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Sea lice are parasitic copepods that cause large economic losses to salmon aquaculture
worldwide. Frequent chemotherapeutic treatments are typically required to control this
parasite, and alternative measures such as breeding for improved host resistance are
desirable. Insight into the host–parasite interaction and mechanisms of host resistance
can lead to improvements in selective breeding, and potentially novel treatment targets.
In this study, RNA sequencing was used to study the skin transcriptome of Atlantic
salmon (Salmo salar) parasitized with sea lice (Caligus rogercresseyi). The overall
aims were to compare the transcriptomic profile of skin at louse attachment sites
and “healthy” skin, and to assess differences in gene expression response between
animals with varying levels of resistance to the parasite. Atlantic salmon pre-smolts were
challenged with C. rogercresseyi, growth and lice count measurements were taken for
each fish. 21 animals were selected and RNA-Seq was performed on skin from a louse
attachment site, and skin distal to attachment sites for each animal. These animals
were classified into family-balanced groups according to the traits of resistance (high
vs. low lice count), and growth during infestation. Overall comparison of skin from louse
attachment sites vs. healthy skin showed that 4,355 genes were differentially expressed,
indicating local up-regulation of several immune pathways and activation of tissue
repair mechanisms. Comparison between resistant and susceptible animals highlighted
expression differences in several immune response and pattern recognition genes, and
also myogenic and iron availability factors. Components of the pathways involved in
differential response to sea lice may be targets for studies aimed at improved or novel
treatment strategies, or to prioritize candidate functional polymorphisms to enhance
genomic selection for host resistance in commercial salmon breeding programs.

Keywords: Caligus rogercresseyi, Salmo salar, aquaculture, disease, parasite, RNA-Seq, host–parasite,
differential expression

INTRODUCTION

Aquaculture is currently the fastest growing food industry (Food and Agriculture Organization of
the United Nations, 2016) and is essential to meet increasing global demands for fish. However,
the sustainability and prolonged success of any farming industry depends on effective disease
prevention and control, and this tends to be particularly challenging for aquaculture. The aquatic

Frontiers in Genetics | www.frontiersin.org 1 August 2018 | Volume 9 | Article 287

https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00287
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2018.00287
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00287&domain=pdf&date_stamp=2018-08-03
https://www.frontiersin.org/articles/10.3389/fgene.2018.00287/full
http://loop.frontiersin.org/people/532802/overview
http://loop.frontiersin.org/people/573368/overview
http://loop.frontiersin.org/people/562714/overview
http://loop.frontiersin.org/people/86830/overview
http://loop.frontiersin.org/people/23863/overview
https://www.frontiersin.org/journals/genetics/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-09-00287 August 3, 2018 Time: 12:30 # 2

Robledo et al. RNA-Seq Salmon Response to Lice

environment and high stock density can expedite pathogen
spread, which has historically resulted in periodic mass mortality
events (Lafferty et al., 2015; Food and Agriculture Organization
of the United Nations, 2017) and ongoing challenges in disease
prevention and control. While biosecurity measures, vaccination,
nutrition, and medicines all play vital roles for several diseases,
selective breeding to produce more resistant and tolerant
aquaculture stocks is rapidly becoming a key component of the
battle to prevent these outbreaks (Yáñez et al., 2014a; Palaiokostas
et al., 2016).

Sea lice, ectoparasites of the family Caligidae, are one of
the major disease problems that the aquaculture industry is
facing, and specifically for salmon farming. Atlantic salmon
(Salmo salar) is the most important species in aquaculture
with a production value of 14.7 billion US dollars in 2014
(Food and Agriculture Organization of the United Nations,
2016), therefore control of sea lice is a primary goal for the
industry. Sea lice-related economic losses to worldwide salmonid
aquaculture were estimated at ∼430 million USD per annum
(Costello, 2009). Two lice species present the primary concerns
for salmon farming: primarily Lepeophtheirus salmonis in the
Northern Hemisphere and Caligus rogercresseyi in the Southern
Hemisphere (Johnson et al., 2004). These copepods parasitize
salmon during the marine phase of the lifecycle by attaching to
their skin or fins, and feeding on the blood and tissue. This leads
to open wounds which can facilitate the entry of other pathogens.
The impaired growth and secondary infections cause significant
negative animal welfare and economic impact (Frazer et al.,
2012). Despite extensive use of both chemical (i.e., hydrogen
peroxide, emamectin benzoate, organophosphates, pyrethroids,
or benzoyl ureas) and non-chemical treatments (i.e., fresh water
bath) to control sea lice, their negative impact on salmon
aquaculture has increased in the past years (Torrisen et al., 2013),
and various sea lice populations have been reported to be resistant
to the most common chemicals available for therapeutic control,
such as emamectin benzoate, azamethiphos (organophosphate),
deltamethrin (pyrethroid), and even hydrogen peroxide (Aaen
et al., 2015). Therefore, alternative methods to control sea lice
are currently being studied, including the use of probiotics to
reduce salmon attractiveness for sea lice (Jodaa et al., 2016)
or cohabitation with lice-eating species (Imsland et al., 2014;
Leclercq et al., 2014).

Knowledge of the interaction between salmon and sea lice can
help devise more effective prevention and treatment strategies.
Therefore, a lot of effort has been put in characterizing the
host response to sea lice infestation (reviewed in Fast, 2014).
Interestingly, the outcome of infestation varies for different
salmonid species (Johnson and Albright, 1992), with coho salmon
(Oncorhynchus kisutch) showing rapid inflammatory response
and epithelial hyperplasia, leading to parasite encapsulation
and more than 90% reduction in lice loads (Fast, 2014). In
comparison, Atlantic salmon (S. salar) is highly susceptible to
sea lice infestation and seemingly cannot mount a fully effective
immune response (Fast, 2014). Comparative transcriptomics
has shown that iron sequestration, increased expression of
pattern recognition receptors such as c-type lectins and up-
regulation of pro-inflammatory cytokines such as interleukin-1β

are observed in salmon species resistant to sea lice (Sutherland
et al., 2014). Interleukin-1β has also been implicated in successful
responses to sea lice in other salmonid species such as pink
salmon (Oncorhynchus gorbuscha) and coho salmon (Braden
et al., 2012, 2015; Sutherland et al., 2015), and recently
immunostimulant feeds up-regulating interleukin-1β in skin and
spleen have shown some promising results to boost Atlantic
salmon resistance to sea lice (Sutherland et al., 2017). While
these studies have mainly focused on L. salmonis, similar findings
have been observed in C. rogercresseyi infestation. For instance,
comparative analyses of Atlantic and coho salmon parasitized
with C. rogercresseyi showed that despite both showing up-
regulation of pro-inflammatory genes, the response was highly
specific, characterized in coho by an activation of the TH1
response (Valenzuela-Muñoz et al., 2016). Another study linked
iron sequestration and depletion mechanisms to the Atlantic
salmon immune response to C. rogercresseyi (Valenzuela-Muñoz
et al., 2017).

A promising and potentially complementary approach to
existing control measures is to exploit natural genetic variation
in farmed salmon populations to breed stocks with enhanced
resistance to the parasite. The presence of significant genetic
variation for resistance to C. rogercresseyi, with heritability values
ranging between 0.1 and 0.34, demonstrates the feasibility of
improving this trait by selective breeding in Atlantic salmon
(Lhorente et al., 2014; Yáñez et al., 2014b). Current evidence
indicates that host resistance to sea lice in Atlantic salmon
has a highly polygenic genetic basis, with little evidence for
major QTL (Ødegård et al., 2014; Gharbi et al., 2015; Correa
et al., 2016, 2017; Tsai et al., 2016). Therefore, genomic
selection using genome-wide markers to predict lice resistant
breeding values has been widely applied in commercial Atlantic
salmon breeding programs, with a relative advantage compared
to pedigree selection of 10–27% (Tsai et al., 2016; Correa
et al., 2017). Understanding the underlying functional basis of
genetic resistance to sea lice can lead to improved methods
of selective breeding. For example, incorporating functional
variants into genomic prediction models could help improve
prediction accuracy, in particular for cross-population prediction
(MacLeod et al., 2016). Functional annotation of reference
genomes is pertinent to this process, and the emerging
Functional Annotation of All Salmonid Genomes (FAASG)
project (Macqueen et al., 2017) is aiming to improve genome
annotation for Atlantic salmon (among other species). Further,
the discovery of putatively causative genes and variants could,
in the near future, lead to their introduction into populations
or species where it has never been present through the use of
genome editing, for example using CRISPR-Cas9 technology,
which has been successfully applied in salmon to knockout
two genes related to pigmentation (tyrosinase and solute carrier
family 45 member 2) and the dnd (dead end) gene, producing
albino (Edvardsen et al., 2014), and germ cell-free salmon
(Wargelius et al., 2016), respectively.

Expression differences between Atlantic salmon resistant
and susceptible families in response to L. salmonis for 32
immune genes suggested that resistant fish are better at avoiding
immunosuppression (Holm et al., 2015). The same study found
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suggestive evidence that physical tissue barrier such as enhanced
mucus production does not contribute to resistance (Holm
et al., 2015). However, to our knowledge, the functional basis
of genomic resistance to sea lice in Atlantic salmon has not
been studied on a genome-wide scale, nor it has been explored
in response to C. rogercresseyi. RNA sequencing can provide
a first layer toward a holistic view of the host response to
parasite infection, which in turn can highlight specific genes,
pathways, and networks involved in the host–parasite interaction.
RNA sequencing can also be used to identify single nucleotide
polymorphisms in transcribed regions, and to assess the putative
impact of those genetic markers on transcript and protein
function. The effect of these markers on gene expression (and
ultimately host resistance) can be assessed by allelic-specific
expression or expression QTL studies, leading to a shortlist of
candidate functional variants.

The overall aims of the current study were to compare the
transcriptome profile of salmon skin at louse attachment sites and
“healthy” skin (from the same fish), and to evaluate differences in
these profiles between animals with varying levels of resistance to
the parasite. To achieve this, challenged animals were classified
into family-balanced groups according to resistance (based on
high vs. low lice count) and growth during infestation, and RNA
sequencing was performed on individual samples. By comparing
resistant vs. susceptible samples, genes and pathways related to
local immune response and host resistance were identified, and
their potential role discussed.

MATERIALS AND METHODS

Experimental Design
2,668 Atlantic salmon (S. salar) pre-smolts (average weight:
136 g) from 104 families from the breeding population of
AquaInnovo (Salmones Chaicas, Xth Region, Chile), were
experimentally challenged with C. rogercresseyi (chalimus II–III).
This population will be used for a future study on sea lice
resistance genetic architecture and genomic selection. Briefly,
infestation with the parasite was carried out by using 13–24
copepodids per fish and stopping the water flow for 6 h after
infestation. Eight days after the infestation fish were euthanized
and fins from each fish were collected and fixed for processing
and lice counting. 42 samples from 21 fish from 6 different
families (2–5 fish per family) were selected for RNA sequencing
(Supplementary File S1) based on the traits of interest (number
of sea lice attached to their fins and growth during challenge).
Skin samples (both from attachment sites and health skin) were
obtained from each animal and stored in RNAlater at 4◦C for
24 h, and then at−20◦C until RNA extraction for sequencing.

RNA Extraction and Sequencing
For all the 42 samples a standard TRI Reagent RNA extraction
protocol was followed. Briefly, approximately 50 mg of skin
was homogenized in 1 ml of TRI Reagent (Sigma, St. Louis,
MO, United States) by shaking using 1.4 mm silica beads, then
100 µl of 1-bromo-3-chloropropane (BCP) was added for phase
separation. This was followed by precipitation with 500 µl of

isopropanol and posterior washes with 65–75% ethanol. The
RNA was then resuspended in RNAse-free water and treated
with Turbo DNAse (Ambion). Samples were then cleaned up
using Qiagen RNeasy Mini kit columns and their integrity was
checked on Agilent 2200 Bioanalyzer (Agilent Technologies,
United States). Thereafter, the Illumina Truseq mRNA stranded
RNA-Seq Library Prep Kit protocol was followed directly.
Libraries were checked for quality and quantified using the
Bioanalyzer 2100 (Agilent), before being sequenced on three lanes
of the Illumina Hiseq 4000 instrument using 75 base paired-end
sequencing at Edinburgh Genomics, United Kingdom. Raw reads
have been deposited in NCBI’s Sequence Read Archive (SRA)
under Accession No. SRP100978.

Read Mapping
The quality of the sequencing output was assessed using FastQC
v.0.11.5.1 Quality filtering and removal of residual adaptor
sequences was conducted on read pairs using Trimmomatic
v.0.32 (Bolger et al., 2004). Specifically, Illumina specific adaptors
were clipped from the reads, leading, and trailing bases with a
Phred score less than 20 were removed and the read trimmed
if the sliding window average Phred score over four bases was
less than 20. Only reads where both pairs were longer than
36 bp post-filtering were retained. Filtered reads were mapped to
the most recent Atlantic salmon genome assembly (ICSASG_v2;
GenBank Accession No. GCF_000233375.1; Lien et al., 2016)
using STAR v.2.5.2b (Dobin et al., 2013), the maximum number
of mismatches for each read pair was set to 10% of trimmed read
length, and minimum and maximum intron lengths were set to
20 bases and 1 Mb, respectively. Uniquely mapped paired-reads
were counted and assigned to genes (NCBI S. salar Annotation
Release 100) using FeatureCounts (Liao et al., 2014), included in
the SourceForge Subread package v.1.5.0. Only reads with both
ends mapped to the same gene were considered in downstream
analyses.

Differential Expression
Differential expression analyses and gene functional and pathway
enrichment analyses were performed using R v.3.3.1 (R Core
Team, 2014). Gene count data were used to estimate differential
gene expression using the Bioconductor package DESeq2 v.3.4
(Love et al., 2014). Briefly, size factors were calculated for each
sample using the median of ratios method and count data was
normalized to account for differences in library depth, next gene-
wise dispersion estimates were fitted to the mean intensity using
a parametric model and shrinked toward the expected dispersion
values, finally a gegative binomial model was fitted for each
gene and the significance of the coefficients was assessed using
the Wald test. The Benjamini–Hochberg false discovery rate
(FDR) multiple test correction was applied, and transcripts with
FDR < 0.05 and absolute log2 fold change values (FC) > 0.5 were
considered differentially expressed genes. Hierarchical clustering
and principal component analyses were performed to visually
identify outlier samples that did not cluster close to other samples
in the same category (lice attachment site or healthy skin), which

1http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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were then removed from the analyses as sampling errors could
not be discounted. PCA plots were created using the R package
factoextra.2

Pathway Enrichment
Gene Ontology (GO) enrichment analyses were performed using
Blast2GO v.4.1 (Conesa et al., 2005). Briefly, genes showing
>10 reads in >90% of the samples were annotated against the
manually curated protein database Swiss-Prot (Bairoch et al.,
2004) and GO terms were assigned to them using Blast2GO.
GO enrichment for specific genes lists was tested against the
whole set of expressed genes using Fisher’s exact test. GO terms
with ≥5 DE genes assigned and showing a Benjamini–Hochberg
FDR corrected p-value < 0.05 were considered enriched. Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses were performed using KOBAS v3.0.3 (Wu et al., 2006).
Briefly, genes showing >10 reads in >90% of the samples were
annotated against KEGG protein database (Kanehisa and Goto,
2000) to determine KEGG Orthology. KEGG enrichment for
specific gene lists was tested by comparison to the whole set of
expressed genes using Fisher’s exact test. KEGG pathways with
≥5 differentially expressed (DE) genes assigned and showing
a Benjamini–Hochberg FDR corrected p-value < 0.05 were
considered enriched.

RESULTS AND DISCUSSION

Disease Challenge
A total of 2,632 fish belonging to 105 families from a commercial
breeding program were challenged with C. rogercresseyi
copepods, and euthanized for sampling 8 days post-challenge.
Average lice burden per fish was 38 ± 16, and the estimated
heritability of sea lice load was 0.28± 0.04 (unpublished results),
therefore the differences in sea lice counts between fish has a
genetic component. Fish were selected for RNA sequencing
based on the traits of resistance, measured as number and
concentration of lice per fish, and weight and length gain since
the start of the challenge, which may reflect the ability of the
fish to cope with the infestation. The selected fish allowed for
8 vs. 8 comparisons between family-matched fish showing
differential resistance (26.2 ± 5.5 vs. 54.9 ± 13.5 sea lice per
fish) and differential growth during infestation (7.0 ± 4.3 vs.
28.8 ± 12.3 weight gain percentage). A total of 42 samples
(21 fish, skin from sites of louse attachment and healthy skin)
were sequenced, resulting in an average of ∼27.9 ± 2.7 million
reads per sample. After trimming, these were aligned against
the salmon reference genome (ICSASG_v2; GenBank Accession
No. GCF_000233375.1; Lien et al., 2016) and levels of gene
expression were estimated according to the official salmon
genome annotation (NCBI S. salar Annotation Release 100).
An average of 19 M trimmed reads per sample were assigned to
genes and used for downstream analyses of gene expression. All
raw sequence data is available in NCBI’s SRA under BioProject
Accession No. SRP100978, and may be a useful contribution

2http://www.sthda.com/english/rpkgs/factoextra/

to the functional annotation of all salmonid genomes initiative
(FAASG; Macqueen et al., 2017).

Louse Attachment Sites Versus Healthy
Skin
Principal component analysis of gene expression (Figure 1)
revealed a relatively clear cluster of healthy skin samples, while
lice-attachment samples were more scattered, probably reflecting
variation in the individual response to sea lice. Differential
expression between healthy and louse attachment sites resulted
in 4,355 DE genes (Supplementary File S2), with a higher
number of up-regulated (more expressed in attachment sites)
than down-regulated genes (n = 3,114 vs. n = 1,241). Among
these DE genes were well-known components of the innate
immune response such as interleukins, interferon response
factors and complement components (Figure 2A). GO term
and KEGG pathway analyses (Supplementary File S2) revealed
a clear enrichment of immune pathways and functions among
the up-regulated genes (Figure 2B), highlighting a localized
immune response strongly related to cytokine activity. A similar
scenario has been observed in other salmonids such as coho
salmon where resistance to sea lice has been associated with early
inflammation in skin and head kidney, which results in epithelial
hyperplasia and often parasite encapsulation and removal of
the sea lice within 2 weeks (Johnson and Albright, 1992; Fast
et al., 2002). In pink salmon, an early and high expression of
pro-inflammatory genes (IL-8, TNFα-1, and IL-1β) has been
suggested as a mechanism of rapid louse rejection (Fast et al.,
2007). The classical complement pathway has also been linked to
resistance of host fish to parasitic copepod infection (Fast, 2014).
The results presented here indicate that despite a marked up-
regulation of the local inflammatory response and complement
pathway in Atlantic salmon, in part resembling the response
of coho salmon or pink salmon, this does not seem to be
sufficient to successfully respond to the louse attachment and
feeding.

In addition to the expected innate immune response observed
above, cell division related processes were also clearly up-
regulated at louse attachment sites, and well-characterized genes
involved in tissue repair such as fibroblast growth factor-binding
protein 1 and Epigen showed significant differences between lice
attachment sites and healthy skin (FC > 3). Several genes related
to the cell matrix and cell adhesion also had higher expression at
attachment sites (i.e., cadherin-13, integrin alpha-2, desmoplakin,
or various keratin and collagen genes). Cell proliferation is the
main response to skin wounds in fish (Iger and Abraham, 1990),
and these results are consistent with those previously found in
the early response to L. salmonis (Skugor et al., 2008). Several
mucins were also found to have higher expression at attachment
sites, pointing toward increased mucus production and secretion,
which can also be a typical response to wounding in fish (Fast,
2014).

Resistance
Resistance, measured as number of sea lice per fish, was
evaluated using two different approaches: correlation between
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FIGURE 1 | Principal component analyses. RNA-Seq samples clustered according to their gene expression. Ellipses represent 95% confidence intervals.

gene expression and sea lice loads, and differential expression
between family-matched fish showing high and low sea lice loads.

Correlation Between Gene Expression and Sea Lice
Loads
We studied the correlation of gene expression and sea lice counts
in healthy skin and sea lice attachment sites. Genes showing
r > |0.75| with sea lice counts were considered of interest
(Supplementary File S3).

The expression levels of five immune receptors in healthy
skin were positively correlated with sea lice loads (Table 1).
Macrophage mannose receptor 1 (MRC1) shows the highest
positive correlation with number of sea lice (r = 0.87), and
also the highest expression difference between louse attachment
vs. healthy skin (FC = 4.79). MRC1 is a c-type lectin receptor,
expressed in macrophages, dendritic cells, and skin in humans.
MRC1 plays a role both in innate and adaptive immunity and
also acts as a recognition receptor for different pathogens such
as bacteria, virus, or fungi (East and Isacke, 2002). C-type
lectin receptor A (r = 0.81; FC = −1.34) is another lectin
receptor involved in antigen recognition and immune response
(Geiktenbeek and Gringhuis, 2009). Lectins such as MRC1

and CLEC4E have been found to be induced by glucosinolate-
enriched feeds in Atlantic salmon, which also reduced lice counts
between 17 and 25% (Holm et al., 2016), and are also up-
regulated in response to sea lice in the more resistant pink salmon
species (Sutherland et al., 2014). Lectins have been reported to
activate the immune system in response to parasites in several
different species (Vázquez-Mendoza et al., 2013; Hoving et al.,
2014), therefore modulation of these genes represents a possible
route to enhance Atlantic immune responses to sea lice. Two
immune receptors were negatively correlated with number of
sea lice, CD97 (r = −0.84) and suppressor of cytokine signaling
5 (SOCS5; r = −0.76). CD97 regulates cytokine production
and T-cell activation and proliferation (Capasso et al., 2006;
Abbott et al., 2007); while SOCS5 is part of the cytokine-
mediated signaling pathway, and acts as a negative regulator
of inflammatory response and other immune-related pathways
(Seki et al., 2002). Since, it was not possible to take skin samples
prior to infection, it is difficult to distinguish between cause
and effect; i.e., it is plausible that the negative correlation of
these genes with number of sea lice is simply indicating that the
immune system of the host responds proportionally to the degree
of lice infestation. Nonetheless, the data support a major role for
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FIGURE 2 | Healthy vs. injured skin. (A) Important immune-related genes showing differential expression between healthy and injured skin. Genes have been
arbitrarily positioned along the x-axis. (B) Selection of GO terms enriched amongst DE genes between healthy and injured skin.

TABLE 1 | Immune receptors showing correlation with sea lice counts.

Gene Full name Corr. (r) GO terms

MRC1 Macrophage mannose receptor 1 0.87 Cellular response to interferon gamma Cellular response to interleukin-4

CLEC4E C-type lectin receptor A 0.81 Innate immune response Positive regulation of cytokine secretion

CR2 Complement receptor type 2 0.78 Innate immune response Complement activation, classical pathway

LIFR Leukemia inhibitory factor receptor 0.78 Cytokine-mediated signaling pathway

CD28 T-cell-specific surface glycoprotein CD28 0.77 Positive regulation of inflammatory response to antigenic stimulus Cytokine biosynthethic process

SOCS5 Suppressor of cytokine signaling 5 −0.76 Cytoine-mediated signaling pathway Negative regulation of inflammatory response

CD97 CD97 antigen −0.84 Inflammatory response

these genes in the host response to sea lice, and the differences in
lice count between fish has a genetic component, to which these
genes may contribute.

Amongst genes without a (well-known) immune function,
there was an association between SUMO1 (r = 0.76) and SUMO3
(r = −0.91) expression and sea lice loads. Small ubiquitin-
like modifier (SUMO) proteins are small proteins similar to
ubiquitins that are covalently attached to other proteins to modify

their function. According to the gene expression data, SUMO1
seems to be preferred over SUMO3 in salmon upon sea lice
infestation. Although post-translational modifications have been
barely explored in fish, in mice SUMOylation has been shown
to be involved in modulation of host innate immune response
to pathogens (Decque et al., 2016). SUMOylation is also a very
active field of research in plants, where SUMO is known to be
involved in many important processes such as plant response to
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environmental stresses, including pathogens (Park et al., 2011).
It would be interesting to further study the role of SUMO in
modulating Atlantic salmon responses to sea lice.

The results were markedly different in lice-attachment
sites (Supplementary File S3), and congruent with differential
expression between lice-attachment and healthy skin, with
inflammatory genes such as toll-like receptor 12 or caspase 3
showing high correlations with sea lice loads. Similarly, one
of the sox9 paralogs (sox9a) was also highly correlated with
lice loads. Sox9 has a pro-proliferation function in human
epidermal keratinocytes (Shi et al., 2013), and therefore this
transcription factor is probably promoting wound healing in
sea lice attachment sites. Finally, the gene hepcidin-1 is also
correlated with sea lice counts in lice-attachment sites. Hepcidin
is a regulator of iron metabolism, which as mentioned in the
introduction has been associated with response to C. rogercresseyi
(Valenzuela-Muñoz et al., 2017).

Differential Expression Between High and Low Sea
Lice Loads
The samples for RNA sequencing were chosen to enable 8 vs.
8 comparison between family-matched fish (three families with
two fish per group, two families with one fish) with high and low
values for resistance (26.2 ± 5.5 vs. 54.9 ± 13.5 sea lice per fish).
There were 43 genes significantly differentially expressed between
resistant and susceptible fish (Supplementary File S4). All but one
were from comparison of healthy skin samples between the two
groups, which seems to suggest that the differences in resistance
are systemic rather than local to louse attachment sites. The

susceptible group had higher expression levels for genes involved
in muscle contraction like troponins and myosins, which was also
highlighted by GO enrichment analyses (Figure 3). Myosins and
troponins have previously been identified as genes that respond
to sea lice attachment in salmon skin (Holm et al., 2015). Further,
Caligus infection is known to induce increased enzyme activity
in muscle tissue (Vargas-Chacoff et al., 2017), and behavioral
changes in the fish such as flashing and jumping are associated
with ectoparasite removal (Furevik et al., 1993; Magnhagen et al.,
2008). It has been recently reported that inactivity or reduced
swimming activity contribute to resistance to sea lice (Bui, 2017),
so it is possible that the high lice counts of susceptible fish
in this study are due to higher activity levels with associated
expression of muscle contraction related genes. In turn, high lice
burden can provoke behavioral responses increasing fish activity,
which results in the up-regulation of muscle genes, increasing the
expression differences between resistant-passive-low lice fish and
susceptible-active-high lice fish.

Two heme oxygenase genes, encoding enzymes, which
catalyze the degradation of heme, also had higher expression
levels in susceptible samples (Figure 3), which is consistent
with the positive correlation with lice loads of the iron-
sequestration gene hepcidin. These genes have been previously
shown to be up-regulated in response to Caligus infection
(Valenzuela-Muñoz and Gallardo-Escárate, 2017). Importantly,
iron availability was found to be reduced in the highly resistant
species pink salmon infected with L. Salmonis (Sutherland
et al., 2014), and hematocrit and anemia were also found to be
reduced in chum salmon (Oncorhynchus keta) in response to

FIGURE 3 | Up-regulation in susceptible fish. (A) Genes DE between resistant and susceptible fish, being up-regulated in the latter. (B) Enriched GO terms amongst
DE genes up-regulated in susceptible fish.
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sea lice (Jones et al., 2007). It is therefore plausible that the more
effective reduction of iron availability in Atlantic salmon (perhaps
behaving more similarly to the resistant pink salmon) might be
related to increased resistance to sea lice.

Finally, three immune receptors showed higher expression
in susceptible samples (Figure 3); C-X-C chemokine receptor
type 2 is a receptor for IL-8, its binding causes activation of
neutrophils; while C type lectin receptors A (also found to
be positively correlated with sea lice counts in healthy skin)
and B are leptin receptors with an important role in pathogen
recognition and immunity (Geiktenbeek and Gringhuis, 2009),
as previously discussed. While it is clear that resistance and host
response to sea lice is multifactorial in nature, these genes related
to muscle contraction, iron availability and immunity may be
targets for functional validation in future studies, and for cross-
referencing with genome-wide association analyses to identify
candidate causative genes and variants.

Growth During Infestation
Differences in weight gain percentage from the start to the
end of the trial were also investigated. Weight gain during
infestation did not show any significant correlation with initial
weight (r = −0.27, p = 0.10), sea lice counts (r = 0.12,
p = 0.45) or sea lice density (r = 0.19, p = 0.24) in our
dataset, and the means for these three traits are not significantly
different between our groups showing differential growth during
infestation (t-test p-values > 0.35). Family-matched fish (8 vs.
8; three families with two fish per group, two families with one
fish) with differential weight gain during infestation (7.0 ± 4.3
vs. 28.8 ± 12.3 weight gain percentage) were compared. A total
of 24 and 1 genes were found differentially expressed between
fish showing high and low weight gains in healthy and sea louse
attachment site samples, respectively (Supplementary File S5).
The gene differentially expressed in injured skin, solute carrier
family 15 member 1 (SLC15A1), also showed the lowest p-value
and highest FC in healthy skin (FC = 3.38, p = 0.003). The
SLC15A1 protein is a membrane transporter that mediates
the uptake of dipeptides and tripeptides, in humans this gene
is expressed in the intestinal epithelium and plays a major
role in protein absorption (Adibi, 1997). Another interesting
DE gene is myogenic regulatory factor 6 (MYF6; FC = 0.72,
p = 0.04). Myogenic regulatory factors are transcription factors
that regulate muscle development (Perry and Rudnick, 2000); in
Senegalese sole decreased expression of these factors was observed
in fast muscle when fed with a high-lipid content diet, which
caused reduced growth (Campos et al., 2010). While skin is
unlikely to be a highly suitable tissue to study genes underlying
fish growth during sea lice infestation, both myogenic factors
and increased nutrient absorption, and specifically MYF6 and
SLC15A1, are good candidates to better understand growth
impairment differences under sea lice infestation.

CONCLUSION

The results of this study highlight that the early gene expression
response of Atlantic salmon to sea lice involves up-regulation of

many different components of the immune system (inflammatory
response, cytokine production, TNF and NF-kappa B signaling
and complement activation) along with tissue repair activation.
The comparison of resistant vs. susceptible animals highlighted
enrichment of pathways related to fish activity, iron availability
and receptors modulating pathogen recognition and immune
response. Overall, this study contributes to an improved
understanding of Atlantic salmon early response to sea lice in
skin, and into the gene expression profiles underpinning genetic
resistance to sea lice in salmon. The identified pathways and
genes may be targets for future studies aimed at development
of new treatments, vaccines, or prevention strategies. The data
can also be cross-referenced with high power genome-wide
association studies to help prioritize putative causative genes
and variants that have potential to improve genomic selection
programs for genetic improvement of resistance to this industry’s
most serious disease.
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