)∂x1r + ∂θ(ϕ
0eiθ)∂x1θ

)
,

=− cos(θ)eiθ
∫ t

−T
ṗ(s)(k(z(r), t− s) + rkz(z(r), t− s)zr)ds

+ i
sin(θ)

r
eiθ
∫ t

−T
ṗ(s)rk(z(r), t− s)ds,

=

[
− cos(θ)

∫ t

−T
ṗ(s)(k(z(r), t− s) + rkz(z(r), t− s)zr)ds

+i sin(θ)

∫ t

−T
ṗ(s)k(z(r), t− s)ds

]
eiθ.

For a complex valued function f(r, t) one has

ΠU⊥

[
f(r, t)eiθ

0

]
= cosw(ρ)Re (f(r, t)e−iω)QωE1 + Im (f(r, t)e−iω)QωE2.

Then we apply the projection of ∂x1Φ0 on U⊥ and obtain:

1

x1

ΠU⊥∂x1Φ
0 =−

[
cos(w) cos(θ)

ξ1 + r cos(θ)

∫ t

−T
Re(ṗ(s)e−iα)(k(z(r), t− s) + rkz(z(r), t− s)zr)ds

+
cos(w) sin(θ)

ξ1 + r cos(θ)

∫ t

−T
Im(ṗ(s)e−iα)k(z(r), t− s)ds

]
QαE1

+

[
− cos(θ)

ξ1 + r cos(θ)

∫ t

−T
Im(ṗ(s)e−iα)(k(z(r), t− s) + rkz(z(r), t− s)zr)ds

+
sin(θ)

ξ1 + r cos(θ)

∫ t

−T
Re(ṗ(s)e−iα)k(z(r), t− s)ds

]
QαE2.

Therefore∣∣∣∣ 1

x1

ΠU⊥∂x1Φ
0

∣∣∣∣ ≤ C

∫ t

−T
|Re(ṗ(s)e−iα) + Im(ṗ(s)e−iα)||(k(z(r), t− s) + rkz(z(r), t− s)zr)|ds,

≤ C

∫ t

−T
|ṗ(s)||k(z(r), t− s)|ds︸ ︷︷ ︸

I1

+C

∫ t

−T
|ṗ(s)||rkz(z(r), t− s)zr|ds︸ ︷︷ ︸

I2

.
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Consider the first integral:

I1 =

∫ t− z
2

4

−T
|ṗ(s)||k(z(r), t− s)|ds︸ ︷︷ ︸

I3

+

∫ t

t− z2
4

|ṗ(s)||k(z(r), t− s)|ds︸ ︷︷ ︸
I4

.

We estimate I3. Notice that that s ≤ t − z2

4
implies that z2 ≤ 4(t − s). We use that

e−
x

4(t−s) ∼ 1− x
4(t−s)x+ o(x2) and obtain

∫ t− z
2

4

−T
|ṗ(s)||k(z(r), t− s)|ds ≤ C

∫ t− z
2

4

−T

|ṗ(s)|
(t− s)

ds.

We analyze two cases. First, when z2

4
≤ T − t we divide the integral into two:∫ t− z

2

4

−T

|ṗ(s)|
(t− s)

ds =

∫ t−(T−t)

−T

|ṗ(s)|
(t− s)

ds︸ ︷︷ ︸
I5

+

∫ t− z
2

4

t−(T−t)

|ṗ(s)|
(t− s)

ds︸ ︷︷ ︸
I6

.

We use that in I5 we have T − t ≤ t− s,∫ t−(T−t)

−T

|ṗ(s)|
(t− s)

ds ≤
∫ t−(T−t)

−T

|ṗ(s)|
(T − s)

ds,

≤ C| log T |
∫ t−(T−t)

−T

1

(T − s) log2(T − s)
ds,

= C| log T |
[

1

| log(T − s)|

]s=t−(T−t)

s=−T
,

= C| log T |
[

1

| log(2(T − t))|
− 1

| log(2T )|

]
,

≤ C.

In I6 we have to notice that t− s ≤ T − t and since 1
log2(x)

is decreasing, then

∫ t− z
2

4

t−(T−t)

|ṗ(s)|
(t− s)

ds ≤ C

∫ t− z
2

4

t−(T−t)

| log T |
log2(T − s)(t− s)

ds,

≤ C
| log T |

log2(T − t)

∫ t− z
2

4

t−(T−t)

1

(t− s)
ds,

≤ C
| log T |

log2(T − t)
[| log(t− s)|]s=t−

z2

4

s=t−(T−t) ,

≤ C
| log T |

log2(T − t)

[
| log

(
z2

4

)
| − | log(T − t)||

]
,

≤ C
| log T |

log2(T − t)
[| log (z) | − | log(T − t)|] ,

≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1).
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The second case is when z2

4
≥ T − t, then t− z2

4
≤ t− (T − t) and T − t ≤ t− s, so

∫ t− z
2

4

−T

|ṗ(s)|
(t− s)

ds ≤
∫ t−(T−s)

−T

|ṗ(s)|
(T − s)

ds ≤ C.

Now, we estimate I4. Using that 1− e−
z2

4(t−s) ≤ 1, then

I4 =

∫ t

t− z2
4

|ṗ(s)||k(z(r), t− s)|ds ≤ 1

z2

∫ t

t− z2
4

|ṗ(s)|ds,

≤ C max
s∈(t− z2

4
,t)

|λ̇∗(s)|,

≤ C.

Finally, we compute I2. Notice that

|rkz(z(r), t− s)zr| ≤
r2

z
|kz(z(r), t− s)|,

≤ r2 + λ2

z

∣∣∣∣∣∣ e
− z2

4(t−s)

2(t− s)z
− 2(1− e−

z2

4(t−s) )

z3

∣∣∣∣∣∣ ,
≤ C

∣∣∣∣∣∣e
− z2

4(t−s)

(t− s)

∣∣∣∣∣∣+ C

∣∣∣∣∣∣(1− e
− z2

4(t−s) )

z2

∣∣∣∣∣∣ ,
≤ C

 1

(t− s)
+

(1− e−
z2

4(t−s) )

z2

 .

Then

I2 =

∫ t

−T
|ṗ(s)||rkz(z(r), t− s)zr|ds ≤ C

∫ t

−T

|ṗ(s)|
(t− s)

ds+

∫ t

−T
|ṗ(s)|(1− e

− z2

4(t−s) )

z2
ds.

The second integral is the same as I1, so we already have an estimate for it. For the first
integral we use the same idea of I3:∫ t

−T

|ṗ(s)|
(t− s)

ds =

∫ t−(T−t)

−T

|ṗ(s)|
(t− s)

ds+

∫ t

t−(T−t)

|ṗ(s)|
(t− s)

ds,

≤ C

∫ t−(T−t)

−T

|logT |
log2(T − s)(t− s)

ds+ C

∫ t

t−(T−t)

|logT |
log2(t− s)(t− s)

ds,

≤ C| log T |
(

1

| log(2(T − t))|
− 1

| log(2T )|
− 1

| log(T − t)|

)
,

≤ C.

Replacing all of this in I1 and I2 we get∣∣∣∣ 1

x1

ΠU⊥∂x1Φ
0

∣∣∣∣ ≤ C(|λ̇∗|| log(r2 + λ2
∗)|+ 1).
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Notice that

|Φ0| ≤ C

∫ t

−T
|ṗ(s)||rk(z(r), t− s)|ds ≤ CrI1 ≤ Cr(|λ̇∗|| log(r2 + λ2

∗)|+ 1).

3.2 The interior problem

In this section we compute estimations for the interior problems (2.40), (2.41) and (2.42) to
prove the following propositions:

Proposition 3.3 Let p(t) = λ(t)eiω(t) and ξ(t) satisfy estimates (2.30), (2.29) and

(φ1, φ2, φ3, ψ, p, ξ) ∈ BM .

Then there exists a constant C > 0 such that

‖h[p, ξ, Z∗,Ψ]‖a,ν ≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ))

+Cλ1−ν−β(a−2)
∗ (0)(‖Ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω) + 1)

where h is defined in (2.18).

Proposition 3.4 Let p(t) = λ(t)eiω(t) and ξ(t) satisfy estimates (2.30), (2.29) and let

(φ1, φ2, φ3, ψ, p, ξ) ∈ BM .

Then there exists a constant C > 0 such that∥∥∥∥∥
2∑
j=1

c∗0j[p, ξ,Ψ]w2
ρZ0j

∥∥∥∥∥
a,ν2

≤ Cλ∗(0)1+α0−ν2 .

Proposition 3.5 Let p(t) = λ(t)eiω(t) and ξ(t) satisfy estimates (2.30), (2.29) and let

(φ1, φ2, φ3, ψ, p, ξ) ∈ BM .

Then there exists a constant C > 0 such that∥∥∥∥∥
2∑
j=1

c−1j[h[p, ξ,Ψ]]w2
ρZ−1j

∥∥∥∥∥
a,ν

≤ Cλ1−ν−τ−β(a−2)
∗ (0)(‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω) + 1).

Here cij and c∗0j are defined in (2.31) and (2.36), respectively.

Proof. (Of Proposition 3.3) In [7] the authors prove that∥∥λ2Q−ω [K0[p, ξ] +K11[p, ξ]]
∥∥
a,ν
≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T )).
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Now, from (1.9) we have that

|λ2Q−ωL̃U [Ψ + Z∗]| ≤ C
λ∗

(1 + |y|2)
(‖∇Ψ‖L∞ + ‖∇Z∗‖L∞).

But we recall that we are solving for |y| ≤ 2R and hence

λ∗
(1 + |y|)2

=
λν∗

(1 + |y|)a
λ1−ν
∗ (1 + |y|)a−2,

≤ C
λν∗

(1 + |y|)a
λ1−ν
∗ (0)(1 +R(0))a−2,

because ν < 1− β(a− 2). Then

|λ2Q−ωL̃U [Ψ]| ≤ C
λν∗

(1 + |y|)a
λ1−ν
∗ (0)(1 +R(0))a−2(‖∇Ψ‖L∞ + ‖∇Z∗‖L∞),

≤ C
λν∗

(1 + |y|)a
λ1−ν
∗ (0)(1 +R(0))a−2(λΘ

∗ (0)‖Ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)),

≤ C
λν∗

(1 + |y|)a
λ1−ν+Θ−β(a−2)
∗ (0)‖Ψ‖#,Θ,γ +

λν∗
(1 + |y|)a

λ1−ν
∗ (0)‖Z∗0‖L∞(Ω),

where 1− ν + Θ− β(a− 2) > 0. Therefore we can form the norm of the left hand side and
obtain:

‖λ2Q−ωL̃U [Ψ]‖a,ν ≤ λ1−ν+Θ
∗ (0)‖Ψ‖#,Θ,γ + λ1−ν

∗ (0)‖Z∗0‖L∞(Ω)).

The only part left to estimate is λ2Q−ωK12[p, ξ,Ψ∗].

|λ2Q−ωK12[p, ξ]| ≤ λ2 1

λ(1 + ρ2)
,

=
λ

λ(1 + |y|2)
,

≤ C
λν∗

(1 + |y|)a
λ∗(0)1−ν−β(a−2),

then
‖λ2Q−ωK12[p, ξ]‖a,ν ≤ Cλ∗(0)1−ν−β(a−2).

Combining the estimates we get

‖h[p, ξ, Z∗,Ψ]‖a,ν ≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ))

+ Cλ1−ν+Θ−β(a−2)
∗ (0)‖Ψ‖#,Θ,γ

+ λ1−ν
∗ (0)‖Z∗0‖L∞(Ω)

+ Cλ∗(0)1−ν−β(a−2).

Noticing that λ∗(0) is small and 1− ν − β(a− 2) < 1− ν + Θ− β(a− 2) < 1− ν we obtain
the result.
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Proof. (Of Proposition 3.4) Since c∗0j does not depend on h but on R0, which has the same
order of decay as in [7], and a, which is same as the one used in [7], we can use that in [7]
the authors prove that ∥∥∥∥∥

2∑
j=1

c∗0j[p, ξ,Ψ]w2
ρZ0j

∥∥∥∥∥
a,ν2

≤ λ∗(0)1+α0−ν2 .

Proof. (Of Proposition 3.5) In [7] the authors prove:

|c−1j[L̃U [Ψ + Z∗]χD2R
]| ≤ Cλ∗ log(R)(‖∇Ψ‖L∞ + ‖∇Z∗‖L∞),

λ2
∗|c−1j[K0χD2R

]| ≤ Cλ∗,

λ2
∗|c−1j[K11χD2R

]| ≤ Cλ∗‖ξ̇‖L∞ .

We only need to estimate the following:

λ2
∗|c−1j[K12χD2R

]| ≤ Cλ2
∗

∫
R2

|K12||Z−1j|χD2R
,

≤ Cλ2
∗

∫ 2R

0

wρ
λ∗
ρ2wρρdρ,

≤ Cλ∗

∫ 2R

0

ρ3

(1 + ρ2)2
dρ,

≤ Cλ∗

[
1

(2R)2 + 1
+ log((2R)2 + 1)− 1

]
,

≤ Cλ1−τ
∗ .

The last step is a consequence of the analysis done to function ` in section 2.2 with τ ∈ (0, β
2
).

Combining all of the estimates above we obtain

|c−1j[h[p, ξ,Ψ]]| ≤ Cλ∗ log(R)(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω))︸ ︷︷ ︸
A

+Cλ1−τ
∗ + Cλ∗‖ξ̇‖L∞ .

Then, noticing that ν < 1− β
2
< 1 we obtain:∣∣∣∣∣

2∑
j=1

c−1j[h[p, ξ,Ψ[p, ξ, φ1, φ2, φ3, Z
∗]]]w2

ρZ−1j

∣∣∣∣∣ ≤ C(λ∗A+ λ1−τ
∗ + λ∗‖ξ̇‖L∞)ρ2|w3

ρ|,

≤ C
λν∗

(1 + |y|2)
(λ1−ν
∗ (A+ ‖ξ̇‖L∞) + λ1−τ−ν

∗ )ρ2|w2
ρ|,

≤ C
λν∗

(1 + |y|)a
(1 +R(0))a−2(λ1−ν

∗ (0)(A+ ‖ξ̇‖L∞),

+ λ1−τ−ν
∗ (0))ρ2|w2

ρ|.
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And since ρ2|w2
ρ| =

ρ2

(1+ρ2)2
< +∞, then∥∥∥∥∥

2∑
j=1

c−1j[h[p, ξ,Ψ]]w2
ρZ−1j

∥∥∥∥∥
a,ν

≤ Cλ1−ν+Θ−β(a−2)
∗ (0)(‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω))

+ Cλ1−τ−ν−β(a−2)
∗ (0)),

≤ Cλ1−ν−τ−β(a−2)
∗ (0)(‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω) + 1).

Here we have used that 1− ν − τ − β(a− 2) < 1− ν + Θ− β(a− 2). This last estimate gives
us the result.

3.3 The parameter problem

In this section we prove Proposition 2.8 and compute estimates on the right hand side of the
equations of the parameters.

ξ̇1 = − 1

ξ1

− b1[p, ξ,Ψ∗] (3.4)

ξ̇2 = −b2[p, ξ,Ψ∗], (3.5)

Proof. (Of Proposition 2.8) Let us recall that A1[p, ξ,Ψ∗] is the operator that returns the
solution of (3.4) and A2[p, ξ,Ψ∗] returns the solution of (3.5). To obtain the estimate for A1,
we notice that from equation (3.4) we have

|ξ̇1| ≤
1

µ2

+ |b1[p, ξ,Ψ∗]|,

and

|ξ1(t)| ≤ |ξ1(t)−ξ1(T )|+q1 ≤ q1 +

(
1

µ2

+ |b1[p, ξ,Ψ∗]|
)

(T−t) ≤ q1 +T

(
1

µ2

+ |b1[p, ξ,Ψ∗]|
)
,

then we get the following estimate:

‖A1[p, ξ,Ψ∗]‖C1(0,T ) ≤
(
q1 +

1

µ2

+ ‖b1[p, ξ,Ψ∗]‖L∞(0,T )

)
+ T

(
1

µ2

+ ‖b1[p, ξ,Ψ∗]‖L∞(0,T )

)
.

(3.6)

For equation (3.5) and A2 the analysis is simpler, integrating equation (3.5) we get

A2[p, ξ,Ψ∗](t) = q2 +

∫ T

t

b2[p, ξ,Ψ∗](s)ds,

which asserts the existence of the solution and

|A2[p, ξ,Ψ∗](t)| ≤ q2 +

∫ T

t

|b2[p, ξ,Ψ∗](s)|ds ≤ q2 + (T − t)‖b2[p, ξ,Ψ∗]‖L∞(0,T ).
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Taking supremum over t ∈ (0, T ) we obtain

‖A2[p, ξ,Ψ∗]‖L∞(0,T ) ≤ q2 + T‖b2[p, ξ,Ψ∗]‖L∞(0,T ).

For the derivative is easier, because

| ˙|A2[p, ξ,Ψ∗](t)| ≤ |b2[p, ξ,Ψ∗](t)|,

then taking the supremum we obtain:

‖A2[p, ξ,Ψ∗]‖C1(0,T ) ≤
(
q2 + ‖b2[p, ξ,Ψ∗]‖L∞(0,T )

)
+ T‖b2[p, ξ,Ψ∗]‖L∞(0,T ). (3.7)

Now we use the following fact:

Lemma 3.6
‖bj[p, ξ]‖L∞(0,T ) ≤ C(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)).

and deduce the final result by replacing this estimate in (3.6) and (3.7).

Proof. (Of Lemma 3.6) Recall that

bj[p, ξ,Ψ
∗](t) =

1

4π
(1 + (2R)−2)λ

∫
B2R

Q−ωL̃U [Ψ∗] · Z1j(y)dy.

Then, by formula (1.9) we have

|L̃U [Ψ∗]| ≤ λ∗
r2 + λ2

∗
|∇Ψ∗| = 1

λ∗(1 + ρ2)
|∇Ψ∗|,

where r = λρ. Replacing this in bj we obtain

|bj[p, ξ,Ψ∗](t)| ≤
1

4π
(1 + (2R)−2)λ

∫
B2R

|L̃U [Ψ∗]||Z1j(y)|dy,

≤ 1

4π
(1 + (2R)−2)λ∗

∫ 2R

0

1

λ∗(1 + ρ2)
|∇Ψ∗||wρ|ρdρ,

≤ 1

4π
(1 + (2R)−2)

∫ 2R

0

ρ

(1 + ρ2)2
|∇Ψ∗|dρ,

≤ 1

4π
‖∇Ψ∗‖L∞(Ω)(1 + (2R)−2)

∫ 2R

0

ρ

(1 + ρ2)2
dρ,

≤ 1

4π
‖∇Ψ∗‖L∞(Ω),

≤ C(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)).
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3.4 Inclusion and compactness of operator F .

In this section we prove Propositions 2.9 and 2.10 to get that the operator F defined in
Section 2.4 goes from BM into itself and that is compact there.

First, we prove the inclusion F(BM) ⊆ BM .

Proof. (Of Proposition 2.9) We want to prove that given v := (φ1, φ2, φ3, ψ, p, ξ) ∈ BM then
F(φ1, φ2, φ3, ψ, p, ξ) ∈ BM , that is

‖F1(v)‖∗,a,ν+‖F2(v)‖∗∗,ν2 +‖F3(v)‖∗∗∗,ν+‖F4(v)‖#,Θ,γ+‖F5(v)‖G1 +‖F6(v)‖G2 ≤M. (3.8)

We will see that each norm on the left hand side is less than M/6.

• We have from Proposition 2.3 and Proposition 3.3,

‖F1(φ1, φ2, φ3, ψ, p, ξ)‖∗,a,ν = ‖Tλ,1(h[p, ξ,Ψ∗])‖∗,a,ν ,
≤ ‖h[p, ξ, Z∗,Ψ‖a,ν ,
≤ CT σ0(‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ))

+ Cλ1−ν−β(a−2)
∗ (0)(‖Ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω) + 1)

≤ M

6
,

because (φ1, φ2, φ3, ψ, p, ξ) ∈ BM and choosing T > 0, λ∗(0) > 0, Z∗0 small enough.
• We have from Proposition 2.4 and Proposition 3.4,

‖F2(φ1, φ2, φ3, ψ, p, ξ)‖∗∗,ν2 =

∥∥∥∥∥Tλ,2
(

2∑
j=1

c∗0j[p, ξ,Ψ
∗]w2

ρZ0j

)∥∥∥∥∥
∗∗,ν2

,

≤

∥∥∥∥∥
2∑
j=1

c∗0j[p, ξ,Ψ
∗]w2

ρZ0j

∥∥∥∥∥
a,ν2

,

≤ Cλ∗(0)1+α0−ν2 ,

≤ M

6
,

choosing λ∗(0) small enough.
• From Proposition 2.5 and Proposition 3.5 we obtain

‖F3(φ1, φ2, φ3, ψ, p, ξ)‖∗∗∗,ν =

∥∥∥∥∥Tλ,3
(

2∑
j=1

c−1j[h[p, ξ,Ψ∗]]w2
ρZ−1j

)∥∥∥∥∥
∗∗∗,ν

,

≤

∥∥∥∥∥
2∑
j=1

c−1j[h[p, ξ,Ψ∗]]w2
ρZ−1j

∥∥∥∥∥
a,ν

,

≤ Cλ1−ν−τ−β(a−2)
∗ (0)(‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω) + 1)

≤ M

6
,

because (φ1, φ2, φ3, ψ, p, ξ) ∈ BM and choosing λ∗(0), Z∗0 small enough.
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• From Proposition 2.6 and Proposition 3.1 we obtain

‖F4(φ1, φ2, φ3, ψ, p, ξ)‖#,Θ,γ = ‖H(g[p, ξ, ψ + Z∗, φ1, φ2, φ3])‖#,Θ,γ,

≤ ‖H(g[p, ξ, ψ + Z∗, φ1, φ2, φ3])‖#,Θ′,γ′ ,

≤ ‖g[p, ξ, ψ + Z∗, φ1, φ2, φ3]‖∗∗,

− λ∗(0)−Θ(λ∗(0)R(0))−1

| log T |
(|c1|+ |c2|+ |c3|),

≤ CT σ0(‖φ1‖∗,a,ν + ‖φ2‖∗∗,ν2 + ‖φ3‖∗∗∗,ν + ‖ψ‖#,Θ,γ,

+ ‖ṗ‖L∞(−T,T ) + ‖ξ̇‖L∞(0,T ) + ‖Z∗0‖L∞(Ω)),

− λ∗(0)β−Θ−1

| log T |
(|c1|+ |c2|+ |c3|),

≤ M

6
,

choosing λ∗(0), T and Z∗0 small enough.
• From Proposition 2.7 we have that

‖F5(φ1, φ2, φ3, ψ, p, ξ)‖G1 = |κ|+ ‖p1‖∗,3−σ + ‖p2‖Θ,l,

≤ |κ|+ ‖p1‖∗,3−σ′ + ‖p2‖Θ′,l′ ,

≤ |κ|+ C| log T |1−σ′ log(| log T |)2 + C0(T ),

≤ M

6
,

by definition of M and choosing T small enough.
• From Proposition 2.8 we have

‖F6(φ1, φ2, φ3, ψ, p, ξ)‖G2 ≤ q1 + q2 +
(1 + T )

µ2

+ 2(1 + T )(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)),

≤ M

6
,

by definition of M and choosing λ∗(0) and ‖Z∗0‖L∞(Ω) sufficiently small so that

2(1 + T )(λ∗(0)Θ‖ψ‖#,Θ,γ + ‖Z∗0‖L∞(Ω)) ≤
M

12
.

Using all the above estimates on the norm of F we obtain (3.8).

Next, we prove the compactness of the operator F .

Proof. (Of Proposition 2.10) To obtain the compactness of F we will divide the proof into
proving the compactness of every Fi for i = 1, . . . , 6. We will do the compactness of F5 and
F6 in detail, because the authors are simple to write, for the other operators we give the
main ideas, without all the technical calculations.

Let vn := (φ1n , φ2n , φ3n , ψn, pn, ξn) for n ∈ N such that (vn)n∈N ⊂ BM . We need a conver-
gent subsequence of

(F1(vn),F2(vn),F3(vn),F4(vn),F5(vn),F6(vn)) ⊂ BM .
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We will treat each component of this sequence separately by providing the existence of
convergent subsequences of Fi(vn) for all i = 1, . . . , 6 in their respective spaces and norms.

Compactness of F1, F2 and F3. We check only the compactness of F1, because for F2

and F3 the idea is similar. Notice that problem (2.40) becomes singular when t→ T , so we
will find convergent subsequences for any time smaller than T and find a subsequence that
satisfies this and that also converges in the interval between the smaller time and T . Let us
name for simplicity φn := Tλ,1(h(pn, ξn,Ψ

∗
n)) and define

fn(y, t) :=
|φn(y, t)|

λν∗R
5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}
,

gn(y, t) :=
|∇yφn(y, t)|

λν∗R
5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}
,

which are the parts inside the supremum of the norm ‖φn‖∗,a,ν . Then the problem of finding
a convergent subsequence of (F1(vn))n∈N in (E1, ‖ · ‖)∗,a,ν reduces to finding a convergent
subsequence of (fn)n∈N and (gn)n∈N in (C(Ω, [0, T ]), ‖ · ‖L∞(Ω×[0,T ])). Notice that since both
convergences are in the space of continuous functions the limit of ∇yφn will be the derivative
of the limit of φn.

We define the sequence (εm)m∈N of εm > 0 for all m ∈ N such that εm → 0 when m→∞
and εm < T for all m ∈ N. First, we will find, using the Arzela-Ascoli theorem, convergent
subsequences of fn and gn on (C(Ω, [0, T ]), ‖·‖L∞(Ω×[0,T−εm])) for all m ∈ N. Notice that both
fn and gn are uniformly bounded since the operator F1 goes from the ball BM into itself. So
to use Arzela-Ascoli we only need to prove that both sequences are equicontinuous. We do
this by proving that fn and gn are c-Hölder continuous for all n ∈ N, where c only depends
on T − εm.

We will do as an example the Hölder continuity of fn, for gn is similar. We denote

%(y, t) := λν∗(t)R
5−a
2 (t)(1 + |y|)−1 min{1, R

5−a
2 (t)|y|−2}.

Let t1, t2 ∈ [0, T − εm] and y1, y2 ∈ Ω, then a straight forward calculation using Mean Value
Theorem on φn gives us:

|fn(y1, t1)− fn(y2, t2)| ≤ |fn(y1, t1)− fn(y2, t1)|+ |fn(y2, t1)− fn(y2, t2)|

≤ 1

%(y1, t1)
|φn(y1, t1)− φn(y2, t1)|+ |φn(y2, t1)|

∣∣∣∣ 1

%(y1, t1)
− 1

%(y2, t1)

∣∣∣∣
+

1

%(y2, t2)
|φn(y2, t1)− φn(y2, t2)|+ |φn(y2, t1)|

∣∣∣∣ 1

%(y2, t1)
− 1

%(y2, t2)

∣∣∣∣
≤ 1

%(y1, t1)
|∇yφn(ξ, t1)||y1 − y2|+

1

%(y2, t2)
|∂tφn(y2, s)||t1 − t2|

+
|φn(y2, t1)|
%(y2, t1)

(∣∣∣∣%(y2, t1)− %(y1, t1)

%(y1, t1)

∣∣∣∣+

∣∣∣∣%(y2, t2)− %(y2, t1)

%(y2, t2)

∣∣∣∣) .
Now we notice an important fact: h(p, ξ,Ψ∗)(y, t) is Hölder in space and time. This can
be proved by using the Hölder continuity of Ψ∗, which comes from the norm of Ψ∗ and the
regularity of Z∗. We can use this on the parabolic estimate in Theorem 1.6 to obtain estimates
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on the uniform norms of ∇yφn, ∇2
yφn and ∂tφn. Using this and the Lipschitz continuity of

λ∗ we obtain

|fn(y1, t1)− fn(y2, t2)| ≤ C1(T − εm)|y1 − y2|+ C2(T − εm)|t1 − t2|
+M (C3(T − εm)|y2 − y1|+ C4(T − εm)|t2 − t1|α) ,

for some α ∈ (0, 1) and C1, C2, C3, C4 are positive constants only depending on T − εm. This
means that for each m ∈ N, the functions fn are Hölder continuous on space and time on
[0, T −εm]. Applying Arzela-Ascoli we obtain for each m ∈ N subsequences φmn that converge
to some φm in the norm ‖ · ‖∗,a,ν restricted to the time [0, T − εm]. We take the diagonal
subsequence and name it φn := φnn that converges to φ := limm→∞ φ

m.

Let δ > 0, we will prove that φn converges in the whole interval of time to φ. Since we
have convergence on intervals [0, T − εm] we choose m0 ∈ N sufficiently big such that:

sup
(y,τ)∈Ω×[0,T−εm]

(1 + |y|)|∇y(φn(y, t)− φ(y, t))|+ |φn(y, t)− φ(y, t)|
λν∗R

5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}
≤ δ

2
,

and such that
2Mλ(T − εm0)

ν′−ν−β
(
a−a′

2

)
≤ δ

2
.

Then

‖φn − φ‖∗,a,ν = sup
(y,τ)∈Ω×[0,T−εm]

(1 + |y|)|∇y(φn(y, t)− φ(y, t))|+ |φn(y, t)− φ(y, t)|
λν∗R

5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}

+ sup
(y,τ)∈Ω×[T−εm,T ]

(1 + |y|)|∇y(φn(y, t)− φ(y, t))|+ |φn(y, t)− φ(y, t)|
λν∗R

5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}

≤ δ

2
+ sup

(y,τ)∈Ω×[T−εm,T ]

(1 + |y|)|∇y(φn(y, t)− φ(y, t))|+ |φn(y, t)− φ(y, t)|
λν∗R

5−a
2 (1 + |y|)−1 min{1, R 5−a

2 |y|−2}

≤ δ

2
+ 2Mλ(T − εm0)

ν′−ν−β
(
a−a′

2

)

≤ δ.

This is due to that ν ′ > ν and a′ > a. For more details on this part we refer the reader to the
proof of the compactness of F5, the calculations and arguments are very similar, but since
the functions are simpler we wrote it in more detail.

We have proved that (φn)n∈N is the subsequence that we looked for. Therefore F1 is
compact.

Compactness of F4. Notice that this operator is basically a heat operator composed
with function g. We use standard parabolic estimates to get the hypothesis to use Arzelà-
Ascoli. With Arzelà-Ascoli and the compactness of the Hölder space inclusion C2γ′,γ′,1(Ω) ↪→
C2γ,γ,1(Ω) we obtain the result.

Compactness of F5. Let (pn)n∈N ⊂ G1 be the fifth coordinate of vn, then by Proposition
2.7 we have that

P [a
(0)
0 [pn, ξ,Ψ

∗](t)] = p0,κn + p1n + p2n ,
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where for p1n we have
‖p1n‖∗,3−σ′ ≤ C| log T |1−σ′ log(log T )2 (3.9)

and
|p̈1n(t)| ≤ C

| log T |
| log(T − t)|3(T − t)

for t ∈ [−T, T ).

For p2n we have

‖ṗ2‖Θ,l ≤ C0(T ), [ṗ2]γ,m,l ≤ C1(T ),

We want to find a subsequence of (κn, p1n , p2n)n∈N that converges in G1.

Since κn are constants that are bounded then by Bolzano-Weierstrass theorem there is a
subsequence of them that converges, we will call it κn as well. Then we only need to find a
subsequence of p1n and p2n that converge in norms ‖ · ‖∗,3−σ and ‖ · ‖Θ,l, respectively.

First, we find the subsequence for p1n .Note that the sequence | log(T − t)|3−σ|ṗ1n(t)| is
uniformly bounded, because of ‖p1n‖∗,3−σ ≤ ‖p1n‖∗,3−σ′ . Also notice that there is some loss
of compactness for t → T due to the logarithmic main order of the parameter p1. We
approach this issue by first taking a sequence (εm)m∈N of εm > 0 for all m ∈ N such that
εm → 0 when m → ∞ and ε < T for all m ∈ N. We aim to find convergent subsequences
on intervals [−T, T − εm] and see that for some m0 ∈ N the remaining part of the norm in
[T − εm0 , T ] is small.

Let m ∈ N and t1, t2 ∈ [−T, T − εm], then using mean value theorem on | log(T − ·)|σ and
ṗ1n and the estimates given by Proposition 2.7, we obtain the following:

|| log(T − t1)|3−σṗ1n(t1)− | log(T − t2)|3−σṗ1n(t2)| ≤ || log(T − t1)|3−σ − | log(T − t2)|3−σ|
· |ṗ1n(t1)|+ | log(T − t2)|3−σ|ṗ1n(t1)− ṗ1n(t2)|

≤ C

(
1

εm| log(εm)|1+σ−σ′ +
1

εm| log(εm)|σ

)
|t1 − t2|

≤ C(εm)|t1 − t2|

which means that | log(T − t)|3−σṗ1n(t) Lipschitz continuous in [−T, T − εm] and hence it is
equicontinuous in that interval. Also notice that | log(T − t)|3−σṗ1n(t) is uniformly bounded
due to the fact that F lives in BM . Then, by Arzelà-Ascoli theorem there exists a subsequence
which we denote pm1n such that pm1n → pm1 in the norm ‖ · ‖∗,3−σ restricted to [−T, T − εm],
and pm1 ∈ G1. Since this is for m arbitrary, we can take the diagonal subsequence pn1 := pn1n ,
that converges to p1 ∈ G in [−T, T − εm], ∀m ∈ N .

So our candidate for convergent subsequence is pn1 and it expected limit on [−T, T ] is p1.
Let δ > 0. There exists m0 ∈M such that for all m ≥ m0

sup
[−T,T−εm]

| log(T − t)|3−σ|ṗn1 (t)− ṗ1(t)| ≤ δ

2
.

Then, choosing m ≥ m0 such that

2| log εm|σ
′−σC0| log T |1−σ′ log(log T )2 <

δ

2
,
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we can estimate the norm of the difference between our candidates.

‖pn1 − p1‖∗,3−σ ≤ sup
[−T,T−εm]

| log(T − t)|3−σ|ṗn1 (t)− ṗ1(t)|+ sup
[T−εm,T ]

| log(T − t)|3−σ|ṗn1 (t)− ṗ1(t)|

≤ δ

2
+ sup

[T−εm,T ]

| log(T − t)|3−σ′|ṗn1 (t)− ṗ1(t)|| log(T − t)|σ′−σ

≤ δ

2
+ | log εm|σ

′−σ sup
[T−εm,T ]

| log(T − t)|3−σ′|ṗn1 (t)− ṗ1(t)|

≤ δ

2
+ | log εm|σ

′−σ sup
[T−εm,T ]

(
| log(T − t)|3−σ′|ṗn1 (t)|+ | log(T − t)|3−σ′ |ṗ1(t)|

)
≤ δ

2
+ 2| log εm|σ

′−σC0| log T |1−σ′ log(log T )2

≤ δ

Here we have used that pn1 and p1 satisfy estimate (3.9). Therefore pn1 is the convergent
subsequence that we were looking for.

We can use a simpler approach to get a convergent subsequence for p2n , since we already
have Hölder estimates for p2n for t ∈ [0, T ].

Compactness of F6. Let (ξn)n∈N ⊂ G2 be the sixth coordinate of vn. We are looking
for a subsequence of A[p, ξn] that converges in G2. Notice that this sequence of functions is
uniformly bounded, we will prove that it is equicontinous and use Arzelà-Ascoli theroem to
obtain a subsequence that converges.

Let t1, t2 ∈ [0, T ], since A[p, ξn] ∈ C1([0, T ];R2) we can apply the Mean Value Theorem
for each n ∈ N and obtain

|A[p, ξn](t1)−A[p, ξn](t2)| ≤ |Ȧ[p, ξn](t)||t1 − t2| ≤ C(M)|t1 − t2|,

where C(M) is a constant (independent of n) that appears from using the estimates on Section
3.3 and that only depends on µ2, λ∗(0), ψ, Z∗0 and ψ is bounded in its norm by M and the
rest are constants. Then A[p, ξn] is Lipschitz continuous for each n ∈ N, this gives us that
ξn is equicontinuous and therefore, due to Arzelà-Ascoli theorem, there exists a subsequence,
that we will call by the same name, that converges uniformly to some ξ ∈ C([0, T ];R2).

Now we focus on the derivatives to obtain the convergence in G2. Let us analyze A1

and A2 separately. Let t1, t2 ∈ [0, T ], since A1 and A2 give us the solutions of differential
equations (2.56) and (2.57) we have

|Ȧ1[p, ξn](t1)− Ȧ1[p, ξn](t2)| ≤
∣∣∣∣ 1

ξn1(t2)
− 1

ξn1(t1)

∣∣∣∣+ |b1[p, ξn](t2)− b1[p, ξn](t1)|,

≤ 1

µ2
2

|ξn1(t1)− ξn1(t2)|+ |b1[p, ξn](t2)− b1[p, ξn](t1)|,

≤ C|t1 − t2|+ |b1[p, ξn](t2)− b1[p, ξn](t1)|,
|Ȧ2[p, ξn](t1)− Ȧ2[p, ξn](t2)| ≤ |b2[p, ξn](t2)− b2[p, ξn](t1)|.
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Then it all reduces to find a Hölder estimate of the difference of bj. Let us name the following
integral as

I(t) = λ(t)

∫
B2R(t)

Q−ω(t)L̃U [Ψ∗](t) · Z1j(y)dy.

Let j = 1, 2, we estimate

|bj[p, ξn](t1)− bj[p, ξn](t2)| ≤ C

∣∣∣∣∣(1 + (2R(t1))−2)λ(t1)

∫
B2R(t1)

Q−ω(t1)L̃U [Ψ∗](t1) · Z1j(y)dy

−(1 + (2R(t2))−2)λ(t2)

∫
B2R(t2)

Q−ω(t2)L̃U [Ψ∗](t2) · Z1j(y)dy

∣∣∣∣∣ ,
≤ C|(1 + (2R(t1))−2)− (1 + (2R(t2))−2)| |I(t1)|
+ C|(1 + (2R(t2))−2)| |I(t1)− I(t2)| .

We can compute for 0 < 2β < 1 the following:

|(1 + (2R(t1))−2)− (1 + (2R(t2))−2)| ≤ 1

4
|λ(t1)2β − λ(t2)2β|,

≤ 1

4
|λ(t1)− λ(t2)|2β,

≤ 1

4
|t1 − t2|2β.

Note that as in the proof of Lemma 3.6 we obtain

I(t1) =

∣∣∣∣λ∫
B2R

Q−ωL̃U [Ψ∗] · Z1j(y)dy

∣∣∣∣ ≤ λ(t1)

∫
B2R(t1)

|L̃U [Ψ∗](t1)||Z1j|dy,

≤ C‖∇xΨ
∗‖L∞

∫ 2R(t1)

0

ρ

(1 + ρ2)2
dy,

≤ C
1

(1 + (2R(t1))−2)
‖∇xΨ

∗‖L∞ ,

≤ C‖∇xΨ
∗‖L∞ ,

and

|(1 + (2R(t2))−2)| ≤ |1 +
1

4
λ(t2)2β| ≤ 1 +

1

4
λ(0)2β ≤ C.

Then we are only missing the difference of the integrals I(t1) and I(t2), which we estimate
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as follows:

|I(t1)− I(t2)| ≤
∫
R2

∣∣∣1B2R(t1)
λ(t1)Q−ω(t1)L̃U [Ψ∗](t1) · Z1j(y)

−1B2R(t2)
λ(t2)Q−ω(t2)L̃U [Ψ∗](t2) · Z1j(y)

∣∣∣ dy,
≤
∫
B2R(t1)

|λ(t1)Q−ω(t1)L̃U [Ψ∗](t1)− λ(t2)Q−ω(t2)L̃U [Ψ∗](t2)||Z1j(y)|dy

+ |1B2R(t1)
− 1B2R(t2)

||λ(t2)Q−ω(t2)L̃U [Ψ∗](t2)||Z1j(y)|dy,

≤ C
1

(1 + (2R(t1))−2)
|∇Ψ∗(t1)−∇Ψ∗(t2)|

+

∣∣∣∣ 1

(1 + (2R(t2))2)
− 1

(1 + (2R(t2))2)

∣∣∣∣ ‖∇xΨ
∗‖L∞ ,

≤ C|∇Ψ∗(t1)−∇Ψ∗(t2)|

+
|R(t1)−2 −R(t2)−2|

(1 + (2R(t1))−2)(1 + (2R(t2))−2)
‖∇xΨ

∗‖L∞ ,

≤ C|∇Ψ∗(t1)−∇Ψ∗(t2)|+ C|t1 − t2|2β‖∇xΨ
∗‖L∞ ,

Then

|bj[p, ξn](t1)− bj[p, ξn](t2)| ≤ C
(
|t1 − t2|2β‖∇xΨ

∗‖L∞ + |∇Ψ∗(t1)−∇Ψ∗(t2)|
)
,

≤ C
(
|t1 − t2|2β[‖∇xψ‖L∞ + ‖∇Z∗0‖L∞ ]

+|∇Ψ∗(t1)−∇Ψ∗(t2)|+ |∇Z∗(t1)−∇Z∗(t2)|) ,
≤ C

(
|t1 − t2|2β[λ∗(0)Θ‖ψ‖#,Θ,γ + ‖∇Z∗0‖L∞ ]

+λ∗(t1)Θ+2γ−2γβ|t1 − t2|γ‖ψ‖#,Θ,γ + |t1 − t2|
)
,

≤ C(M)
(
|t1 − t2|2β + λ∗(t1)Θ+2γ−2γβ|t1 − t2|γ + |t1 − t2|

)
.

Here we have used that Z∗ is smooth and therefore Lipschitz. Moreover, since Θ+2γ−2βγ > 0
the term with λ∗ is bounded by its value at 0 and then we obtain

|Ȧj[p, ξn](t1)− Ȧj[p, ξn](t2)| ≤ C|t1 − t2|min{2β,γ}.

Then Ȧ[p, ξn] is equicontinuous and there exists a subsequence that converges uniformly.
Then the subsequence that we have obtaind converges in G2 and F6 is compact.
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Conclusion

We finish this work with some brief remarks.

First, since the result proved by Dávila, Del Pino and Wei in [7] is for a finite set of
blow-up points q1, q2, . . . , qk in the domain, we could extend Theorem 0.1 for a finite number
of circumferences, which could be an interesting result as an example of finite time blow-up
for a higher dimensional parabolic nonlinear equation on a set of curves.

Second, we have seen in work the method developed by Dávila, Del Pino and Wei in [7] of
separating the effect of the equation near and far away from the blow-up point by means of
a coupled system called the inner-outer gluing system. During chapters 2 and 3 we can see
that the method has some space to introduce errors of order r

λ2+r2
, which is exactly the error

associated with first partial derivatives of U in space. This means that the same method
could be applied for other volumes in R3 that have different domain symmetry that reduce
the 3-dimensional harmonic map flow to a 2-dimensional problem, mainly,

ut = ∆u+ |∇u|2u+ f(ux1 , ux2 , x), in Ω ⊂ R2, (3.10)

where f corresponds to the extra terms associated with the symmetry of the domain. We
could use this approach to do the construction on a ball B3 ⊂ R3, like in [1] and [13], or on
other symmetric domain.

Third, we do not give any results on stability of the solution when we change the initial
data. From the results in [7] it seems likely that one can construct in a similar way a stable
solution. Following the example of [7], proving stability requires redoing most of our estimates
to obtain Lipschitz ones. This could be a future continuation of the present work.

Fourth, the most important unanswered question here is the totally non symmetric case
in R3. The main question would be: Which conditions on a domain Λ ⊂ R3 and a curve Γ
do we need to get blow-up exactly on Γ? To be more specific, for T > 0, Λ ⊂ R3, Γ ⊂ Λ a
curve, and u a solution of the problem

ut = ∆u+ |∇u|2u in Λ× (0, T ),

u = u∂Λ in ∂Λ× (0, T ),

u(·, 0) = u0, in Λ.

We look for conditions on Λ and Γ so that u blows up at time T exactly at the curve Γ. Here
we have seen that for Λ = V and Γ = c(q) we have blow-up, but there is nothing said for

65



other settings. In addition, one could guess that this phenomenon is unstable with respect
to Γ, that is, if we change a bit the curve Γ the blow-up may not occur. This is a difficult
question to answer completely and could be good starting point for future work.

Finally, we expect the method of Dávila, Del Pino and Wei [7] can be applied to more
settings to extend our knowledge on singularity formation in parabolic equations. We hope
our construction can be a way of understanding better this method and that it becomes a
relevant example of finite time blow-up on curves for nonlinear parabolic equations.
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